
An Evaluation of Algorithms for Strong Admissibility
Martin Caminada1, Sri Harikrishnan2

1Cardi� University, Cardi�, United Kingdom
2Wirtschaftsuniversität Wien, Vienna, Austria

Abstract
In the current paper, we evaluate the performance of di�erent computational approaches for constructing
a strongly admissible labelling for a particular argument. Unlike previous work, which examined
di�erent approaches for constructing a small strongly admissible labelling for a particular argument,
in the current paper we are interested in constructing an arbitrary strongly admissible labelling for a
particular argument, without any constraints regarding the size of such a labelling. A strongly admissible
labelling relies on its associated min-max numbering to show that it is actually strongly admissible. As
such, we also examine the additional computational costs of constructing such a min-max numbering.
Overall, our analysis leads to a clear recommendation regarding which of the current computational
approaches is best �t for purpose.

Keywords
strong admissibility, polynomial algorithms

1. Introduction

In formal argumentation, one would sometimes like to show that a particular argument is
(credulously) accepted according to a particular argumentation semantics, without having
to construct the entire extension the argument is contained in. For instance, to show that
an argument is in a preferred extension, it is not necessary to construct the entire preferred
extension. Instead, it is su�cient to construct a set of arguments that is admissible. Similarly,
to show that an argument is in the grounded extension, it is not necessary to construct the
entire grounded extension. Instead, it is su�cient to construct a set of arguments that is strongly
admissible.

The concept of strong admissibility was introduced by Baroni and Giacomin [1] as one of the
properties to describe and categorise argumentation semantics. It was subsequently studied
by Caminada and Dunne [2, 3] who further developed strong admissibility in both its set and
labelling form. In particular, the strongly admissible sets (resp. labellings) were found to form a
lattice with the empty set (resp. the all-undec labelling) as its bottom element and the grounded
extension (resp. the grounded labelling) as its top element [2, 3].

A strongly admissible set (or labelling) can be used to explain that a particular argument is in
the grounded extension (for instance, by using the discussion game of [4]). A relevant question,
therefore, is how to construct a strongly admissible set (or labelling) for a particular argument
in a computationally e�cient way (that is, with minimal runtime).

SAFA’24: Fifth International Workshop on Systems and Algorithms for Formal Argumentation 2022, September 17, 2024,
Hagen, Germany
� CaminadaM@cardi�.ac.uk (M. Caminada); HarikrishnanS@cardi�.ac.uk (S. Harikrishnan)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Martin Caminada, Sri Harikrishnan

69 SAFA@COMMA 2024

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

In previous work [5] we focussed on providing algorithms that aim to construct a relatively
small1 strongly admissible labelling for a particular argument (that is, where this argument is
labelled in). These algorithms are approximations in the sense that although they aim to yield a
relatively small strongly admissible labelling, they do not guarantee to yield an absolute smallest
strongly admissible labelling,2 as the task of doing the latter is NP-complete [7], whereas our
algorithms are polynomial [5]. Overall, we found that our best performing algorithm (Algorithm
3 of [5]) yields labellings that are only marginally bigger than an absolute smallest strongly
admissible labelling, with just a fraction of the runtime [5].
In the current paper, we examine two additional questions that were not examined in [5].

The �rst question is how to e�ciently construct a strongly admissible labelling for an argument,
without any requirement regarding the size of such a labelling. The second question is what is
the additional cost of constructing the min-max numbering of the strongly admissible labelling,
instead of just constructing the labelling itself.
The current paper is structured as follows. First, in Section 2 we brie�y reiterate some of

the theory regarding strongly admissible sets and strongly admissible labellings. In order to
make the paper self-contained, we also include the algorithms stated in [5]. Then, in Section 3,
we examine which of the existing algorithms for strong admissibility (ours as well as those of
others) are the most e�cient when it comes to constructing an arbitrary strongly admissible
labelling for a particular argument, regardless the size of such labelling. Then, in Section 4, we
examine the additional costs (regarding runtime) of computing the min-max numbering of the
strongly admissible labelling, instead of just constructing the labelling itself. We round o� with
a discussion of the obtained results in Section 5.

2. Preliminaries

In the current section, we brie�y restate some of the basic concepts in formal argumentation
theory, including strong admissibility. For current purposes, we restrict ourselves to �nite
argumentation frameworks.

De�nition 1. An argumentation framework is a pair (Ar , att) whereAr is a �nite set of entities,
called arguments, whose internal structure can be left unspeci�ed, and att is a binary relation on
Ar . For any x, y 2 Ar we say that x attacks y i� (x, y) 2 att .

As for notation, we use lower case letters at the end of the alphabet (such as x, y and z) to
denote variables containing arguments, upper case letters at the end of the alphabet (such asX ,
Y and Z) to denote program variables containing arguments, and upper case letters at the start
of the alphabet (such as A, B and C) to denote concrete instances of arguments.
When it comes to de�ning argumentation semantics, one can distinguish the extension

approach and the labelling approach [8]. We start with the extensions approach.

1Small w.r.t. the size of the labelling [6], meaning that the number of in or out labelled arguments is minimal. The
advantage of a small labelling is that this leads to an explanation that can be given in a small number of steps [4].

2Please notice that we write “an absolute smallest strongly admissible labelling” instead of “the absolute smallest
strongly admissible labelling” as there might be more than one strongly admissible labelling with minimal size for a
particular argument

Algorithms for Strong Admissibility Revisited

SAFA@COMMA 2024 70

De�nition 2. Let (Ar , att) be an argumentation framework, x 2 Ar and Args ✓ Ar . We de�ne
x+ as {y 2 Ar | x attacks y}, x� as {y 2 Ar | y attacks x}, Args+ as

S
{x+ | x 2 Args},

and Args� as
S
{x� | x 2 Args}. Args is said to be con�ict-free i� Args \ Args+ = ;. Args

is said to defend x i� x� ✓ Args+. The characteristic function F : 2Ar ! 2Ar is de�ned as
F (Args) = {x | Args defends x}.

De�nition 3. Let (Ar , att) be an argumentation framework. Args ✓ Ar is

• an admissible set i� Args is con�ict-free and Args ✓ F (Args)

• a complete extension i� Args is con�ict-free and Args = F (Args)

• a grounded extension i� Args is the smallest (w.r.t. ✓) complete extension

As mentioned in the introduction, the concept of strong admissibility was originally intro-
duced by Baroni and Giacomin [1]. For current purposes we will apply the equivalent de�nition
of Caminada [2, 3].

De�nition 4. Let (Ar , att) be an argumentation framework. Args ✓ Ar is strongly admissible
i� every x 2 Args is defended by some Args 0 ✓ Args \ {x} which in its turn is again strongly
admissible.

It can be shown that each strongly admissible set is con�ict-free and admissible [3]. The
strongly admissible sets form a lattice (w.r.t. ✓), of which the empty set is the bottom element
and the grounded extension is the top element [3].
The above de�nitions essentially follow the extension based approach as described in [9].

It is also possible to de�ne the key argumentation concepts in terms of argument labellings
[10, 11].

De�nition 5. Let (Ar , att) be an argumentation framework. An argument labelling is a function
Lab : Ar ! {in, out, undec}. An argument labelling is called an admissible labelling i� for
each x 2 Ar it holds that:

• if Lab(x) = in then for each y that attacks x it holds that Lab(y) = out

• if Lab(x) = out then there exists a y that attacks x such that Lab(y) = in

Lab is called a complete labelling i� it is an admissible labelling and for each x 2 Ar it also holds
that:

• if Lab(x) = undec then there is a y that attacks x such that Lab(y) = undec, and for
each y that attacks x such that Lab(y) 6= undec it holds that Lab(y) = out

As a labelling is essentially a function, we sometimes write it as a set of pairs. Also, if Lab is
a labelling, we write in(Lab) for {x 2 Ar | Lab(x) = in}, out(Lab) for {x 2 Ar | Lab(x) =
out} and undec(Lab) for {x 2 Ar | Lab(x) = undec}. As a labelling is also a partition of
the arguments into sets of in-labelled arguments, out-labelled arguments and undec-labelled
arguments, we sometimes write it as a triplet (in(Lab), out(Lab), undec(Lab)).

De�nition 6 ([12]). Let Lab and Lab0 be argument labellings of argumentation framework
(Ar , att). We say that Lab v Lab0 i� in(Lab) ✓ in(Lab0) and out(Lab) ✓ out(Lab0).

Martin Caminada, Sri Harikrishnan

71 SAFA@COMMA 2024

De�nition 7. Let Lab be a complete labelling of argumentation framework (Ar , att). Lab is
said to be the grounded labelling i� Lab is the (unique) smallest (w.r.t. v) complete labelling.

We refer to the size of a labellingLab as |in(Lab)[out(Lab)|. We observe that ifLab v Lab0
then the size of Lab is smaller or equal to the size of Lab0, but not necessarily vice versa. In
the remainder of the current paper, we use the terms smaller, bigger, minimal and maximal in
relation to the size of the respective labellings, unless stated otherwise.
The next step is to de�ne a strongly admissible labelling. In order to do so, we need the

concept of a min-max numbering [3].

De�nition 8. Let Lab be an admissible labelling of argumentation framework (Ar , att). A
min-max numbering is a total function MMLab : in(Lab) [out(Lab)! N [{1} such that
for each x 2 in(Lab) [out(Lab) it holds that:

• if Lab(x) = in then MMLab(x) = max({MMLab(y) | y attacks x and Lab(y) =
out}) + 1 (withmax(;) de�ned as 0)

• if Lab(x) = out then MMLab(x) = min({MMLab(y) | y attacks x and Lab(y) =
in}) + 1 (withmin(;) de�ned as1)

It has been proved that every admissible labelling has a unique min-max numbering [3]. A
strongly admissible labelling can then be de�ned as follows [3].

De�nition 9. A strongly admissible labelling is an admissible labelling whose min-max number-
ing yields natural numbers only (so no argument is numbered1).

It has been shown that the strongly admissible labellings form a lattice (w.r.t. v), of which
the all-undec labelling is the bottom element and the grounded labelling is the top element [3].

The relationship between extensions and labellings has been well-studied [10, 11]. A common
way to relate extensions to labellings is through the functions Args2Lab and Lab2Args. These
translate a con�ict-free set of arguments to an argument labelling, and an argument labelling to
a set of arguments, respectively. More speci�cally, given an argumentation framework (Ar , att),
and an associated con�ict-free set of arguments Args and a labelling Lab, Args2Lab(Args) is
de�ned as (Args ,Args+,Ar\(Args[Args+)) and Lab2Args(Lab) is de�ned as in(Lab). It has
been proven [11] that if Args is an admissible set (resp. a complete or grounded extension) then
Args2Lab(Args) is an admissible labelling (resp. a complete or grounded labelling), and that if
Lab is an admissible labelling (resp. a complete or grounded labelling) then Lab2Args(Lab) is
an admissible set (resp. a complete or grounded extension). It has also been proven [3] that if
Args is a strongly admissible set then Args2Lab(Args) is a strongly admissible labelling, and
that if Lab is a strongly admissible labelling then Lab2Args(Lab) is a strongly admissible set.

Now that the formal preliminaries have been stated, the next step is to include the algorithms
from [5], as these will form the basis of our analysis.3 The �rst algorithm (Algorithm 1) basically
constructs a strongly admissible labelling bottom-up, starting with the arguments that have
no attackers and continuing until the main argument (the argument for which one wants to
show membership of a strongly admissible set) is labelled in. The second algorithm (Algorithm
3Another reason for explicitly including these algorithms is that doing so allows us to describe slightly di�erent
versions of these, such as Algorithm 10 (Section 2) and Algorithm 100 (section 4).

Algorithms for Strong Admissibility Revisited

SAFA@COMMA 2024 72

Algorithm 1 Construct a strongly admissible labelling that labels A in and its associated
min-max numbering.

Input: An argumentation framework AF = (Ar , att),
an argument A 2 Ar that is in the grounded extension of AF .
Output: A strongly admissible labelling Lab where A 2 in(Lab),
the associated min-max numberingMMLab.

1: Lab : Ar ! {in, out, undec} // We start with the type de�nitions
2: MMLab : in(Lab) [out(Lab)! N [{1}
3: undec_pre : Ar ! N
4: unproc_in : [X1, ...Xn] (Xi 2 Ar for each 1 i n) // list of arguments
5: unproc_in [] // We initialize and process the arguments that have no attackers
6: for each X 2 Ar do
7: Lab(X) undec

8: undec_pre(X) |X�|
9: if undec_pre(X) = 0 then
10: add X to the rear of unproc_in
11: Lab(X) in

12: MMLab(X) 1
13: if X = A then return Lab andMMLab
14: end if
15: end for
16: while unproc_in is not empty do // We now process the arguments that do have attackers
17: let X be the argument at the front of unproc_in
18: remove X from unproc_in
19: for each Y 2 X+ with Lab(Y) 6= out do
20: Lab(Y) out

21: MMLab(Y) MMLab(X) + 1
22: for each Z 2 Y + with Lab(Z) = undec do
23: undec_pre(Z) undec_pre(Z)� 1
24: if undec_pre(Z) = 0 then
25: add Z to the rear of unproc_in
26: Lab(Z) in

27: MMLab(Z) MMLab(Y) + 1
28: if Z = A then return Lab andMMLab
29: end if
30: end for
31: end for
32: end while

2) then takes the output of the �rst algorithm and tries to prune it. That is, it tries to identify
only those in and out labelled arguments that are actually needed in the strongly admissible
labelling. The third algorithm (Algorithm 3) then combines Algorithm 1 (which is used as the
construction phase) and Algorithm 2 (which is used as the pruning phase). Overall, we assume

Martin Caminada, Sri Harikrishnan

73 SAFA@COMMA 2024

Algorithm 2 Prune a strongly admissible labelling that labels A in and its associated min-max
numbering.

Input: An argumentation framework AF = (Ar , att),
an argument A 2 Ar that is in the grounded extension of AF , A strongly admissible
labelling LabI where A 2 in(LabI), the associated min-max numberingMMLabI .
Output: A strongly admissible labelling LabO v LabI where A 2 in(LabO),
the associated min-max numberingMMLabO .

1: // We start with the type de�nitions
2: LabO : Ar ! {in, out, undec}
3: MMLabO : in(LabO) [out(LabO)! N [{1}
4: unproc_in : [X1, ...Xn] (Xi 2 Ar for each 1 i n) // list of arguments
5: // Initialize LabO and include the main argument
6: LabO (;, ;,Ar) // LabO becomes the all-undec labelling
7: unproc_in [A]
8: LabO(A) in

9: MMLabO(A) MMLabI(A)
10:
11: // Next, process the other arguments in a top-down way
12: while unproc_in is not empty do
13: let X be the argument at the front of unproc_in
14: remove X from unproc_in
15: for each attacker Y of X do
16: LabO(Y) out

17: MMLabO(Y) MMLabI(Y)
18: if there is no minimal (w.r.t. MMLabI) in labelled (w.r.t. LabI) attacker of Y that

is also labelled in by LabO then
19: Let Z be a minimal (w.r.t. MMLabI) in labelled (w.r.t. LabI) attacker of Y
20: Add Z to the rear of unproc_in
21: LabO(Z) in

22: MMLabO(Z) MMLabI(Z)
23: end if
24: end for
25: end while

that it has already been established that the main argument is in the grounded extension and
that the aim is merely to �nd a (relatively small) strongly admissible labelling that shows this.
It has been proven that each of the above three algorithms terminates (in polynomial time)

and provides a strongly admissible labelling that labels the argument in (provided that such
a strongly admissible labelling exists, which requires the argument to be in the grounded
extension) together with the min-max numbering of this labelling [5]. Also, in Algorithm 2 it
holds that LabO v LabI , which implies that its output is smaller or equal to its input [5]. We
refer to [5] for a more detailed discussion of algorithms 1, 2 and 3.

Algorithms for Strong Admissibility Revisited

SAFA@COMMA 2024 74

Algorithm 3 Construct a relatively small strongly admissible labelling that labels A in and its
associated min-max numbering.

Input: An argumentation framework AF = (Ar , att),
an argument A 2 Ar that is in the grounded extension of AF .
Output: A strongly admissible labelling Lab where A 2 in(Lab),
the associated min-max numberingMMLab.

1: run Algorithm 1
2: LabI Lab
3: MMLabI MMLab
4: run Algorithm 2
5: Lab LabO
6: MMLab MMLabO

As an aside, although Algorithm 1 has been written with the aim of constructing a strongly
admissible labelling (and associated min-max numbering) for a particular argument, it can easily
be altered to yield the grounded labelling (and associated min-max numbering) instead. This
could be done by commenting out lines 13 and 28, and by adding the following line (line 33) at
the end of the algorithm:
return Lab and MMLab
We refer to the thus modi�ed algorithm as Algorithm 10. It has been proven that Algorithm 10

indeed yields the grounded labelling and its associated min-max numbering [5].4

3. Computing an Arbitrary Strongly Admissible Labelling

In our previous work [5] we focused our attention on the problem of �nding a small strongly
admissible labelling (for a particular argument) in a time e�cient way. In the current section,
we proceed to examine the question of how to �nd an arbitrary strongly admissible labelling
(for a particular argument) in a time e�cient way. That is, we are interested in �nding a fast
way of constructing a strongly admissible labelling (that labels the argument in question in)
without regards of how big or small this labelling is.5

In order to maintain consistency and to allow for a like-for-like comparison, we examine
this question using the same set of benchmark examples as was used in [5]. That is, we use the
benchmark examples of ICCMA’17 and ICCMA’196 that have a non-empty grounded extension.
There are 277 such benchmark examples in total. For each of these benchmark examples,
we generate a query argument that is in the grounded extension. When selecting the query
argument, we followed the suggestion of ICCMA’17 and ICCMA’19 whenever such a suggestion
was available (for instance, when considering the benchmark examples of the Admbuster class,
we took ‘a’ to be the queried argument, as this was suggested by the authors of this class).
4In [5] Algorithm 1 was referred to as “the algorithm of Lemma 9”.
5It can be mentioned that ICCMA’17 and ICCMA’19 describe the somewhat similar task of �nding an arbitrary
extension for a particular semantics, without any further constraints of what this extension should look like.

6See http://argumentationcompetition.org/

Martin Caminada, Sri Harikrishnan

75 SAFA@COMMA 2024

Similar to what was done in [5], we conducted our experiments on a MacBook Pro 2020 with
8GB of memory and an Intel Core i5 processor. To run the ASPARTIX system we used clingo
5.6.2. We set a timeout limit of 1000 seconds and a memory limit of 8GB per query.

In [5] it was found that the output of Algorithm 3 is on average 32% smaller than the output
of Algorithm 1. As for runtime, however, Algorithm 3 takes on average 103.51% more time
(more than double) than Algorithm 1. Figure 1 depicts a detailed comparison regarding the
runtime of Algorithm 1 versus the runtime of Algorithm 3. In this �gure, as well as in similar
�gures further on in the paper, each dot represents one of the 277 benchmark examples we
tested for. Each dot below the dashed line represents an example where the algorithm on the
vertical axis (in this case: Algorithm 1) ran faster than the algorithm on the horizontal axis. (in
this case: Algorithm 3)

Figure 1: The runtime of Algorithm 1 compared with the runtime of Algorithm 3.

We are not aware of any dedicated third party algorithms or other computational approaches
that aim to construct an arbitrary strongly admissible labelling in the shortest possible time. We
are, however, aware of computational approaches that aim to either construct a minimal strongly
admissible labelling (the ASPARTIX approach of [7]) or a maximal strongly admissible labelling
(that is, to construct the grounded labelling). As for the former, Figure 2 depicts a detailed
comparison regarding the runtime of Algorithm 1 versus the runtime of the ASPARTIX approach
of [7] for constructing a minimal strongly admissible labelling. On average, the ASPARTIX
approach of [7] for constructing a smallest strongly admissible labelling takes 540.78% more
time (more than 6 times as much) than Algorithm 1 on the 277 benchmark examples that we
tested for.7

7This is despite the fact that the ASPARTIX approach of [7] only constructs a (minimal) strongly admissible labelling,

Algorithms for Strong Admissibility Revisited

SAFA@COMMA 2024 76

Figure 2: The runtime of Algorithm 1 compared with the runtime of the ASPARTIX approach of [7].

Figure 3: The runtime of Algorithm 1 compared with the runtime of Algorithm 3 of [13].

As for comparing the performance of Algorithm 1 with an algorithm for constructing the
grounded labelling, we have chosen Algorithm 3 of [13] as a benchmark, as it is an imperative
program (just like Algorithm 1) allowing for a like-for-like comparison. Figure 3 depicts a

whereas Algorithm 1 constructs both a strongly admissible labelling and its associated min-max numbering.

Martin Caminada, Sri Harikrishnan

77 SAFA@COMMA 2024

detailed comparison regarding the runtime of Algorithm 1 versus the runtime of Algorithm 3
of [13]. On average, Algorithm 3 of [13] takes 2.99% more time than Algorithm 1 on the 277
benchmark examples that we tested for.8

4. Computing a Min-Max Numbering

Algorithms 1, 2 and 3 construct not only a strongly admissible labelling but also its associated
min-max numbering. The relevance of min-max numberings goes beyond merely determining
(by the absence of1) whether its associated admissible labelling is strongly admissible or not.
A min-max numbering also serves as the basis for playing the Grounded Discussion Game [4],
which can be used for explaining why a particular argument is in the grounded extension. This
explanation is done in an interactive way, consisting of a structured discussion between human
and computer. The min-max numbering serves as a roadmap regarding the moves that should
be done by the computer in order to win the discussion (see [4] for details).
Although a min-max numbering does have its usefulness, the question is what are the

computational resources needed to construct it. In particular, what is the additional runtime
that is required for constructing the min-max numbering of a strongly admissible labelling?

In order to answer this question, we compare the runtime of Algorithm 1 with the runtime of
a modi�ed version of Algorithm 1 which only constructs the strongly admissible labelling itself
(without also constructing its min-max numbering). This can be done by commenting out the
lines 12, 21 and 27, and by returning only Lab (instead of both Lab and MMLab in lines 13
and 28. We refer to the thus modi�ed algorithm as Algorithm 100.

Figure 4: The runtime of Algorithm 1 compared with the runtime of Algorithm 100.

8This is despite the fact that Algorithm 3 of [13] only constructs a strongly admissible (grounded) labelling, whereas
Algorithm 1 constructs both a strongly admissible labelling and its associated min-max numbering.

Algorithms for Strong Admissibility Revisited

SAFA@COMMA 2024 78

Figure 4 depicts the results of Algorithm 100 versus the runtime of Algorithm 1 (each dot
represents one of the 277 benchmark examples that we tested for). On average, Algorithm 1
takes just 1.83% more time than Algorithm 100.

Similar to the way in which we modi�ed Algorithm 1, one may wonder what would happen
if the min-max numbering was no longer constructed by Algorithm 3. That is, what if we
change Algorithm 3 (call it Algorithm 300) to include Algorithm 100 (instead of Algorithm 1) and
Algorithm 200 (instead of Algorithm 2), where Algorithm 200 does not use or yield any min-max
numbering? Unfortunately, this turns out not to be possible. The point is that Algorithm 2 (in
lines 18 and 19) requires the min-max numbering that is produced by Algorithm 1.

To see the essence of the problem, consider the argumentation framework of Figure 5. Suppose
the argument in question is E. Algorithm 1 would yield the strongly admissible labelling
({A,C,E}, {B,D}, ;) and associated min-max numbering {(A : 1), (B : 2), (C : 3), (D :
4), (E : 5)}, which are subsequently fed into Algorithm 2. By the time Algorithm 2 reaches
argument B, it will choose B’s attacker A instead of E, as A has the smallest min-max number,
and the algorithm will terminate. However, without the min-max numbering provided by
Algorithm 1, Algorithm 2 would not know whether to choose A or E, which means it might
enter an in�nitive loop if it chooses E consistently.9 As such, the fact that we can remove the
concept of a min-max numbering from Algorithm 1 does not imply we can also remove the
concept of a min-max numbering from Algorithm 2, at least not in any straightforward way.

A B C

E D

Figure 5: An example argumentation framework.

There is, however, at least one additional way in which we can assess the computational
costs of constructing the min-max labelling. Recall that Algorithm 1 can be modi�ed in order to
compute the grounded labelling by commenting out lines 13 and 28, and by adding the following
line (line 33) at the end of the algorithm:
return Lab and MMLab
The thus modi�ed algorithm is referred to as Algorithm 10.

Of course, we could compare the performance of Algorithm 10 with the performance of a
modi�ed version of Algorithm 10 that constructs only the grounded labelling (without its associ-
ated min-max numbering). However, it would be more interesting to compare the performance
of Algorithm 10 with an algorithm that was optimised for constructing the grounded labelling

9Apart from that, not having access to the min-max numbering of Algorithm 1 could also cause Algorithm 2 to yield
a bigger strongly admissible labelling than it would otherwise have yielded.

Martin Caminada, Sri Harikrishnan

79 SAFA@COMMA 2024

only. For this, we will use Algorithm 3 of [13]. Although somewhat similar to our Algorithm 10,
Algorithm 3 of [13] uses a set instead of an ordered list for processing the arguments, as it does
not need to provide any min-max numbering.10

Figure 6: The runtime of Algorithm 10 compared to the runtime of Algorithm 3 of [13].

Figure 6 depicts the runtime of Algorithm 10 versus the runtime of Algorithm 3 of [13] (each
dot represents one of the 277 benchmark examples that we tested for). On average, Algorithm 3
of [13] takes 3.62% more time than Algorithm 1.

5. Discussion

Our empirical results indicate that when it comes to constructing an arbitrary strongly admissible
labelling (for a particular argument) Algorithm 1 provides a relatively e�cient way (regarding
runtime) of doing so. In the examples we tested for, Algorithm 1 clearly outperformed some of
its alternatives (Algorithm 3 by a factor 2, the ASPARTIX approach of [7] by a factor of more
than 6, and Algorithm 3 of [13] by almost 3%). Moreover, where some of its alternatives only
yield a strongly admissible labelling, Algorithm 1 yields both a strongly admissible labelling
and its associated min-max numbering.
10See [5] for a discussion of why an ordered list is necessary when the aim is to construct the min-max numbering
as well.

Algorithms for Strong Admissibility Revisited

SAFA@COMMA 2024 80

One of the things we did not do in our current work is to compare the performance of
Algorithm 1 with µ-toksia [14], which is the fastest correct algorithm for grounded semantics
that was submitted to ICCMA’19.11 However, we did run some additional experiments with
respect to the ASPARTIX encodings for grounded semantics [15] and found that Algorithm 3
of [13] runs in just 7.8% of the time that is needed by ASPARTIX for grounded semantics. As
the ICCMA’19 results indicate that µ-toksia for grounded semantics runs in 25.9% of the time
needed by ASPARTIX for grounded semantics, it seems likely that Algorithm 3 of [13] would
run faster than µ-toksia in a direct comparison. Given that our Algorithm 1 already outperforms
Algorithm 3 of [13], it is likely that it will also outperform µ-toksia.

Our results indicate that the additional computational time required to construct the min-max
numbering (that is, the di�erence in runtime between constructing both a strongly admissible
labelling and its min-max numbering, and constructing a strongly admissible labelling only)
is negligible.12 In particular, commenting out the code in Algorithm 1 that constructs the
min-max numbering (Algorithm 100) yields a performance increase of less than 2%. Moreover,
our approach to constructing the grounded labelling (Algorithm 10), which also constructs the
associated min-max numbering, even outperforms (by more than 3%) the fastest imperative
algorithm for constructing the grounded extension/labelling in the literature that we are aware
of (Algorithm 3 of [13]), even though the latter does not even construct the min-max numbering.
Overall, our �ndings indicate that Algorithm 1 is a good candidate for computing strong

admissibility. As such, we would consider submitting it to ICCMA in case a track on strong
admissibility is opened.

Acknowledgments

This work was supported by the BMK Endowed Professorship for Data-Driven Knowledge
Generation: Climate Action (FFG project number 891607).

References

[1] P. Baroni, M. Giacomin, On principle-based evaluation of extension-based argumentation
semantics, Arti�cial Intelligence 171 (2007) 675–700.

[2] M. Caminada, Strong admissibility revisited, in: S. Parsons, N. Oren, C. Reed, F. Cerutti
(Eds.), Computational Models of Argument; Proceedings of COMMA 2014, IOS Press, 2014,
pp. 197–208.

[3] M. Caminada, P. Dunne, Strong admissibility revisited: theory and applications, Argument
& Computation 10 (2019) 277–300.

[4] M. Caminada, A discussion game for grounded semantics, in: E. Black, S. Modgil,
N. Oren (Eds.), Theory and Applications of Formal Argumentation (proceedings TAFA
2015), Springer, 2015, pp. 59–73.

11ICCMA’19 was the last ICCMA that had a track on grounded semantics.
12This may be related to the fact that Algorithm 1 constructs the strongly admissible labelling and its associated min-
max number concurrently, rather than �rst constructing the strongly admissible labelling and then constructing
its associated min-max numbering.

Martin Caminada, Sri Harikrishnan

81 SAFA@COMMA 2024

[5] M. Caminada, S. Harikrishnan, Tractable algorithms for strong admissibility, Argument &
Computation (2024). In print.

[6] M. Caminada, P. Dunne, Minimal strong admissibility: a complexity analysis, in:
H. Prakken, S. Bistarelli, F. Santini, C. Taticchi (Eds.), Proceedings of COMMA 2020,
IOS Press, 2020, pp. 135–146.

[7] W. Dvo�ák, J. Wallner, Computing strongly admissible sets, in: H. Prakken, S. Bistarelli,
F. Santini, C. Taticchi (Eds.), Proceedings of COMMA 2020, IOS Press, 2020, pp. 179–190.

[8] P. Baroni, M. Caminada, M. Giacomin, Abstract argumentation frameworks and their
semantics, in: Handbook of Formal Argumentation, volume 1, College Publications, 2018,
pp. 159–236.

[9] P. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games, Arti�cial Intelligence 77 (1995) 321–
357.

[10] M. Caminada, On the issue of reinstatement in argumentation, in: M. Fischer, W. van der
Hoek, B. Konev, A. Lisitsa (Eds.), Logics in Arti�cial Intelligence; 10th European Conference,
JELIA 2006, Springer, 2006, pp. 111–123. LNAI 4160.

[11] M. Caminada, D. Gabbay, A logical account of formal argumentation, Studia Logica 93
(2009) 109–145. Special issue: new ideas in argumentation theory.

[12] M. Caminada, G. Pigozzi, On judgment aggregation in abstract argumentation, Au-
tonomous Agents and Multi-Agent Systems 22 (2011) 64–102.

[13] S. Nofal, K. Atkinson, P. Dunne, Computing grounded extensions of abstract argumentation
frameworks, The Computer Journal 64 (2021) 54–63.

[14] A. Niskanen, M. Järvisalo, µ-toksia: An e�cient abstract argumentation reasoner, in: Pro-
ceedings of the 17th International Conference of Knowledge Representation and Reasoning
(KR 2020), 2020, pp. 800–804.

[15] W. Dvo�ák, A. Rapberger, J. Wallner, S.Woltran, Aspartix-v19 - an answer-set programming
based system for abstract argumentation, in: International Symposium on Foundations of
Information and Knowledge Systems, 2020, pp. 79–89.

Algorithms for Strong Admissibility Revisited

SAFA@COMMA 2024 82

