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Abstract
This paper deals with automated deduction techniques to prove and generalize some well-known theorems in
group theory that involve power maps, i.e., functions of the form 𝑓 (𝑥) = 𝑥𝑛. Here, the main obstacle is that if
𝑛 is interpreted as an integer variable, then these results are not expressible in first-order logic with equality.
The strategy followed here is to look at the classical proofs, involving the integer variable 𝑛, and see what
specific first-order properties of power maps that are needed in the proofs. Then we implement these first-order
properties of power maps in a theorem prover Prover9 and demonstrate that a well-designed reformulation makes
specific mathematical theories accessible to the modern first-order theorem-proving software, allowing even for
generalizations of the classical results.
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1. Introduction

The theory of groups and that of semigroups are very closely related. In fact, every group is a cancellation
semigroup and, by a classical theorem of O. Ore [14], every cancellation semigroup satisfying some
nontrivial identity, say 𝑓 (𝑥, 𝑦) = 𝑔(𝑥, 𝑦), is embeddable in a group. Also, there are several examples of
identities 𝑓 = 𝑔 which are preserved during this process of expansion. The most well-known example
of a semigroup law that is transferable to groups is, of course, the commutative law. A.I. Mal’cev [8]
and B.H. Neumann [12] have shown independently that nilpotent semigroup laws are transferable.
However, it is also known that not all semigroup laws are preserved under the Ore extension. This
raises the important question of finding more (and possibly all) transferable semigroup laws. This
problem was raised by G.M. Bergman ([1, 2]).
There are several transferability theorems in semigroups that involve power maps 𝑓 (𝑥) = 𝑥𝑛. For

example, it is known that every cancellation semigroup satisfying 𝑥𝑛 ⋅ 𝑦𝑛 = 𝑦𝑛 ⋅ 𝑥𝑛 can be embedded
in a group satisfying the same identity. Such statements belong to first-order logic with equality and
hence provable, in principle, by any first-order theorem prover. However, because of the presence of an
arbitrary integer parameter 𝑛 in the exponent, they are outside the scope of any first-order theorem
prover. In particular, one cannot use such an automated reasoning system to prove theorems involving
power maps. Here we focus just on the needed properties of power map 𝑓 (𝑥) = 𝑥𝑛 and show how
one can easily avoid having to reason explicitly with integer exponents. Implementing these new
equational rules of power maps, we show how a theorem prover can be a handy tool for quickly proving
or confirming the truth of such theorems involving power maps without explicitly mentioning the
integer variable 𝑛.

Following Macedonska [7], a positive semigroup law is said to be transferable if being satisfied in a
cancellative semigroup 𝑆 it must be satisfied in 𝑆𝑆−1, the group of right quotients of 𝑆. The most well-
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known example of a transferable law is, of course, the commutative law. A. I. Malcev, B. H. Neumann
and others ([8, 12]) have shown that nilpotent identities are transferable. Macedonska [7] has proved
the transferablity of several two-variable semigroup laws. These identities are defined by using power
maps 𝑓 (𝑥) = 𝑥𝑛 in semigroups.
Here we will replace the power map by power-like functions and prove their transferability. The

transferability of identities is first order problem but first-order theorem provers cannot handle
power-maps because of the presence of an integer variable “𝑛”. Here we demonstrate that computers
can prove these semigroup implications, thus generalizing what is known classically.

A motivating example: It is well-known that in groups, the commutators [𝑥, 𝑦] can be expressed in a
product of three squares, that is,

[𝑥, 𝑦] = 𝑥−1𝑦−1𝑥𝑦 = (𝑥−1)2 ⋅ (𝑥𝑦−1)2 ⋅ 𝑦2,

and hence 𝑥2𝑦 = 𝑦𝑥2 implies [𝑥, 𝑦] is central, which is equivalent to the semigroup implication

𝑥2𝑦 = 𝑦𝑥2 ⟹ 𝑥𝑦𝑧𝑦𝑥 = 𝑦𝑥𝑧𝑥𝑦.

Definition 1.1. A cancellation semigroup (𝐺, ⋅) is a semigroup with the two-sided cancellative proper-
ties, i.e., for all 𝑥, 𝑦 , 𝑧 ∈ 𝐺, the following are true:

(i) 𝑥 ⋅ 𝑦 = 𝑥 ⋅ 𝑧 implies 𝑦 = 𝑧,
(ii) 𝑥 ⋅ 𝑦 = 𝑧 ⋅ 𝑦 implies 𝑥 = 𝑧.

Some properties of cancellation semigroup can be found in, for example, [4, 5, 13, 7, 16, 17]. Here we
show that the above implication is valid in cancellation semigroups:

𝑦 ⋅ 𝑦𝑥𝑧𝑥𝑦 ⋅ 𝑥 = 𝑦2𝑥𝑧𝑥𝑦𝑥
= 𝑥𝑧𝑦2𝑥𝑦𝑥
= 𝑥𝑧𝑦 ⋅ (𝑦𝑥)2
= (𝑦𝑥)2𝑥𝑧𝑦
= 𝑦𝑥𝑦𝑥2𝑧𝑦
= 𝑦𝑥𝑦𝑧𝑦𝑥2
= 𝑦 ⋅ 𝑥𝑦𝑧𝑦𝑥 ⋅ 𝑥.

Canceling 𝑦 and 𝑥, we have 𝑥𝑦𝑧𝑦𝑥 = 𝑦𝑥𝑧𝑥𝑦.

Next we present the proof by using Prover9 [9].

%% INPUT file
%% In groups, squares are central ==> commutators are also central
(x * y) * z = x * (y * z).
x * e = x.
x * x' = e.
x * y = (y * x) * [x, y]. %% commutators defined
x * (y * y) = (y * y) * x. %% squares are central
%% goal to prove that commutators are central
x * [y, z] = [y, z] * x.
=============== PROOF =================================
1 x * [y,z] = [y,z] * x # label(non_clause) # label(goal).
2 (x * y) * z = x * (y * z). [].
3 x * e = x. [].
4 x * x' = e. [].
5 x * y = (y * x) * [x,y]. [].
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6 x * (y * [y,x]) = y * x. [5,2].
7 x * (y * y) = (y * y) * x. [].
8 x * (y * y) = y * (y * x). [7,2].
9 [c2,c3] * c1 != c1 * [c2,c3]. [1].
10 x * (e * y) = x * y. [3,2].
11 x * (x' * y) = e * y. [4,2].
12 x * (y * (x * y)') = e. [4,2].
13 x * (y * ([y,x] * z)) = y * (x * z). [6,2,2,2].
14 x * (y * (z * [z,x * y])) = z * (x * y). [6,2].
15 x * (y * (z * [y * z,x])) = y * (z * x). [2,6,2].
16 x * (y * (y * z)) = y * (y * (x * z)). [8,2,2,2,2].
20 e * x = x. [3,8,3,10].
21 x * (x' * y) = y. [11,20].
29 x'' = x. [4,21,3].
31 x * [x,y'] = y * (x * y'). [6,21].
33 x * (y * (x' * x')) = x' * y. [8,21].
35 x' * x = e. [29,4].
36 x' * (x * y) = y. [29,21].
40 x * (y * [x,y]') = y * x. [4,13,3].
41 x * (y * (z * [z,[x,y]])) = y * (x * (z * [x,y])).[6,13].
43 x * (y * (z * (z * [y,x]))) = y * (x * (z * z)). [8,13].
55 x' * (y * x) = y * [y,x]. [6,36].
58 x * (y * x)' = y'. [12,36,3].
66 x * (y * [y,z' * x]) = z * (y * (z' * x)). [14,21].
80 x*(y *(z*(u*[y*(z*u),x])))=y*(z*(u*x)).[2,15,2,2].
98 (x * y)' = y' * x'. [58,36].
112 x * (y * (z * (z * u))) = z * (z * (x * (y * u))).[16,2,2].
115 x * (x * (y * x')) = y * x. [4,16,3].
127 x * (y * (x' * (x' * z))) = x' * (y * z). [16,21].
128 x * (x * (y * (x' * z))) = y * (x * z). [21,16].
189 x * (x * (y * (z * x'))) = y * (z * x). [2,115,2].
190 x' * (y * x) = x * (y * x'). [115,21,29].
206 x * [x,y] = y * (x * y'). [55,190].
326 x' * (y * (x * z)) = x * (y * (x' * z)). [190,2,2,2,2].
467 x * (y' * [y,x]) = y' * x. [33,13,33].
481 x * [y,x]' = y * (x * y'). [40,36,190].
512 x * (y * (x' * y')) = [x',y']. [31,21].
516 [x',y'] = [x,y']. [31,36,326,512].
543 x * (y * (x' * y')) = [x,y']. [512,516].
547 [x',y] = [x,y']. [206,21,543].
551 [x,y'] = [x,y]. [206,36,326,543].
552 x' * (y * [y,x]) = y * x'. [206,36].
569 x * [y,x] = y * (x * y').

[206,190,98,29,2,36,98,29,2,36].
584 [x',y] = [x,y]. [547,551].
585 x * (y * (x' * y')) = [x,y]. [543,551].
592 x' * (y * ([y,x] * z)) = y * (x' * z). [551,13].
605 x * (y * [x,y]) = y * x. [569,8,8,115].
606 [x,y] = [y,x]. [569,21,585,551].
754 x * (y' * [x,y]) = y' * x. [551,605].
1004 [x,y]' = [y,x]. [481,21,585,551].
1049 x * [y,[x,y]] = x. [21,41,584,754,21].
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1095 [x,[y,x]] = e. [1049,21,4,584].
1157 [x,y' * (y' * x')] = e.

[35,43,98,98,2,98,98,2,606,2,2,326,36,36,21].
1383 [x,x * (y * y)] = e. [1157,551,98,98,29,29,29,2].
1387 [x,y * (y * x)] = e. [8,1383].
1400 [x * y,x' * y] = e. [21,1387,606].
1534 [x * (y * z),x * (y' * z)] = e. [13,1400,592].
1861 x * (y * (x' * (y' * z))) = [x,y] * z. [585,2,2,2].
1863 x * (y * (z * (x' * (z' * y')))) = [x,y * z].[2,585,98].
1874 x * ([y,z] * (x' * [z,y])) = [x,[y,z]]. [1004,585].
1903 [x,y' * x] = [y,x]. [66,21,190,585,584].
2118 [x,y * x] = [y,x]. [29,1903,584].
2121 [x,x * y] = [x,y]. [36,1903,606,2118].
2148 [x' * y,[x,y]] = e. [1903,1095].
2195 [x * y,[x,y]] = e. [2118,1095].
2365 [x * y,y * x] = e. [2195,2121,2,605].
2384 [x * y,x' * y'] = e. [2365,551,98].
2592 [x,y] * (y' * x) = x * y'.

[2148,467,98,29,3,98,29,2,552].
2674 x' * (y' * (z * (x * (z' * y)))) = [x,z * y].

[2384,80,98,3,2,2,326,98,1863].
3912 x*(y*(z*(x'*(x'*u))))=x'*(y*(z*u)).[112,21].
4517 [x,[y,z]] * ([z,y] * x) = x * [z,y]. [1004,2592,1004].
8121 x*(y*(x'*(z*(x'*z'))))=x'*(y*[x,z]). [206,127,584].
8175 x'*(y*(z*(x*u)))=x*(y*(z*(x'*u))). [128,127,29].
8179 x'*(y*(z*(u*x)))=x*(y*(z*(u*x'))). [189,127,29].
8223 [x,y * z] = [x,z * y]. [2674,8179,8175,1863].
8383 [x * (y * z),y' * (z * x)] = e. [8223,1534,2].
13972 [x,[y,z]] = e. [8383,585,98,98,2,98,98,29,2,2,2,8179,

2,2,3912,8121,2,2,1861,1874].
14283 [x,y] * z = z * [x,y]. [4517,13972,20].
14284 $F. [14283,9].
====================== end of proof ==========================

Coda: In the human proof above, we already ”knew” that commutators are expressible as a product of
squares in the group and hence the human proof was almost trivial. But in the above machine proof of
the same fact, the Prover9 is not even ”aware” of the fact that commutators are products of squares. Still,
the software did prove the centrality of commutators as explicitly shown in line #14283 above (proved
with the Knuth-Bendix option). Dr. William McCune, the author of Prover9, has done a great job.

In this paper, we first consider the implication (𝑥𝑦)𝑛 = (𝑦𝑥)𝑛 in cancellation semigroups. In Section 2,
we prove that this implication is equivalent to the identity 𝑥𝑦𝑛 = 𝑦𝑛𝑥 in all cancellation semigroups by
replacing the power-map 𝑥𝑛 by a weaker power-like function 𝑓 (𝑥). Furthermore, we discuss a general
extension. In Section 3, we prove that 𝑥𝑦𝑛 = 𝑦𝑛𝑥 is transferable.

2. Power map properties

We first list some properties of power maps. We refer the readers to [11, 15] for more details.

Lemma 2.1. Let (𝑆; ⋅) be a cancellation semigroup and let 𝑓 ∶ 𝑆 → 𝑆 be the usual power map 𝑓 (𝑥) = 𝑥𝑛,
for some 𝑛 > 1. Assume that 𝑓 (𝑥 ⋅ 𝑦) = 𝑓 (𝑦 ⋅ 𝑥). Then the function 𝑓 (𝑥) satisfies the following:

(1) 𝑥 ⋅ 𝑓 (𝑥) = 𝑓 (𝑥) ⋅ 𝑥.
(2) 𝑥 ⋅ 𝑓 (𝑦 ⋅ 𝑥) = 𝑓 (𝑥 ⋅ 𝑦) ⋅ 𝑥.
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(3) 𝑥 and 𝑓 (𝑓 (𝑥)) commute.
(4) If 𝑥 and 𝑦 commute then 𝑓 (𝑥 ⋅ 𝑦) = 𝑓 (𝑥) ⋅ 𝑓 (𝑦).
(5) 𝑥 and 𝑓 (𝑦 ⋅ 𝑥) commute.
(6) 𝑥 and 𝑓 (𝑓 (𝑥) ⋅ 𝑦) commute.

Proof. (1) is obvious since both sides are equal to 𝑥𝑛+1.
(2) 𝑥 ⋅ 𝑓 (𝑦 ⋅ 𝑥) = 𝑥 ⋅ (𝑦 ⋅ 𝑥)𝑛 = (𝑥 ⋅ 𝑦)𝑛 ⋅ 𝑥 = 𝑓 (𝑥 ⋅ 𝑦) ⋅ 𝑥.
(3) follows that 𝑓 (𝑓 (𝑥)) is just a power of 𝑥 and hence commutes with 𝑥.
(4) is obvious thanks to associativity and commutativity.
(5) 𝑥 ⋅ 𝑓 (𝑦 ⋅ 𝑥) = 𝑓 (𝑥 ⋅ 𝑦) ⋅ 𝑥 = 𝑓 (𝑦 ⋅ 𝑥) ⋅ 𝑥 since 𝑓 (𝑥 ⋅ 𝑦) = 𝑓 (𝑦 ⋅ 𝑥).
(6)

𝑓 (𝑓 (𝑥) ⋅ 𝑦) ⋅ 𝑥 = 𝑓 (𝑔(𝑥) ⋅ 𝑥 ⋅ 𝑦) ⋅ 𝑥 where 𝑔(𝑥) = 𝑥𝑛−1
= 𝑓 (𝑥 ⋅ 𝑦 ⋅ 𝑔(𝑥)) ⋅ 𝑥 since 𝑓 (𝑥 ⋅ 𝑦) = 𝑓 (𝑦 ⋅ 𝑥)
= 𝑥 ⋅ 𝑓 (𝑦 ⋅ 𝑔(𝑥) ⋅ 𝑥) by (2) above
= 𝑥 ⋅ 𝑓 (𝑦 ⋅ 𝑓 (𝑥)) since 𝑓 (𝑥) = 𝑔(𝑥) ⋅ 𝑥
= 𝑥 ⋅ 𝑓 (𝑓 (𝑥) ⋅ 𝑦) since 𝑓 (𝑥 ⋅ 𝑦) = 𝑓 (𝑦 ⋅ 𝑥)

Hence the two elements 𝑥 and 𝑓 (𝑓 (𝑥) ⋅ 𝑦) commute. In particular, the two terms 𝑦 ⋅ 𝑥 and 𝑓 (𝑓 (𝑦 ⋅ 𝑥) ⋅ 𝑥)
commute.

Following the terminology of [11, 15], we call the unary functions 𝑓 (𝑥) satisfying first-order properties
(1) to (4) of Lemma 2.1 as power-like functions.

Theorem 2.2. Let 𝑆 be a cancellation semigroup and let 𝑓 ∶ 𝑆 → 𝑆 be a power-like function and assume
that 𝑓 (𝑥 ⋅ 𝑦) = 𝑓 (𝑦 ⋅ 𝑥). Then 𝑓 (𝑥) is a central element in 𝑆.

We can prove this theorem by using our method and Prover9. Here we list the a few lines of output
of Prover9 which include the conditions and the final result.

========================== prooftrans ===========================
Prover9 (32) version Dec-2007, Dec 2007.
Process 916 was started by yangzhang
on yangzhangsimac2.ad.umanitoba.ca,
Tue Mar 19 12:26:28 2024
The command was "/Users/yangzhang/Desktop/Prover9-Mace4-v05B.app/
Contents/Resources/bin-mac-intel/prover9".
=========================== end of head =========================
========================== end of input =========================
========================= PROOF =================================
% -------- Comments from original proof --------
% Proof 1 at 0.84 (+ 0.02) seconds.
% Length of proof is 24.
% Level of proof is 6.
% Maximum clause weight is 29.
% Given clauses 117.

1 f(x) * y = y * f(x) # label(non_clause) # label(goal). [goal].
2 (x * y) * z = x * (y * z). [assumption].
3 x * y != x * z | y = z. [assumption].
4 x * y != z * y | x = z. [assumption].
5 f(x * y) = f(y * x). [assumption].
6 f(x * y) * x = x * f(y * x). [assumption].
7 f(x) * x = x * f(x). [assumption].
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8 f(f(x) * y) * x = x * f(f(x) * y). [assumption].
9 x * y != y * x | f(x * y) = f(x) * f(y). [assumption].
10 f(c1) * c2 != c2 * f(c1). [deny(1)].
...........
...........
3645 f(f(x)) * x = x * f(f(x)). [hyper(351,a,139,a),flip(a)].
3699 f(x)*(f(x)*(y*f(f(f(x)*y))))=f(x)*(y*(f(x)*f(f(f(x)*y)))).
[back_rewrite(395),rewrite([3645(8),2(8)])].
3700 $F. [resolve(3699,a,67,a)].

======================== end of proof ==========================

Next, we give the human proof as follows:

𝑓 (𝑥) ⋅ 𝑦 ⋅ 𝑥 ⋅ 𝑓 (𝑓 (𝑦 ⋅ 𝑥))
= 𝑓 (𝑥) ⋅ 𝑓 (𝑓 (𝑦 ⋅ 𝑥)) ⋅ 𝑦 ⋅ 𝑥 since 𝑢 and 𝑓 (𝑓 (𝑢)) commute
= 𝑓 (𝑥 ⋅ 𝑓 (𝑦 ⋅ 𝑥)) ⋅ 𝑦 ⋅ 𝑥 since 𝑥 and 𝑓 (𝑦 ⋅ 𝑥) commute
= 𝑓 (𝑓 (⋅𝑥) ⋅ 𝑥) ⋅ (𝑦 ⋅ 𝑥) since 𝑓 (𝑥 ⋅ 𝑦) = 𝑓 (𝑦 ⋅ 𝑥)
= (𝑦 ⋅ 𝑥) ⋅ 𝑓 (𝑓 (𝑦 ⋅ 𝑥) ⋅ 𝑥) since 𝑦 ⋅ 𝑥 and 𝑓 (𝑓 (𝑦 ⋅ 𝑥) ⋅ 𝑥) commute.
= 𝑦 ⋅ 𝑥 ⋅ 𝑓 (𝑥 ⋅ 𝑓 (𝑦 ⋅ 𝑥)) since 𝑓 (𝑥 ⋅ 𝑦) = 𝑓 (𝑦 ⋅ 𝑥)
= 𝑦 ⋅ 𝑥 ⋅ 𝑓 (𝑥) ⋅ 𝑓 (𝑓 (𝑦 ⋅ 𝑥)) since 𝑥 and 𝑓 (𝑦 ⋅ 𝑥) commute
= 𝑦 ⋅ 𝑓 (𝑥) ⋅ 𝑥 ⋅ 𝑓 (𝑓 (𝑦 ⋅ 𝑥)) since 𝑥 and 𝑓 (𝑥) commute

Hence, we have
𝑓 (𝑥) ⋅ 𝑦 ⋅ 𝑥 ⋅ 𝑓 (𝑓 (𝑦 ⋅ 𝑥)) = 𝑦 ⋅ 𝑓 (𝑥) ⋅ 𝑥 ⋅ 𝑓 (𝑓 (𝑦 ⋅ 𝑥)).

Finally, cancelling the common term 𝑥 ⋅ 𝑓 (𝑓 (𝑦 ⋅ 𝑥)) from the right sides, we get 𝑓 (𝑥) ⋅ 𝑦 = 𝑦 ⋅ 𝑓 (𝑥).

Corollary 2.3. In a cancellation semigroup (𝑆, ⋅), for 𝑥, 𝑦 ∈ 𝑆 and 𝑛 ∈ ℤ+, (𝑥 ⋅ 𝑦)𝑛 = (𝑦 ⋅ 𝑥)𝑛 implies
𝑥𝑛 ⋅ 𝑦 = 𝑦 ⋅ 𝑥𝑛.

Proof. Simply take 𝑓 (𝑥) = 𝑥𝑛. The power map 𝑓 (𝑥) = 𝑥𝑛 satisfies all the six properties mentioned in
Lemma 2.1 and hence the proof of Theorem 2.2 applies. Therefore, the n-th powers are central in the
semigroup, i.e., 𝑥𝑛 ⋅ 𝑦 = 𝑦 ⋅ 𝑥𝑛.

Next we consider the following more general case.

Theorem 2.4. In a cancellation semigroup 𝑆, if there exist 𝑘 ≥ 2, 𝑛 ∈ ℤ+ such that (𝑎1𝑎2⋯𝑎𝑘)𝑛 =
(𝑎𝑘⋯𝑎2𝑎1)𝑛 for any 𝑎𝑖 ∈ 𝑆 holds, then 𝑥𝑛 is central in 𝑆 for any 𝑥 ∈ 𝑆.

Proof. When 𝑛 = 1, all the situations can be reduced to 𝑘 = 2 or 𝑘 = 3.
In case of 𝑛 = 1 and 𝑘 = 2, we have 𝑎1𝑎2 = 𝑎2𝑎1, and then 𝑆 is commutative.
In case of 𝑛 = 1 and 𝑘 = 3, we have 𝑎1𝑎2𝑎3 = 𝑎3𝑎2𝑎1. Then, for any 𝑥, 𝑦 , 𝑧, 𝑢 ∈ 𝑆,

𝑥𝑦𝑧𝑢 = 𝑢𝑧𝑥𝑦 = 𝑦𝑧𝑥𝑢.

Cancelling 𝑢 from the right sides, we obtain 𝑥𝑦𝑧 = 𝑦𝑧𝑥. By the condition, 𝑦𝑧𝑥 = 𝑥𝑧𝑦. Then 𝑥𝑦𝑧 = 𝑥𝑧𝑦,
and thus 𝑦𝑧 = 𝑧𝑦. Hence 𝑆 is commutative.
Next, we consider 𝑛 ≥ 2. Note that

𝑥 ⋅ (𝑥𝑦𝑘−1)𝑛 = 𝑥 ⋅ (𝑥 ⋅ 𝑦⋯ 𝑦)𝑛

= 𝑥 ⋅ (𝑦⋯ 𝑦 ⋅ 𝑥)𝑛

= 𝑥 ⋅ (𝑦𝑘−1 ⋅ 𝑥)𝑛

= (𝑥𝑦𝑘−1)𝑛𝑥,

68



that is, 𝑥 and (𝑥𝑦𝑘−1)𝑛 commute, and thus (𝑥𝑦𝑘−1)𝑛 = (𝑦𝑘−1𝑥)𝑛.
Pick up 𝑚 ∈ ℤ+ such that 𝑚𝑛 ≥ 𝑘 − 1. Now we claim the following identity holds

𝑥𝑛𝑦[(𝑥𝑦𝑘−1)𝑚𝑛]𝑛 = 𝑦𝑥𝑛[(𝑥𝑦𝑘−1)𝑚𝑛]𝑛.

We will combine suitable 𝑥’s and 𝑦’s together and apply above commutative properties:

𝑥𝑛𝑦[(𝑥𝑦𝑘−1)𝑚𝑛]𝑛 = 𝑥𝑛𝑦[(𝑥𝑦𝑘−1)𝑚𝑛−1(𝑥𝑦𝑘−2)𝑦]𝑛

= 𝑥𝑛[𝑦(𝑥𝑦𝑘−1)𝑚𝑛−1(𝑥𝑦𝑘−2)]𝑛𝑦

= 𝑥𝑛[𝑦(𝑥𝑦𝑘−1)𝑚𝑛−1𝑥 𝑦⋯ 𝑦⏟
𝑘−2

]𝑛𝑦

= 𝑥𝑛[𝑦⋯ 𝑦⏟
𝑘−2

⋅𝑥 ⋅ 𝑦(𝑥𝑦𝑘−1)𝑚𝑛−1]𝑛𝑦

= 𝑥𝑛(𝑦𝑘−2𝑥𝑦(𝑥𝑦𝑘−1)𝑚𝑛−1)𝑛𝑦

= 𝑥𝑛[𝑦𝑘−2𝑥𝑦 (𝑥𝑦𝑘−1) ⋅ (𝑥𝑦𝑘−1)⋯ (𝑥𝑦𝑘−1)𝑚𝑛+2−𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘−2

]𝑛𝑦

( since 𝑚𝑛 ≥ 𝑘 − 1, 𝑚𝑛 + 2 − 𝑘 ≥ 1)

= 𝑥𝑛[(𝑥𝑦𝑘−1)𝑚𝑛+2−𝑘(𝑥𝑦𝑘−1)⋯ (𝑥𝑦𝑘−1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘−2

⋅𝑥𝑦 ⋅ 𝑦𝑘−2]𝑛𝑦

= 𝑥𝑛[(𝑥𝑦𝑘−1)𝑚𝑛]𝑛𝑦

= [𝑥 ⋅ (𝑥𝑦𝑘−1)𝑚𝑛]𝑛𝑦

(since 𝑥 commutes with (𝑥𝑦𝑘−1)𝑛 and (𝑥𝑦𝑘−1)𝑚𝑛).

On the other hand, we have

𝑦𝑥𝑛[(𝑥𝑦𝑘−1)𝑚𝑐]𝑛 = 𝑦[𝑥 ⋅ (𝑥𝑦𝑘−1)𝑚𝑛]𝑛 ( since 𝑥 and (𝑥𝑦𝑘−1)𝑚𝑛 commute)

= 𝑦 ⋅ [𝑥(𝑥𝑦𝑘−1)𝑚𝑛−1 ⋅ 𝑥𝑦𝑘−2 ⋅ 𝑦]𝑛

= [𝑦 ⋅ 𝑥(𝑥𝑦𝑘−1)𝑚𝑛−1 ⋅ 𝑥𝑦𝑘−2]𝑛𝑦

= [𝑦𝑥(𝑥𝑦𝑘−1)𝑚𝑛−1 ⋅ 𝑥 𝑦⋯ 𝑦⏟
𝑘−2

]𝑛𝑦

= 𝑦⋯ 𝑦⏟
𝑘−2

⋅𝑥 ⋅ 𝑦𝑥(𝑥𝑦𝑘−1)𝑚𝑛−1]𝑛𝑦

= 𝑦⋯ 𝑦⏟
𝑘−2

⋅(𝑥𝑦) ⋅ 𝑥(𝑥𝑦𝑘−1)𝑚𝑛−1]𝑛𝑦

= [𝑥(𝑥𝑦𝑘−1)𝑚𝑛−1 ⋅ (𝑥𝑦) ⋅ 𝑦⋯ 𝑦⏟
𝑘−2

]𝑛𝑦

= [𝑥(𝑥𝑦𝑘−1)𝑚𝑛]𝑛𝑦

Therefore, cancelling [(𝑥𝑦𝑘−1)𝑚𝑐]𝑛 from the right sides of 𝑥𝑛𝑦[(𝑥𝑦𝑘−1)𝑚𝑛]𝑛 = 𝑦𝑥𝑛[(𝑥𝑦𝑘−1)𝑚𝑐]𝑛, we have
𝑥𝑛𝑦 = 𝑦𝑥𝑛.
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3. Transferability of (𝑥𝑦)𝑛 = (𝑦𝑥)𝑛

Let (𝑆, ⋅) be a cancellation semigroup satisfying the law (𝑥𝑦)𝑛 = (𝑦𝑥)𝑛. Then, by Corollary 2.3, we know
that all the powers of 𝑛 are central in 𝑆, i.e., 𝑆 satisfies the identity 𝑥𝑛 ⋅ 𝑦 = 𝑦 ⋅ 𝑥𝑛. We now use the Ore
principle resulting from this identity to construct the actual group of quotients. Thus we will have
an explicit formula for the group multiplication. We show that this group multiplication satisfies the
semigroup law 𝑥𝑛 ⋅ 𝑦 = 𝑦 ⋅ 𝑥𝑛. This will prove the transferability of 𝑥𝑛 ⋅ 𝑦 = 𝑦 ⋅ 𝑥𝑛 from 𝑆 to its Ore
group of right quotients 𝑆𝑆−1. Since (𝑥𝑦)𝑛 = (𝑦𝑥)𝑛 and 𝑥𝑛 ⋅ 𝑦 = 𝑦 ⋅ 𝑥𝑛 are equivalent in cancellation
semigroups, we get that the semigroup law (𝑥𝑦)𝑛 = (𝑦𝑥)𝑛 is also transferable.

Since the semigroup satisfies a non-trivial identity, it obviously satisfies the Ore left multiple principle
(the property Mv in Ore [14]), the group of right quotients 𝑆𝑆−1 exists. What is not obvious is that the
group also satisfies the identity.

Theorem 3.1. The semigroup law (𝑥𝑦)𝑛 = (𝑦𝑥)𝑛 is transferable in a semigroup (𝑆, ⋅).

Proof. We first define the multiplication and the equality of quotients. Let 𝑎𝑏 and
𝑐
𝑑 be two right quotients

in the group 𝑆𝑆−1. Thus the elements 𝑎, 𝑏, 𝑐, 𝑑 are in 𝑆. We follow the idea of Ore and define the product
and equality of two right quotients. Note that

𝑎
𝑏
⋅ 𝑐
𝑑
= 𝑎𝑏−1𝑐𝑑−1 = 𝑎𝑏𝑛−1−𝑛𝑐𝑑𝑛−1−𝑛 = 𝑎𝑏𝑛−1𝑐𝑑𝑛−1𝑏−𝑛𝑑−𝑛 = 𝑎𝑏𝑛−1𝑐𝑑𝑛−1

𝑏𝑛𝑑𝑛
.

Thus we can define the product
𝑎
𝑏
⋅ 𝑐
𝑑
= 𝑎𝑏𝑛−1𝑐𝑑𝑛−1

𝑏𝑛𝑑𝑛
.

Also, here
𝑎
𝑏 ∼

𝑐
𝑑 if and only if 𝑎𝑏𝑛−1𝑑 = 𝑏𝑛𝑐.

Hence, the identity is 𝑎0
𝑎0

and the inverse ( 𝑎𝑏)
−1

= 𝑏𝑛
𝑎𝑏𝑛−1 .

Next we define the embedding map as following: for any 𝑎 ∈ 𝑆,

𝜙 ∶ 𝑆 → 𝑆𝑆−1, 𝜙(𝑎) = 𝑎𝑎0
𝑎0
. for some 𝑎0 ∈ 𝑆.

For any 𝑎, 𝑏 ∈ 𝑆, we have

𝜙(𝑎𝑏) =
𝑎𝑏𝑎0
𝑎0

=
𝑎𝑏𝑎𝑛0𝑏𝑛0
𝑎𝑛0𝑏𝑛0

=
𝑎𝑎0
𝑎0

𝑏𝑏0
𝑏0

= 𝜙(𝑎)𝜙(𝑏).

Hence 𝜙 is an isomorphism.

Now we prove that 𝑎
𝑏 = 𝜙(𝑎)𝜙(𝑏)−1 for any 𝑎, 𝑏 ∈ 𝑆.

𝜙(𝑎)𝜙(𝑏)−1 =
𝑎𝑎0
𝑎0

(
𝑏𝑏0
𝑏0

)
−1

=
𝑎𝑎0
𝑎0

𝑏𝑛0
𝑏𝑏𝑛0

=
𝑎𝑎𝑛0𝑏𝑛0(𝑏𝑏𝑛0)𝑛−1

𝑎𝑛0(𝑏𝑏𝑛0)𝑛
.

Thus
𝑎
𝑏 = 𝑎𝑎𝑛0𝑏𝑛0(𝑏𝑏𝑛0)𝑛−1

𝑎𝑛0(𝑏𝑏𝑛0)𝑛

⟺ 𝑎𝑎𝑛0𝑏𝑛0(𝑏𝑏𝑛0)𝑛−1𝑏𝑛 = 𝑎𝑏𝑛−1𝑎𝑛0(𝑏𝑏𝑛0)𝑛

⟺ 𝑎𝑎𝑛0𝑏𝑛0(𝑏𝑏𝑛0)𝑛−1𝑏𝑛 = 𝑎𝑎𝑛0𝑏𝑛−1(𝑏𝑏𝑛0)(𝑏𝑏𝑛0)𝑛−1

⟺ 𝑎𝑎𝑛0𝑏𝑛0𝑏𝑛(𝑏𝑏𝑛0)𝑛−1 = 𝑎𝑎𝑛0𝑏𝑛0𝑏𝑛(𝑏𝑏𝑛0)𝑛−1 ( since 𝑎𝑛0, 𝑏𝑛, 𝑏𝑛0 are central).
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Hence 𝑎
𝑏 = 𝜙(𝑎)𝜙(𝑏)−1. Therefore, we have the following two formats for the group of quotients:

𝑆𝑆−1 = {𝑎
𝑏
| 𝑎, 𝑏 ∈ 𝑆} = {𝜙(𝑎)𝜙(𝑏)−1 | 𝑎, 𝑏 ∈ 𝑆}.

For any 𝑎, 𝑏 ∈ 𝑆, we can verify the following four identities:

𝜙(𝑎)𝑛𝜙(𝑏) = 𝜙(𝑎𝑛𝑏) = 𝜙(𝑏𝑎𝑛) = 𝜙(𝑏)𝜙(𝑎)𝑛.

𝜙(𝑎)𝑛𝜙(𝑏)−1 = 𝜙(𝑏)−1𝜙(𝑏)𝜙(𝑎)𝑛𝜙(𝑏)−1 = 𝜙(𝑏)−1𝜙(𝑎)𝑛𝜙(𝑏)𝜙(𝑏)−1 = 𝜙(𝑏)−1𝜙(𝑎)𝑛.

(𝜙(𝑎)−1)𝑛𝜙(𝑏) = (𝜙(𝑎)−1)𝑛𝜙(𝑏)𝜙(𝑎)𝑛(𝜙(𝑎)−1)𝑛

= (𝜙(𝑎)−1)𝑛𝜙(𝑎)𝑛𝜙(𝑏)(𝜙(𝑎)−1)𝑛

= 𝜙(𝑏)(𝜙(𝑎)−1)𝑛.

(𝜙(𝑎)−1)𝑛𝜙(𝑏)−1 = 𝜙(𝑏)−1𝜙(𝑏)(𝜙(𝑎)−1)𝑛𝜙(𝑏)−1

= 𝜙(𝑏)−1(𝜙(𝑎)−1)𝑛𝜙(𝑏)𝜙(𝑏)−1

= 𝜙(𝑏)−1(𝜙(𝑎)−1)𝑛.

Since every element in 𝑆𝑆−1 has the form 𝜙(𝑎)𝜙(𝑏)−1, we can conclude that both 𝜙(𝑎)𝑛 and (𝜙(𝑎)−1)𝑛
are central in 𝑆𝑆−1 for all 𝑎 ∈ 𝑆.

Next, we prove that for any 𝑎, 𝑏 ∈ 𝑆, ( 𝑎𝑏)
𝑛
= [𝜙(𝑎)𝜙(𝑏)−1]𝑛 is central in 𝑆𝑆−1. For any 𝑔 ∈ 𝑆𝑆−1, we

have
[𝜙(𝑎)𝜙(𝑏)−1]𝑛𝑔 = [𝜙(𝑎)𝜙(𝑏)−1][𝜙(𝑎)𝜙(𝑏)−1]𝑛−1𝑔

= 𝜙(𝑎)𝑛[𝜙(𝑎)−1]𝑛−1𝜙(𝑏)−1[𝜙(𝑎)𝜙(𝑏)−1]𝑛−1𝑔

= 𝜙(𝑏𝑎𝑛−1)−1[𝜙(𝑎)𝜙(𝑏)−1]𝑛−1𝑔 ⋅ 𝜙(𝑎)𝑛

= [𝜙(𝑏𝑎𝑛−1)−1]𝑛𝜙(𝑏𝑎𝑛−1)𝑛−1 ⋅ [𝜙(𝑎)𝜙(𝑏)−1]𝑛−1𝑔 ⋅ 𝜙(𝑎)𝑛

= [𝜙(𝑏𝑎𝑛−1)𝑛−1] ⋅ [𝜙(𝑎)𝜙(𝑏)−1]𝑛−1𝑔 ⋅ 𝜙(𝑎)𝑛[𝜙(𝑏𝑎𝑛−1)−1]𝑛

= (𝜙[(𝑏𝑎𝑛−1)𝑛−1 ⋅ 𝑎]𝜙(𝑏)−1) ⋅ [𝜙(𝑎)𝜙(𝑏)−1]𝑛−2𝑔[𝜙(𝑎)𝜙(𝑏)−1]
⋅[𝜙(𝑏𝑎𝑛−1)𝑛−1]−1

= (𝜙[(𝑏𝑎𝑛−1)𝑛−1𝑎]𝜙(𝑏)−1) ⋅ [𝜙(𝑎)𝜙(𝑏)−1]𝑛−2𝑔[𝜙(𝑎)𝜙(𝑏)−1]
⋅[𝜙(𝑏𝑎𝑛−1)𝑛−1]−1

(Let 𝑎′ = (𝑏𝑎𝑛−1)𝑛−1𝑎)

= [𝜙(𝑎′)𝜙(𝑏)−1] ⋅ [𝜙(𝑎)𝜙(𝑏)−1]𝑛−2𝑔[𝜙(𝑎)𝜙(𝑏)−1][𝜙(𝑎′)𝜙(𝑎)−1]−1.

Using the deduction above again, we have

(𝜙[(𝑏(𝑎′)𝑛−1)𝑛−1𝑎]𝜙(𝑏)−1 ⋅ [𝜙(𝑎)𝜙(𝑏)−1]𝑛−3𝑔[𝜙(𝑎)𝜙(𝑏)−1][𝜙(𝑎′)𝜙(𝑎)−1]−1
⋅[𝜙(𝑎′)𝜙(𝑏)−1] ⋅ [𝜙(𝑏(𝑎′))𝑛−1)𝑛−1]−1

= (𝜙[(𝑏(𝑎′)𝑛−1)𝑛−1𝑎]𝜙(𝑏)−1 ⋅ [𝜙(𝑎)𝜙(𝑏)−1]𝑛−3𝑔[𝜙(𝑎)𝜙(𝑏)−1]2
⋅[𝜙(𝑏(𝑎′))𝑛−1)𝑛−1]−1.

Define
𝑎1 = 𝑎, 𝑎2 = 𝑎′ = (𝑏𝑎𝑛−1)𝑛−1𝑎, … , 𝑎𝑘+1 = (𝑏𝑎𝑛−1𝑘 )𝑛−1𝑎.
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Then
[𝜙(𝑎)𝜙(𝑏)−1]𝑛𝑔

= [𝜙(𝑎1)𝜙(𝑏)−1] ⋅ [𝜙(𝑎)𝜙(𝑏)−1]𝑛−1𝑔

= [𝜙(𝑎2)𝜙(𝑏)−1] ⋅ [𝜙(𝑎)𝜙(𝑏)−1]𝑛−2𝑔[𝜙(𝑎)𝜙(𝑏)−1] ⋅ [𝜙(𝑎2)𝜙(𝑎)−1]−1

= ⋯
= [𝜙(𝑎𝑘)𝜙(𝑏)−1] ⋅ [𝜙(𝑎)𝜙(𝑏)−1]𝑛−𝑘𝑔[𝜙(𝑎)𝜙(𝑏)−1]𝑘−1 ⋅ [𝜙(𝑎2)𝜙(𝑎)−1]−1

= ⋯
= [𝜙(𝑎𝑛)𝜙(𝑏)−1] ⋅ 𝑔[𝜙(𝑎)𝜙(𝑏)−1]𝑛−1 ⋅ [𝜙(𝑎𝑛)𝜙(𝑎)−1]−1

If 𝜙(𝑎𝑛)𝜙(𝑏)−1 is central, then we have

𝑔[𝜙(𝑎)𝜙(𝑏)−1]𝑛−1 ⋅ [𝜙(𝑎𝑛)𝜙(𝑎)−1]−1[𝜙(𝑎𝑛)𝜙(𝑏)−1]

= 𝑔[𝜙(𝑎)𝜙(𝑏)−1]𝑛−1 ⋅ [𝜙(𝑎)𝜙(𝑏)−1]

= 𝑔[𝜙(𝑎)𝜙(𝑏)−1]𝑛.

Hence, the proof is completed. Therefore, we will show that 𝜙(𝑎𝑛)𝜙(𝑏)−1 is central as follows.
Let 𝑦𝑘 = 𝜙(𝑎𝑘)𝜙(𝑏)−1. Then

𝑦1 = 𝜙(𝑎)𝜙(𝑏)−1, 𝑎𝑘+1 = (𝑏𝑎𝑛−1𝑘 )𝑛−1𝑎,

𝜙(𝑎𝑘+1) = 𝜙[(𝑏𝑎𝑛−1𝑘 )𝑛−1] ⋅ 𝜙(𝑎) = [𝜙(𝑏)𝜙(𝑎𝑘)𝑛−1]𝑛−1 ⋅ 𝜙(𝑎).

Thus
𝜙(𝑎𝑘+1)𝜙(𝑏)−1 = [𝜙(𝑏)𝜙(𝑎𝑘)𝑛−1]𝑛−1 ⋅ 𝜙(𝑎)𝜙(𝑏)−1.

That is,
𝑦𝑘+1 = [𝜙(𝑏)[𝑦𝑘𝜙(𝑏)]𝑛−1]𝑛−1 ⋅ 𝜙(𝑎)𝜙(𝑏)−1

= [[𝑦𝑘𝜙(𝑏)]𝑛 ⋅ 𝑦−1𝑘 ]𝑛−1𝜙(𝑎)𝜙(𝑏)−1

= [𝑦𝑘𝜙(𝑏)]𝑛(𝑛−1)(𝑦−1𝑘 )𝑛𝑦𝑘𝜙(𝑎)𝜙(𝑏)−1.

Continue the same deduction, and use 𝑦𝑘−1 to represent 𝑦𝑘, we have

𝑦𝑘+1 = [𝑦𝑘𝜙(𝑏)]𝑛(𝑛−1)(𝑦−1𝑘 )𝑛[𝑦𝑘−1𝜙(𝑏)]𝑛(𝑛−1)(𝑦−1𝑘−1)
𝑛𝑦𝑘−1[𝜙(𝑎)𝜙(𝑏)−1]2.

Thus
𝑦𝑛 = [𝑦𝑛−1𝜙(𝑏)]𝑛(𝑛−1)(𝑦−1𝑛−1)𝑛𝑦𝑛−1𝜙(𝑎)𝜙(𝑏)−1

= 𝑥𝑛1𝑥𝑛2𝑥𝑛3𝑥𝑛4𝑦𝑛−2[𝜙(𝑎)𝜙(𝑏)−1]2

= ⋯

= 𝑥𝑛1𝑥𝑛2 ⋯𝑥𝑛2𝑛−2𝑦1[𝜙(𝑎)𝜙(𝑏)−1]𝑛−1

= 𝑥𝑛1𝑥𝑛2 ⋯𝑥𝑛2𝑛−2𝑦1[𝜙(𝑎)𝜙(𝑏)−1]𝑛,

where 𝑥𝑖 ∈ 𝑆, 𝑖 = 1, … , 2𝑛 − 2. Since all 𝑥𝑛, 𝑥 ∈ 𝑆 are central, 𝑦𝑛 is central as desired. Therefore, (
𝑎
𝑏)

𝑛
is

central, and thus the emdedding 𝜙 is perfect embedding.
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