
GiottoBugFixer: an effective and scalable easy-to-use
framework for fixing software issues in a DevOps pipeline
Placido Pellegriti

1
, Carmine Cisca

1
and Fabio Previtali

1,*

1AlmavivA S.p.A., Via di Casal Boccone 188/190, Rome, 00137, Italy

Abstract
Developing software is one of the most important and crucial activity in the IT domain. It is an important, challenging and

time consuming activity due to many factors that spaces from software complexity up to testing and deployment phases.

In the past decades, a plethora of tools have been released for helping developers in coding faster, however they are now

becoming ineffective and unable to keep up with the change affecting the IT development.

This paper investigates the potential of generative AI in the realm of software development, focusing on how these

technologies can augment the coding process, from initial concept to final deployment. It begins by delineating the fundamental

mechanisms through which generative AI models, such as code completions and automated code generation can enhance

developer productivity, reduce error rates and streamline the software development lifecycle. We conducted an experimentation

on several repositories obtaining around 25% of software issues automatically fixed with a 17x speed up.

Keywords
Platform Engineering, Software Automation, Generative AI

1. Introduction
In the rapidly evolving field of software engineering, un-

derstanding the intricacies of the software development

process is crucial for delivering high-quality, efficient and

reliable software solutions. This paper delves into the

comprehensive study of the software development lifecy-

cle, focusing on pivotal aspects such as code quality, im-

plementation and testing. By dissecting these elements,

we aim to offer insights into optimizing the development

process, ensuring that software not only meets but ex-

ceeds the rigorous demands of applications to be realized.

At the heart of any software project lies the quality

of its code, which serves as the cornerstone for func-

tionality, maintainability, and scalability. We explore

methodologies and practices such as code reviews, static

code analysis, and adherence to coding standards that

contribute to enhancing code quality. By integrating

these practices, developers can reduce bugs, facilitate

easier updates, and ensure a robust foundation for the

software’s architecture. The phases of implementation

and testing are critical for transforming conceptual de-

signs into functioning software. Contributions. This

paper examines how generative AI models have been

integrated in a DevOps pipeline for helping in improving

the quality of the software released. We conducted an ex-

perimentation on several repositories in Java and C# and

we demonstrated that our solution is able to fix around

Ital-IA 2024: 4th National Conference on Artificial Intelligence, orga-
nized by CINI, May 29-30, 2024, Naples, Italy
*

Corresponding author.

$ p.pellegriti@almaviva.it (P. Pellegriti); c.cisca@almaviva.it

(C. Cisca); f.previtali@almaviva.it (F. Previtali)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

25% of software issues 17x faster than a developer.

2. Related Work
Developing an automatic code fixer is key for enhancing

programming productivity [1] and is an active area of

research [2, 3, 4].

This trend has gained increasing popularity in recent

years. Examples include Google’s Tricorder [5], Face-

book’s Getafix [6] and Zoncolan and Microsoft’s Visual

Studio IntelliCode. The techniques underlying these tools

can be classified into broadly two categories: logical, rule-

based techniques [5] and statistical, data-driven tech-

niques [7, 6, 8]. The former uses manually written rules

capturing undesirable code patterns and scans the entire

codebase for these classes of bugs. The latter learns to

detect abnormal code from a large code corpus using

deep neural networks.

Despite great strides, however, both kinds of tools are

limited in generality because they target error patterns in

specific codebases or they target specific bug types. For

instance, Zoncolan’s rules are designed to be specifically

applicable to Facebook’s codebases, and deep learning

models target specialized bugs in variable naming [7]

or binary expressions [6]. Moreover, the patterns are

relatively syntactic, allowing them to be specified by

human experts using logical rulesor learnt from a corpus

of programs.

In this paper, we propose an effective and scalable easy-

to-use framework for fixing software issues in a DevOps

pipeline by means of an LLM model (i.e., GPT3.5
1

).

1
https://openai.com

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:p.pellegriti@almaviva.it
mailto:c.cisca@almaviva.it
mailto:f.previtali@almaviva.it
https://creativecommons.org/licenses/by/4.0

Auto Fix

Unused fields
remove this useless assignment to local variable x

remove this unused x local variable

Exception handling
either log or rethrow this exception

throw a dedicated exception instead of a generic one

Best practices
rename this field x to match the regular expression y

block of commented lines of code should be removed

Code structure
merge this if statement with the enclosing one

add a x field to this class

Code complexity
cyclomatic complexity of this method x is greater than the authorized value

remove this expression which always evaluates to x

Figure 1: Issue distribution being fixed by the proposed approach among five classes that we defined.

3. Modelling Approach
In this section, we describe the LLM models that have

been used, how the prompt has been engineered so that

it effectively performs for our task as well as the classifi-

cation of the issues based on a taxonomy that we defined.

3.1. Model Selection
We evaluated the following models:

1. (OpenAI) gpt-3.5-turbo-0613

2. (OpenAI) gpt-3.5-turbo-1106

3. (OpenAI) gpt-4-0613

4. (MetaAI) llama-2-7b-hf

We used OpenAI models via API on Cloud while we fine-

tuned the Llama 2 model. Fine-tuning has been carried

out by giving examples of snippets pairs incorrect
code/correct code extracted from our internal repos-

itories.

3.2. Framework
We conducted an analysis about the distribution of issues

being fixed by the proposed approach among five classes

that we defined (see Figure 1). On unused fields,

best practices and code structure classes the

proposed solution is able to correct around 50% of the
issues whilst on the remaining two classes the fixing

rate is around 30%.

3.3. Prompt

Engineered Prompt
System You are ChatGPT, a code snippet fixer. Your task

is to generate a fix for the provided code snippet

based on the given error message. Do not alter

the code snippet other than fixing the error.

Incomplete code should remain incomplete.

Submit your response in JSON format with the

keys: corrected_code, correction_flag,

explanation, renamed_variables.

corrected_code should be contained

in double quotes, and all double quotes in

the code snippet should be escaped with a

backslash. correction_flag should be

1 if you have corrected the code snippet,

0 otherwise. The explanation field should

contain a brief explanation of the correction.

renamed_variables should be a Python

dictionary containing the names of custom

user defined functions or variables that you

have renamed as keys, and their new names as

values. Do not add any builtin functions you

might have changed to renamed_variables.

User I have encountered an error.

Error message: "System.Exception"
should not be thrown by user
Code snippet:

if (archiveResult.Result <= 0) {
await sess.AbortTrans();
throw new Exception("Fail"); }

Please fix the error in the code snippet without

completing it. The code must remain incom-

plete and indented as in the original snippet.

Please provide a JSON response.

3.4. Post-Processing
Following an analysis of common issues observed in

code returned by generative models, a series of post-

processing functions have been implemented to enhance

the quality of the response both in terms of writing style

and integration with actual code. This manipulation oc-

curs before the code is inserted into files, prior to under-

going quality checks and software compilation.

Autocompletion errors prevention: Generative

models often tend to complete the input code, which fre-

quently consist of incomplete fragments, such as if or for

statements without subsequent blocks, or portions that

lack logical coherence when considered out of context.

To address this issue, lines generated as completions of

these snippets can be removed, considering the error oc-

curs midway through the original snippet. Using Greedy

String Tiling, a metric employed in literature for compar-

ing code strings, the last lines of the generated code are

compared with those from the input. If a match with the

original code’s final line is identified, only the preceding

part up to that line is retained for insertion into the file.

Indentation correction: The generated code often

loses the information regarding indentation levels, result-

ing in snippets where the indentation style and depth

may differ from the original code. This discrepancy can

include variations in both indentation style (such as tabs

versus spaces) and indentation depth within the snippet.

Despite the flexible rules regarding indentation in cur-

rently supported languages, a method has been imple-

mented to address this issue. This approach, again based

on Greedy String Tiling, compares lines between input

and output code to identify and apply a base indenta-

tion level that aligns with the indentation found in the

received snippet. This ensures improved readability and

quality of the generated code snippet, which is guaran-

teed to have consistent indentation with the surrounding

code.

4. Experimental Evaluation
In this section, we report a study on how issues are dis-

tributed and results on two languages that are the most

widely used by developers.

4.1. Issue Distribution
We conducted an analysis about the distribution of issues

being fixed by the proposed approach among five classes

that we defined (see Figure 2).

Looking at the plot, on three classes the proposed solution

is able to correct around 50% of the issues whilst on the

remaining two classes the fixing rate is around 30%.

Repo Issue Fixed Tec. Debit Red. Speed Up
1 100.0 % 63.0 % 10.3x
2 41.0 % 13.1 % 2.4x
3 36.6 % 10.3 % 2.2x
4 32.5 % 20.0 % 2.0x
5 46.5 % 26.6 % 2.9x
6 58.3 % 46.4 % 17.0x
7 47.3 % 26.7 % 2.0x

Avg 51.7 % 29.4 % 5.5x

Table 1
Results on Java repositories.

Unused variables/fields: in this class there are five

SonarQube rules. In order to better understand what

kind of issues belong to this class, here two examples: 1)

remove this useless assignment to local variable x and 2)

remove this unused x local variable.

Exception handling: in this class there are six Sonar-

Qube rules. The type of issues belonging to this class are

for example: 1) either log or rethrow this exception and 2)

throw a dedicated exception instead of a generic one.

Best practices/conventions: in this class there are

twenty-seven SonarQube rules. The type of issues be-

longing to this class are for example: 1) rename this field
x to match the regular expression y and 2) block of com-
mented lines of code should be removed.

Code structure/elements: in this class there are

thirty-five SonarQube rules. The type of issues belonging

to this class are for example: 1) merge this if statement
with the enclosing one and 2) add a x field to this class.

Code complexity: in this class there are ten Sonar-

Qube rules. The type of issues belonging to this class are

for example: 1) the cyclomatic complexity of this method
x is greater than the authorized value and 2) remove this
expression which always evaluates to x.

4.2. Performance Results
We report the quantitative evaluation of the proposed

solution on the two languages of the experimentation.

In Table 1, we summarize the results on Java language

on which an average debit reduction of 29,4% has been

reached, with a peak of 63.0%. The pipeline executes on

average 5.5 times faster than developers with a peak of

17 times. In Table 2, we summarize the results on C#

language on which an average debit reduction of 25,9%

has been obtained, with a peak of 42.9%. The pipeline ex-

ecutes on average 2.4 times faster than developers with

a peak of 4.8 times. Results on C# are slightly worst

because code is more complex and for building and an-

alyzing the code more time is required with respect to

Java.

Figure 2: Distribution of the fixed issues on five classes.

Repo Issue Fixed Tec. Debit Red. Speed Up
1 46.7 % 36.4 % 2.5x
2 30.6 % 12.8 % 1.6x
3 39.6 % 18.5 % 1.3x
4 32.4 % 14.3 % 0.7x
5 37.1 % 34.5 % 2.7x
6 38.2 % 21.8 % 3.0x
7 61.2 % 42.9 % 4.8x

Avg 40.8 % 25.9 % 2.4x

Table 2
Results on C# repositories.

5. Conclusions
In conclusion, our comprehensive study elucidates the

multifaceted nature of the software development pro-

cess, offering insights into optimizing development prac-

tices to meet and exceed the demanding requirements

of today’s applications. The integration of generative AI

models into the software development lifecycle marks a

significant advancement, showcasing the potential to rev-

olutionize how software is developed, tested, and main-

tained. This paper contributes to the body of knowledge

by demonstrating the effectiveness of these models in

improving software quality and development efficiency,

setting a precedent for future research and application

in the field of software engineering.

References
[1] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian,

R. Bowdidge, Programmers’ build errors: a case

study (at google), in: 36th International Conference

on Software Engineering, 2014, pp. 724–734.

[2] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, K. Wang,

Hoppity: learning graph transformations to detect

and fix bugs in programs, in: International Confer-

ence on Learning Representations (ICLR), 2020.

[3] Y. Ding, B. Ray, P. Devanbu, V. J. Hellendoorn, Patch-

ing as translation: the data and the metaphor, in:

35th ACM International Conference on Automated

Software Engineering, 2020, pp. 275–286.

[4] A. Mesbah, A. Rice, E. Johnston, N. Glorioso, E. Af-

tandilian, Deepdelta: learning to repair compilation

errors, in: 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium

on the Foundations of Software Engineering, 2019,

pp. 925–936.

[5] C. Sadowski, J. Van Gogh, C. Jaspan, E. Soderberg,

C. Winter, Tricorder: building a program analysis

ecosystem, in: 37th International Conference on

Software Engineering, volume 1, 2015, pp. 598–608.

[6] J. Bader, A. Scott, M. Pradel, S. Chandra, Getafix:

learning to fix bugs automatically, ACM on Pro-

gramming Languages 3 (2019) 1–27.

[7] M. Allamanis, M. Brockschmidt, M. Khademi, Learn-

ing to represent programs with graphs, arXiv

preprint arXiv:1711.00740 (2017).

[8] M. Vasic, A. Kanade, P. Maniatis, D. Bieber, R. Singh,

Neural program repair by jointly learning to localize

and repair, arXiv preprint arXiv:1904.01720 (2019).

	1 Introduction
	2 Related Work
	3 Modelling Approach
	3.1 Model Selection
	3.2 Framework
	3.3 Prompt
	3.4 Post-Processing

	4 Experimental Evaluation
	4.1 Issue Distribution
	4.2 Performance Results

	5 Conclusions

