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Abstract
Recent strides in computer vision have led to promising breakthroughs in the realm of image generation. Notably, diffusion
probabilistic models such as DALL-E 2, Imagen, and Stable Diffusion have demonstrated the ability to create lifelike images
based on textual prompts. Yet, their potential application in the medical domain, where intricate three-dimensional image
volumes are commonplace, remains largely untapped. Synthetic imagery presents a compelling avenue in the realm of
privacy-preserving artificial intelligence and holds immense potential for enriching datasets with limited samples. This study
seeks to assess the effectiveness of diffusion probabilistic models in synthesizing high-fidelity medical imaging data, with a
particular focus on Digital Breast Tomosynthesis (DBT) images.
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1. Introduction
The success of deep learning across various pattern recog-
nition tasks has ignited widespread excitement and el-
evated expectations regarding its potential impact on
healthcare [1]. Concurrently, Digital Breast Tomosynthe-
sis (DBT) has emerged as a transformative technology
in breast cancer screening and diagnosis. Since its clini-
cal debut in 2011, radiologists specializing in breast dis-
ease diagnosis nationwide have increasingly adopted this
innovative approach for both screening and diagnostic
purposes, with its adoption steadily rising [2]. The con-
vergence of DBT and AI presents significant promise, of-
fering opportunities for heightened precision, efficiency,
and overall advancements in breast cancer screening and
diagnosis. As the healthcare landscape evolves, the fu-
sion of DBT and AI holds the potential to revolutionize
breast cancer detection and management [3]. Integrating
deep learning algorithms with DBT data could lead to
more accurate and timely identification of abnormalities,
thereby improving patient outcomes. Despite the opti-
mism surrounding this new era of machine learning, the
development and implementation of AI tools in clinical
settings encounter numerous challenges [2]. Deep ar-
tificial neural networks necessitate substantial training
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data to effectively learn, a requirement that often proves
costly and labor-intensive to fulfill. This challenge is
particularly pertinent for digital breast tomosynthesis
(DBT), which represents a relatively novel breast cancer
screening modality. Data augmentation offers a solution
by artificially expanding the training set through label-
preserving transformations [4]. This study aims to lever-
age Denoising Diffusion Probabilistic Models (DDPMs),
a class of generative models, to generate synthetic sam-
ples for Digital Breast Tomosynthesis (DBT). DDPMs
have garnered significant attention across various do-
mains for their ability to produce synthetic data of ex-
ceptional quality. These models function by iteratively
introducing noise to an input signal, such as an image,
text, or audio, and then learning the denoising process
to generate novel samples. In the realm of image syn-
thesis, DDPMs have demonstrated success in generating
authentic and high-quality images, bolstered by com-
petitive log-likelihoods that attest to their effectiveness
in diverse generative tasks [5]. The overarching objec-
tive is to address the scarcity and imbalance in existing
datasets, thereby enhancing the quality of deep learning
algorithms, particularly those related to segmentation
and detection. The proposed methodology entails using
synthetic DBT samples as a form of data augmentation to
mitigate the constraints associated with current dataset
availability. This augmentation strategy is expected to
contribute to the refinement of deep learning algorithms,
ultimately driving advancements in segmentation and de-
tection algorithms within the context of DBT. The study
is structured as follows: in Section 2 an overview of the
DBT technology as well as of DDPM models it’s given;
Section 3 delves into the results obtained and finally in
Section 4 future perspectives are discussed.
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2. Matherial and Methods

2.1. Digital Breast Tomosynthesis
Full-field digital mammography (FFDM) has traditionally
been the primary breast cancer screening method, but its
effectiveness is hindered by inherent limitations. Visual-
izing complex breast structures in two dimensions often
leads to obscured tumor margins and inaccurate lesion
characterization due to overlapping tissue [6]. Standard
imaging projections may not capture the full extent of
irregular or multifocal tumors [7], further complicating
accurate diagnosis. Variations in breast composition, po-
sitioning artifacts, and tissue compression during imag-
ing introduce variability into tumor size estimation and
localization. In contrast, Digital Breast Tomosynthesis
(DBT) (see Fig.1), approved by the FDA in 2011, revolu-
tionizes breast imaging by acquiring a series of low-dose
X-ray images from multiple angles and reconstructing
them into a 3D dataset [8]. This enables radiologists to

Figure 1: Digital Breast Tomosynthesis procedure.

navigate breast tissue in three dimensions, overcoming
the limitations of 2D mammography [9]. DBT enhances
lesion visualization, improves diagnostic accuracy, and
outperforms FFDM in detecting invasive cancers and ar-
chitectural distortions [10] (see Fig.2). Advanced recon-
struction algorithms and image processing techniques
further enhance DBT’s diagnostic utility, allowing for
the detection of smaller lesions with greater confidence
[12]. DBT reduces false positives, minimizes unneces-
sary recalls, and optimizes patient outcomes by providing
clearer, more detailed images. Integration of quantitative
imaging biomarkers and machine learning algorithms
augments DBT’s diagnostic capabilities, ushering in per-
sonalized breast cancer screening and management. In
conclusion, DBT represents a transformative advance-
ment in breast cancer imaging, promising unparalleled
diagnostic accuracy and improved patient outcomes. As
research and technology progress, DBT is poised to revo-

Figure 2: Comparison between a 2D mammogram and a
3D one. In Digital Breast Tomosynthesis (right), tumors are
detected, unlike in mammography (left) where tissue overlap
obstructs the view of the specialist doctor [11].

lutionize breast healthcare delivery by facilitating early
detection and treatment of breast cancer.

2.2. Denoising Diffusion Probabilistic
Models

Diffusion models represent an advanced category of gen-
erative models renowned for their efficacy in capturing
intricate data distributions. Despite being a recent addi-
tion to the generative learning field, they have proven
valuable across diverse applications. The three domi-
nant generative frameworks are identified as Generative
Adversarial Networks (GANs) [13], Variational Autoen-
coders (VAEs) [14], and normalizing flows [15]. These
models, falling under the category of probabilistic gener-
ative models, are adept at capturing intricate data distri-
butions, establishing themselves as a formidable tool in
various applications. A Denoising Diffusion Probabilistic
Model (DDPM) is a parameterized Markov chain trained
using variational inference to produce samples matching
the data after finite time (see Fig.3). DDPM are composed
of two opposite processes, forward and reverse diffusion
process. In the forward diffusion process, Gaussian noise
is gradually and iteratively introduced to intentionally
perturb the images within the training set, aiming to in-
duce a transformation wherein they deviate from their
current distribution and align more closely with a normal
distribution. In the reverse diffusion process, the objec-
tive is to systematically invert the preceding forward
diffusion procedure. The reversal is conducted gradually
and iteratively to counteract the perturbation applied to
images in the forward process. Starting where the for-
ward process concludes, the advantage of initiating from
a normal distribution lies in the known methodology
for sampling points from this uncomplicated distribu-
tion. The primary aim is to discern the means to revert
to the original data distribution. Nonetheless, the chal-
lenge arises from the potential for an infinite array of
trajectories originating from a point in this ostensibly



simple space, with only a fraction leading to the data dis-
tribution. Within the context of DDPM, this is achieved
by referencing the incremental steps undertaken in the
forward diffusion process. The probability density func-
tion (PDF) corresponding to the corrupted images in the
forward process exhibits slight variations at each step.
Consequently, in the reverse process, a deep-learning
model is employed at each step to prognosticate the PDF
parameters of the forward process. Subsequent to model
training, any point in the simple space can be selected,
and the model can be utilized iteratively to navigate back
to the data subspace. In reverse diffusion, denoising is sys-
tematically performed in small steps, commencing from
a noisy image. This method of training and generating
new samples is characterized by enhanced stability com-
pared to Generative Adversarial Networks (GANs) and
surpasses prior approaches such as Variational Autoen-
coders (VAE) and normalizing flows. Diffusion models,
as outlined in the literature [16], are a category of latent
variable models represented by the equation

𝑝𝜃(𝑥0) ∶= ∫𝑝𝜃(𝑥0∶𝑇) 𝑑𝑥1∶𝑇,

where 𝑥1, … , 𝑥𝑇 are latent variables of the same dimen-
sionality as the data 𝑥0 ∼ 𝑞(𝑥0). The joint distribution
𝑝𝜃(𝑥0∶𝑇) is denoted as the reverse process, constituting
a Markov chain with learned Gaussian transitions that
initiate at 𝑝(𝑥𝑇) = 𝒩 (𝑥𝑇; 0, 𝐼 ):

𝑝𝜃(𝑥0∶𝑇) ∶= 𝑝(𝑥𝑇)
𝑇

∏
𝑡=1

𝑝𝜃(𝑥𝑡−1|𝑥𝑡),

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) ∶= 𝒩 (𝑥𝑡−1; 𝜇𝜃(𝑥𝑡, 𝑡), Σ𝜃(𝑥𝑡, 𝑡)).
Regarding the structural design of the model, it’s note-
worthy that the dimensions of both the input and output
of the model should align. To achieve this objective, Ho
et al. [16] utilized a U-Net architecture, thereby ensur-
ing compatibility in size between the input and output
components of the model. From the typical UNet ar-
chitecture, the conventional double convolution at each
level was replaced with Residual blocks as employed in
ResNet models. In the DDPM implementation, a Wide
ResNet block was employed as per Zagoruyko et al. [17].
However, in the adaptation by Phil Wang, the standard
convolutional layer was replaced with a weight standard-
ized version, recognized for its improved performance
in conjunction with group normalization as outlined by
Kolesnikov et al. [18]. Moreover, in order to maintain
parameter consistency across various time instances, si-
nusoidal position embeddings are incorporated, drawing
inspiration from the Transformer model [19]. This inte-
gration facilitates the neural network in discerning the
relevant time step (noise level) for each image within a
batch. The SinusoidalPositionEmbeddings module has
been used in this work. Finally, an attention module is
introduced from the Transformer architecture [19, 20].

3. Experimental Results
This section presents a detailed analysis of the experi-
mental setup employed for training and evaluating the
DDPM. The results are presented in a structured manner,
showcasing the model’s ability to capture and simulate
the intricate features present in authentic DBT images.
Additionally, we explore the impact of key hyperparame-
ters on the synthesis process.

3.1. Description of Dataset
The dataset comprises patient records from individuals
who underwent Digital Breast Tomosynthesis (DBT) ex-
aminations at the Duke Health system between January
1, 2014, and January 30, 2018. The acquisition process in-
volved cross-referencing information from radiology re-
ports, pathology reports, and DBT data obtained from the
Picture Archiving and Communication Systems (PACS)
at Duke. These studies encompassed a total of 13,954
unique patients, each with at least one craniocaudal (CC)
and mediolateral oblique (MLO) view available for either
the left or right breast (see Fig.4).

The dataset is organized into three sets: a training set
comprising 1.42 TB, a validation set comprising 84.71 GB,
and a test set comprising 135.14 GB. The images in the
dataset are in a DICOM format and were processed using
the torchio library for reading. To make them consistent
and ready for analysis and research, all the pictures were
reshaped to dimensions of 64x64 pixels with 8 slices.
The dimensions of the images have been systematically
reduced through an iterative process aimed at preserving
the utmost quality of the visual content. This iterative
approach has been employed with the primary objective
of maintaining the highest possible image quality while
undergoing size reduction. This change is not just for
analysis, but it also enhance computational efficiency.

3.2. Hardware
The principal objective of the present research is cen-
tered on the generation of synthetic samples in Digital
Breast Tomosynthesis (DBT) through the application of
a sophisticated Denoising Diffusion Probabilistic Model.
To optimize the computational procedures inherent in
this complex task, the foundational code underwent a
process of parallelization on four Tesla V100 Graphics
Processing Units (GPUs). It is imperative to note that
the parallelization strategy employed pertained specif-
ically to the data level, signifying that the dataset was
effectively partitioned and processed concurrently across
all GPUs. This strategic approach played a pivotal role
in amplifying both the efficiency and expeditiousness
of the model training and synthetic sample generation,



Figure 3: DDPM Architecture.

Figure 4: Example slices from the dataset.

thereby significantly augmenting the overall efficacy of
the research.

3.3. Model deployed
Hyperparameters

• Batch Size. A judiciously determined batch size
of 16 was allocated for each of the four Graphics
Processing Units (GPUs) employed. This strate-
gic selection was grounded in the quest for an
optimal compromise among critical factors such
as training speed, output quality, and, notably,
memory utilization. The careful consideration
of these factors was essential in achieving a har-
monious balance that not only facilitated expedi-
tious model training but also ensured the preser-
vation of high-quality outcomes while efficiently
managing the computational memory resources.
This particular batch size allocation emerged as
the most effective compromise, aligning with the
overarching objectives of the experiment and con-

tributing to the overall success of the research
endeavor.

• Learning Rate. It was observed that the adoption
of the smallest learning rate, 1e-4, conferred su-
perior outcomes. This discernment underscores
the model’s susceptibility to nuanced parameter
adjustments, wherein diminutive updates within
the parameter space correlated with enhanced
performance. The adaptive characteristics inher-
ent to the Adam optimizer, which dynamically
adjusts learning rates based on historical gradi-
ents, likely played a pivotal role in the efficacy of
this minimal learning rate.

Loss function In the work, a deliberate choice was
made to employ the Mean Squared Error (MSE) as the
primary loss function. This decision was founded upon
the premise of calculating the disparity between the noise
introduced to images and the corresponding noise predic-
tions generated by the UNet model. However, subsequent
empirical investigations, coupled with insights gleaned
from alternative implementations, have indicated the
potential for the utilization of the Mean Absolute Error
(MAE) to yield superior outcomes. These findings prompt
a reevaluation of the chosen loss function, necessitating a
thorough exploration of the implications associated with
the adoption of MAEwithin the framework of the study’s
objectives. Such a revision stands to enhance the efficacy
and fidelity of the model’s predictive capabilities, thereby
warranting comprehensive investigation and validation
within the context of the research endeavor.



Figure 5: Example of Generated DBT 1.

3.4. Sample quality
While it is evident that the current quality of our sam-
ples may not meet the stringent standards required for
certain applications (see Fig.5), it is essential to recog-
nize the promising aspects of the results. Despite the
imperfections, the dataset produced presents a valuable
foundation upon which improvements can be built. Ad-
ditionally, it is noteworthy that upon examination of the
histogram (see Fig.6), the generated samples exhibit lower
contrast compared to the desired standards. This contrast
deficiency is a significant aspect that requires attention
to ensure that the generated images meet the necessary
quality thresholds for clinical applications. Contrary to

Figure 6: Pixel distribution.

the histogram relative to the generated images, the one
related to real images displays a distribution of pixel
intensities characterized by the accumulation of values
around two distinct modes. This suggests the presence
of two dominant intensity regions within the image. The
separation and distribution of these modes can signifi-

cantly influence the visual characteristics of the image.

4. Discussion and Conclusion
Through meticulous experimentation and analysis, the
study demonstrated the capability of DDPM to produce
artificial DBT images that closely emulate the intrica-
cies of real-world cases. The promising results obtained
pave the way for future investigations and applications
of DDPM in the realm of medical imaging. The poten-
tial for refining and expanding upon these generative
models opens avenues for further research, contributing
to the ongoing evolution of DBT technology. Future ap-
plication may involve the conditioning of the sampling
procedure, allowing for the deliberate manipulation of
the generated samples. In this context, this phenomenon
is alternatively denoted as guided diffusion [21], [22].
Moreover, Latent diffusion models could be introduced.
In these models an initial step involves projecting the
input into a more compact latent space, where the diffu-
sion process is subsequently applied. To elaborate further,
Rombach et al. [23] proposed the utilization of an en-
coder network, denoted as 𝑔(𝑥𝑡) = 𝑧𝑡, to encode the input
into a latent representation 𝑧𝑡. This strategic choice aims
to alleviate the computational demands associated with
training diffusion models by conducting processing in
a lower-dimensional space. Following this encoding, a
conventional diffusion model, specifically a U-Net, is em-
ployed to generate new data. The resultant data are then
upsampled through a decoder network.
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