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Abstract
Interpreting morphological features of the seabed is a labor-intensive task for marine geologists especially when it concerns
extensive portions of seabed. By applying Machine Learning (ML) techniques from the field of computer vision, it is possible
to significantly streamline this process, speeding it up considerably. In this paper we present a model capable of automatically
categorizing seabed features, identifying different morphological elements, such as submarine canyons, escarpments, canyon
headwalls and mass movements. This model will serve as the basis for new tools to assist geologists as well as stakeholders
dealing with management of coastal or offshore areas in their work, providing them with an efficient support for seabed
analysis and characterization.
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1. Introduction
One important task for marine geologist is the identifica-
tion of the morphological characteristics of the seabed.
Underwater morphological features, such as canyons, es-
carpments, are components of the seabed environment.
These elements are typically shaped by geological pro-
cesses, including erosion, sedimentation, and tectonic
activity, over extended periods. Detecting their occur-
rence and characteristics play a crucial role in assessing
marine hazards or when placing communication cables at
seabed [1, 2]. However, detection and mapping of these
underwater morphological elements require specialized
domain expertise, such as marine geologist. Despite this
process being very time-consuming for scientists, nowa-
days there is still no automated method to detect and
classify the various elements of the underwater environ-
ment.

Hence, any support to help the automatic identifica-
tion of these features via machine learning (ML) would
produce a significant benefit for marine geologists, mak-
ing the entire process smoother and less time-consuming.
The overarching aim of this project is to develop a model
capable of autonomously classifying seabed features, and
thus assisting geologists in their analysis. This model
will be designed to identify various morphological ele-
ments present in seabed data, like submarine canyons,
escarpments, mass movements. To do so, the task of
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seabed interpretation can be considered as a special case
of image segmentation [3], where images are replaced
with a map of seabed features and the labeling associ-
ated to each pixel corresponds to the morphological fea-
ture of the seabed in the specific latitude and longitude.
Hence, standard image segmentation techniques can be
employed and adapted for this task. In this paper we
present the first results of using a U-Net [4] architecture
for seabed classification trained using the data obtained
via the MaGIC project (Marine Geohazards along the Ital-
ian Coasts) [5, 6], which produced maps of the Italian
coasts of Central and South Italy, Sicily, Sardinia, and
Liguria in a five-year time frame starting from 2007.

The paper is structured as follows: in Section 2 the
current state if the art in image segmentation and the
main groups of existing techniques are presented. In
Section 3 the available data are presented and the specific
task to be solved is further detailed. The architecture
of the network and the training process are detailed in
Section 4. The results are then presented in Section 5.
Finally, in Section 6 we present the planned research
directions.

2. Image Segmentation
Image segmentation is a computer vision technique that
involve partitioning a digital image into multiple seg-
ments or regions, separating meaningful objects or struc-
tures within an image from the background or other ob-
jects, i.e., it can be considered a classification problem at
pixel-level. The segmentation process divides images into
different regions based on certain characteristics such as
color, intensity, texture, or other features. In particular,
with the advent of powerful ML techniques, the features
are learned by the data instead of being handcrafted by
experts.
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According to [3], there exists three groups of image
segmentation:

• Semantic segmentation: Semantic segmentation
involves classifying each pixel in an image into a
specific category or class.

• Instance segmentation: it extends semantic seg-
mentation by not only classifying each pixel into
categories but also distinguishing between differ-
ent object instances of the same category.

• Panoptic segmentation: it aims to unify semantic
segmentation and instance segmentation into a
single framework. It divides an image into seman-
tically meaningful regions and assigns a unique
label to each region, regardless of whether it cor-
responds to an object instance or a background
category.

The main traditional image segmentation techniques
include several methods like thresholding, histograms,
watersheds, region-growing and clustering based seg-
mentation [7].

As stated above, with the advent of deep learning, new
techniques for image segmentation were developed [7],
with the main distinction usually being the architecture
of the neural network used. One of the first architecture
used for semantic segmentation was a Fully Convolu-
tional Network (FCN) proposed by Long et al. in 2015 [8].
That network includes only convolutional layers and is
able to take an image of a certain size as input and re-
turns a segmentation map of the same dimensions. Other
deep learning-based models for segmentation was pro-
posed following the encoder-decoder architecture: Badri-
narayanan et al. proposed the SegNet [9].

Inspired by the FCN and the encoder-decoder archi-
tecture, V-Net [10] and U-Net [4] were proposed, initially
mainly for medical and biomedical purposes. Over the
years, several modification of the U-Net architecture were
performed to adapt it to different kind of images. For ex-
ample Zhou et al [11] proposed a nested U-Net architec-
ture. Furthermore Cicek [12] build a U-Net architecture
for 3𝐷 images. Nowadays U-Net are also used in other
fields, e.g., road segmentation [13], face detection [14],
and autonomous driving [15].

3. Seabed Data
In this section we present the main characteristics of the
data used for training and testing the proposed model.

3.1. Input Data
The data are provided by the Italian MaGIC project are GIS
data specifying the depth of the shallow coastal regions
in Italy [16, 17, 18]. Starting from depth data it is possible

to derive via standard GIS tools two additional features
that are considered useful by domain experts: the slope
and the profile curvature of the seabed, that are respec-
tively the first and the second derivative of the depth.
The corresponding data can then be interpreted as 2𝐷
fields with three features/channels (i.e., it can be directly
interpreted/visualized as an image), each one describing
a specific feature of the same seabed area. The data are
organized in a first image of about 2800× 2400 pixels,
while the second of 3000 × 3800 pixels. Each of then
is cut into smaller square windows of length 100× 100
pixels for the training process, for a total of more than
2100 squares.

3.2. Ground Truth
All the data obtained by the MaGIC project also received
a human interpretations of the seabed structure i.e., a
labels map of the same dimensions of the input 2D fields
indicating the positions of all the elements present in
that region. In particular, the labeling is done by drawing
lines of different types over the depth maps. The different
types of lines corresponds to different classes which are
97 in the original data. Due to the large number of classes
and the fact that many of them were only represented by
a small number of samples, a first pre-processing step was
done by reducing the number of classes to 15. These 15
classes corresponds to grouping of the original 97 classes
with the partitioning done according to the morphologi-
cal and geological similarity of the seabed features and
with the help of marine geologists. Hence, the output of
the model has to be a 2𝐷 field in which each coordinate
(each pixel) belongs to one of the 16 classes (15 related
to the different morphological elements plus 1 for the
background).

4. Architecture and Training
In this work we perform semantic segmentation using
a U-Net architecture [19]. The network architecture is
comprised of three main elements 1:

• A contracting path that reduce the spatial di-
mensions of the input image;

• An expansive path that increase the spatial di-
mensions;

• Skip connection between corresponding layers
in the contracting and expansive part.

The specific architecture used in this study is presented
in Figure 1, with the parameters of the different layers
presented in Table 1. The contracting path has the typi-
cal structure of a Convolutional Neural Network (CNN),
which in our case it consist in five layers. The first has
three input channels (corresponding to the three input



3 I

Input

6464 I

128 128 I/
2

256 256 I/
4

512 512 I/
8

1024 1024 I/
16

Bottleneck Conv

512 512 512 512 I/
8

256 256 256 256 I/
4

128 128 128 128 I/
2

64 64 64 64 I 16 I

Output

Figure 1: U-Net architecture used in this work. The yellow and blue boxes represent convolutional and deconvolutional layers,
respectively. The ReLU functions are represented by the orange part of the boxes. The red squares corresponds to max pooling
layers.

features) and performs two convolutions followed by
batch normalization and ReLU activation function. As
stated above, the input data have a size of 100 × 100
pixels. The remaining layers of this part has the same
structure with the addition of a max pooling operation at
the beginning.

Table 1
Convolutional and deconvolutional layers structure

Type Kernel size Padding Stride

Convolution 3 1 1
Deconvolution 2 0 2

Then there is the expansive path composed by five
layers in which deconvolution are performed in order to
upscale the image. The last layer has 16 output channels
like the total number of classes of seabed’s elements. The
output values are logit, which, if necessary, can then be
transformed in a probability distribution over the differ-
ent classes via softmax.

4.1. Training
As stated before, the network is trained with 100× 100
pixels images, cut from the total features map. Hence,
this network take a 100×100 3-channels image as input
and returns a 100 × 100 16-channels tensor. In this
framework for each pixel we have 16 number, each one
related to a specific class. The class related to the channel
with the bigger number is associated to that pixel.

The loss between the output of the U-Net and the trans-
formed labels map is computed by using a traditional
Cross-Entropy loss in addition to the Dice loss [20]. The
last one is a particular loss usually used in segmentation

problem that is related to the intersection between the
prediction and the target images.

We partitioned the dataset into an 80% − 20% split
for training and testing, respectively and used a batch
size of 128. We employed the Adam optimizer with a
learning rate set to 0.001 and the training continued for
60 epochs.

Notice that the actual classification is not done directly
by assigning the most probable class, but by assigning a
threshold for the logit value for all the 15 classes corre-
sponding to actual morphological features of the seabed.
If one of them is above the threshold then the assigned
classes is the one corresponding to it, even if the back-
ground (i.e., no feature present) has a higher logit value
and would have been the most probable. This is done
because of the strong imbalance of the dataset (the “no
feature” class is present for more than 98% of the pixels)
and, thus, the model would prefer selecting that class.

5. Results
In this section we present an initial analysis of the results
obtained.

In Figure 2 two labels maps are presented. They corre-
spond to the first region in which the total dataset was
split: in the left one there are the human interpretations
of the underwater environment provided by the MaGIC
project that map every relevant element in the area; the
right one is the map reconstructed by the network after
the training. The the white squares denote the test set
that represent the 20% of the total part of the region.

In Table 2 a comparison between the frequencies of
the labels of the reconstructed map and the human inter-
pretations (the ground truth) is given. The frequencies
excludes the background pixels, i.e., where no feature is



Figure 2: In the left figure to the left there is the human interpretation of the seabed of one the two regions in which the
dataset is split. To the right there is the reconstructed map; the white squares represent the test set, which is not used during
the training.

Table 2
Comparison between the frequencies of the labels of the re-
constructed map and the ground truth without considering
the background. Only the test areas are considered.

Label Ground Truth
freq.

Reconstructed
map freq.

1 11.93% 9.46%
2 1.18% 1.19%
3 22.56% 33.93%
4 17.33% 17.30%
5 0.00% 0.18%
6 0.00% 0.00%
7 5.82% 1.10%
8 0.40% 0.00%
9 14.50% 13.64%
10 4.86% 0.35%
11 0.00% 0.00%
12 15.39% 21.74%
13 0.14% 0.00%
14 0.00% 0.00%
15 5.89% 1.10%

present.
Recall that due to the predominance of one of “no fea-

tures” class over the others, the model tends to favour this
class, as typical for highly imbalanced datasets. To show
that the use of threshold actually helps in improving the
classification we compared the class frequencies with and
without a threshold. In Table 3 frequencies of the classes
of the ground truth are compared with those of the output
map with no threshold and with 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = −1.5 con-
sidering now also the background (label 0). Notice that
the frequency of the pixels of the background decrease
with adding the threshold and also the other frequencies
are more similar to those of the ground truth.

Table 3
Comparison between the frequencies of the labels of the re-
constructed map with no threshold and threshold value equal
to −1.5 and the ground truth. Only the test areas are consid-
ered.

Label Ground
Truth

Output
map

Threshold
of −1.5

0 98.05% 99.75% 98.37%
1 0.23% 0.02% 0.15%
2 0.02% 0.00% 0.02%
3 0.44% 0.08% 0.50%
4 0.34% 0.04% 0.20%
5 0.00% 0.00% 0.00%
6 0.00% 0.00% 0.00%
7 0.11% 0.00% 0.07%
8 0.01% 0.00% 0.00%
9 0.28% 0.03% 0.31%
10 0.09% 0.00% 0.03%
11 0.00% 0.00% 0.00%
12 0.30% 0.05% 0.30%
13 0.00% 0.00% 0.00%
14 0.00% 0.00% 0.00%
15 0.11% 0.00% 0.05%

The model trained with the data representing the re-
gion shown in Figure 2, that are only a part of the entire
dataset, is used on another region to test the model. The
results are shown in Figure 3: the image to the left is
ground truth while the image to right is the reconstructed
map with no threshold used. We can easily notice that
a predominance of the background is present. In the
Figure 4 results with different values of threshold act-
ing on the logit of the non-zero classes are present. The
reduction of the threshold value correspond to an in-
crease in the presence of pixels belonging to non-zero



Figure 3: Comparison between the ground truth and the reconstructed map with no threshold. We can notice that there is a
predominance of the zero class (background)

Figure 4: Comparison between the reconstructed maps with different values of the threshold. The value of the thresholds
used are, from left to right equal to 1,−1,−3. Pixel density increases as threshold value decreases

labels. Clearly, the correct choice of a suitable threshold
is essential for obtaining a good labeling of the seabed.

One important aspect to notice is that, for the proposed
results, the actual loss is not a good indicator of the use-
fulness of the results. In fact, it represents only an proxy
of the real usefulness of the proposed labeling, since label-
ing by experts is itself a subjective and noisy act. Thus,
obtaining a feature that is shifted by a small amount
might be immaterial (the original lines were themselves
drawn by hand), like getting a non-continuous line (the
expert interpretation would be that there should be a
“connection” between two features). Hence, most of the
evaluation is still qualitative and based on discussion
with experts, that are particularly interested in the ability
of the model to produce the correct “general shape” of
the features, more than some specific details.

6. Conclusions and Future Work
The aim of this work was to construct a model that can
identify and recognize the relevant morphological ele-

ment of the seabed in an automatic way. The current
results shows that, by using a U-net it is possible to pro-
duce good results from a qualitative point of view, as
long as thresholding is used in the output of the network.
Future goals are to improve the performance of the ex-
isting model in order to obtain more precise results. In
particular, a new quantitative measure to encode the ex-
pert knowledge should be devised in order to speed-up
the evaluation of the model (and, possibly, as a loss func-
tion for the training). Additionally, a future project will
be to construct a model capable not only of identifying
and mapping morphological elements of the seabed but
also detecting potentially dangerous zones within it, i.e.,
geohazards.
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