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Abstract
We present a possible applications of generative AI to support a Computational Thinking approach to learn programming
principles with a particular focus on problem decomposition. Our approach is based on a visual tool that guides students in
decomposing a problem in smaller task, prompting ChatGPT on demand via predefined queries designed via a preliminary
prompt engineering experimental phase. The tool also provides the possibility of prompting ChatGPT to generate code in
a bottom-up manner, reusing functions generated in previous steps. We illustrate here the main ideas with the help of a
case-study.
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1. Introduction
The role of Generative AI in computing education is one
of the mostly debated issues in the last year, as evidenced
by works such as [1]. Although the advantages and disad-
vantages of using tools such as ChatGPT1 to support the
teaching of computer-related subjects are not fully clear
yet, there is a growing consensus that the technological
progress of Generative AI will require an adaptation of
the educational methods currently employed.

In the context of introductory and advanced program-
ming courses, tools such as ChatGPT, which are already
integrated in the most common software development
tools (take as an example GitHub’s Copilot) [2] are fre-
quently exploited. These tools are designed in order to
help the users to best formulate the questions submitted
to the prompt.

According to the current literature on computing edu-
cation, such as [1, 3, 4, 5, 6, 7], the most common use of
Generative AI is to generate code or to explain specific
features of existing or generated code. The use of Genera-
tive AI to generate solutions to assignments and exercises
is indeed a critical issue to be taken into consideration to
avoid plagiarism and negative effects on student learning
outcomes.
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In our research, we are interested in possible appli-
cations of Generative AI to develop a Computational
Thinking approach in learning to program.

Computational Thinking [8] can be defined as

"The thought processes involved in formu-
lating problems and their solutions so that
the solutions are represented in a form
that can be effectively carried out by an
information-processing agent." [9]

Wing emphasized that Computational Thinking is a fun-
damental component of Computer Science, where its
abstractions can be executed by computational agents.
The shift from solving problems to effectively solving
problems and making something perform computations
for us distinguishes Computational Thinking from other
disciplines.

One of the characteristics that defines Computational
Thinking is problem decomposition, i.e., the capability
of solving a complex problem by breaking it down into
progressively smaller tasks.

In this paper we focus our attention on the possible
use of Generative AI to develop Computational Thinking
skills by supporting the process of Problem Decomposi-
tion [10] with the help of visual tools.

In particular, we examine the potential of ChatGPT to
assist students in analyzing and decomposing problems
into smaller subtasks, employing a top-down approach.
This is followed by the generation of code for a possi-
ble implementation, using a bottom-up approach and
potentially reusing the code generated in previous steps.
Our approach is based a visual tool that presents the cur-
rent decomposition in form of a labeled tree, in which
nodes contain names and descriptions of each subtask.
Starting from the root node with the description of the
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problem to solve, the user chooses which nodes to fur-
ther decompose. The decomposition process is designed
to be interactive and fully guided by the user until the
solution is decomposed in a collection of subtasks that
the user is capable to implement. The decomposition of a
given task, i.e., a given node of the tree, can be provided
manually by expanding the corresponding subtree with
a set of labeled nodes inserted by the user. In addition it
can also be generated via a predefined query to ChatGPT.
The query formulation is based on a preliminary prompt
engineering experimental design phase that seems to
provide good results in the most common coding tasks
taken from the literature on introductory programming
courses. In our approach, the prompt engineering task is
entirely hidden to the user and ChatGPT is considered as
an oracle to support students during the decomposition
process.

If needed, in a second phase, users can prompt Chat-
GPT to generate the code of the solution in a bottom
up manner. The predefined query generated by our tool
ensures that functions generated for a given subtask can
be reused for generating the code of the current task.

The implementation of the tool allowed us to evaluate
how well ChatGPT is able to decompose a high-level task
into smaller, easier-to-solve subtasks, and to implement
decomposed tasks using a bottom-up approach.

In the paper we present the methodology, the proposed
tasks, and the preliminary results with the help of an
example.

The paper is structured as follows: In Section 2, we out-
line the background of our study, focusing on the effects
ChatGPT has on education and computational thinking.
Section 3 describes the proposed methodology and exper-
iment setup. Section 4 reports, focusing on a case study,
the results of our first experiments and discusses their
limitations. Finally, in Section 5 we address conclusions
and future research directions.

2. Background
ChatGPT has shown remarkable capabilities in solving
programming tasks across a range of different program-
ming languages, particularly when the instructions are
presented in a clear and unambiguous manner [7, 6].
However, it is less effective when confronted with more
complex requests, particularly when the questions are
not structured in an optimal manner or when the infor-
mation provided in the prompt is limited [6].

Even though the tool shows great potential in the ed-
ucational domain, it is used by a limited number of stu-
dents for educational purposes [11]. One of the reasons
is that education regarding LLMs usage is very limited
and students often don’t know how to properly use these
tools to support learning [11, 5]. Furthermore, a number

of students may prefer not to use the tool, believing it
will lead to reduced learning [11].

Among the CS students who employ the tool, the most
common usage is for generating code, followed by debug-
ging. Explaining difficult concepts falls in third place [12].
Students who use ChatGPT when facing programming
assignments tend to show higher efficacy and computa-
tional thinking skills [13].

Currently, ChatGPT is mainly employed to automati-
cally provide students with feedback when programming
a task. Feedback can be provided in many forms, such
as coding hints for the next instruction [4] and code or
error explanations [14].

When confronted with more complex problems, Chat-
GPT is less adept at providing reliable solutions. As a
result, the user is often required to manually break down
the problem into smaller components and subsequently
assemble the solution [15].

3. Methods
To evaluate the support offered by ChatGPT to decom-
pose a high-level task into smaller, easier-to-solve sub-
tasks, we designed a set of prompts for ChatGPT, as well
as a custom visualization tool to display the results and
allow the user to interact with the tool.

3.1. ChatGPT Prompts
Decomposing a task into subtasks To decompose a
broad task into more refined subtasks we experimented
with several prompting styles.

Our initial approach was to include the current task
decomposition in the prompt, so that ChatGPT would be
aware of which tasks had already been decomposed and
how they were decomposed at each iteration. However,
this approach proved ineffective as ChatGPT struggled to
understand the decomposition. Various notations were
attempted, including JSON and ad hoc syntax, similar to
regular tree expressions, to describe the current struc-
ture of the decomposition, but none was found to have a
positive impact. Ultimately, two distinct prompts were
utilized, and ChatGPT’s conversational memory was re-
lied upon to maintain the current decomposition state.

The initial prompt is used when a user first wishes to
decompose a problem. It includes a user-provided prob-
lem description and detailed instructions for ChatGPT on
how to accurately decompose it. The main requirements
we identified are:

• Specifying that the task needs to be decomposed
into a small number of subtasks. This require-
ment is crucial as ChatGPT has a tendency to



immediately decompose the problem into approx-
imately ten steps, with emphasis on the process
rather than on the reasoning behind the task.

• Requiring the fields “name” and “description” to
be similar to the ones initially provided. This is
important for keeping stylistic consistency be-
tween all tasks.

• Returning the results in JSON format. This is im-
portant for using the output in our visualization
tool. We also noticed that this requirement made
the title and description more precise and each
subtask being assigned a unique name.

• Requiring that subtasks of a given task did not
contain any element of other tasks. This is needed
to avoid task mix-ups.

• Ensuring there are no missing steps in the decom-
position, i.e., solving all the subtasks is equivalent
to solving the original problem.

We also included an instruction indicating not to decom-
pose a task in case no reasonable decomposition can be
made (for example for basic tasks). However, this proved
ineffective, as ChatGPT always ended up decomposing
even the simplest tasks.

A simpler prompt has been designed for decomposing
subtasks. The prompt references the task by name and
requests that the same process be repeated for that task.
It is important to note that each task decomposed using
this prompt has been originally generated by ChatGPT.

Implementing a task Once the user is satisfied with
the current decomposition, they can start implement-
ing the subtasks following a bottom-up approach. The
prompt requires ChatGPT to implement the given task in
a specific programming language, which can be selected
by the user.

We identified two requirements, which are:

• Using, whenever possible, functions already gen-
erated by ChatGPT for other tasks. This require-
ment is crucial, since it can highlight the interac-
tion between a task and its subtasks.

• Not writing the implementation of functions
which have already been implemented, to avoid
redundant code.

3.2. Visualization tool
The tool we have created enables users to easily visual-
ize tasks and explore their decomposition into subtasks.
Users have the option to display or hide subtasks for a

given task and, if available, review its properties and im-
plementation. Alternatively, ChatGPT can be utilized by
the tool to automatically decompose or implement any
task. Task decomposition is only performed upon user
request, as each user’s knowledge base varies and some
tasks may be clear to some users but not to others.

Tasks can also be marked as “solved”, indicating that
the user has fully understood the task and no further
decomposition is needed. For the sake of usability, solved
tasks are presented in a distinct color, allowing for a
clear representation of the current understanding of the
problem at all times.

Tasks can also be edited, created, or deleted manually.
However, ChatGPT does not currently reflect these ac-
tions. Automatic decomposition or implementation of
these tasks is not currently available.

4. Case Study
The tool was employed to decompose and implement a
small number of tasks. This section presents the results
for the task “Write a Python program to find the most
trending videos, given a CSV file containing each visual-
ization”. The task has been intentionally formulated as
a broad request, to test if the program would be able to
correctly identify its subtasks.

4.1. Task decomposition
Figure 1 shows the decomposition of the task. ChatGPT
decomposed the main task in the following subtasks,
which is similar to how we would have manually decom-
posed it.

• Read CSV file: Write a Python function to read
the CSV file containing video views data.

• Parse CSV file: Write a Python function to parse
the data from the CSV file and extract relevant
information such as video IDs and view counts.

• Calculate trending score: Write a Python func-
tion to calculate a trending score for each video
based on its view count and possibly other factors
such as upload date.

• Sort videos by trending score: Write a Python
function to sort the videos based on their calculated
trending scores in descending order.

• Retrieve top trending videos: Write a Python
function to retrieve the top N videos with the highest
trending scores, where N is a parameter.

We chose not to decompose basic tasks, such as read-
ing, parsing, sorting, or displaying data, as they can be



Figure 1: Decomposition for the problem “Write a Python program to find the most trending videos, given a CSV file containing
each visualization”.

easily accomplished using existing functions in Python.
Instead, we decided to further decompose the task “Calcu-
late trending score” because its implementation was not
easily understandable. ChatGPT decomposed the task
into:

• Calculate view count factor: Write a Python
function to calculate a factor based on the view
count of a video, possibly using logarithmic scaling
to give more weight to videos with higher view
counts.,

• Calculate time decay factor: Write a Python
function to calculate a factor to represent the time
decay of a video’s popularity, considering how re-
cently it was uploaded.

• Combine factors into trending score: Write a
Python function to combine the factors calculated
in the previous steps into an overall trending score
for each video.

which is consistent with how we would have simpli-
fied the task. Further decompositions of its subtasks,
as shown in Figure 1, were also consistent with our ex-
pectations.

4.2. Task implementation
After obtaining the decomposition shown in Figure 1,
we instructed ChatGPT to implement the tasks using a
bottom-up approach. This involved starting from the
smallest subtasks and subsequently progressing towards
the top-level task.

For each subtask, ChatGPT created a function which
solved the given problem. Each implementation also
contained a docstring describing its purpose, parameters
and returned value, as well as a usage example, as shown
in Figure 2.

For tasks that were previously decomposed, ChatGPT
was able to accurately recall and utilize the functions it
had previously implemented, as shown in Figure 2b.

4.3. Limitations
The main limitation of this study is the relatively small
number of problems that were decomposed and imple-
mented using our system. It is possible that some tasks
may present unforeseen challenges that require further
tuning of our prompts or different approaches.

A further limitation of the study is the small number
of users who have tested the system. By testing the
system with a larger number of users, it would be possible
to ascertain whether certain tasks present issues when
decomposed.



(a) Implementation for task “Normalize view counts”. (b) Implementation for task “Calculate view count factor”. The
functions highlighted in yellow have been created when
implementing its subtasks.

Figure 2: Results of task implementation.

Additionally, as ChatGPT is frequently updated, differ-
ent prompts may be required to obtain the same output.

5. Conclusions & Future Work
The developed tool demonstrates potential for decompos-
ing tasks into smaller subtasks and implementing them
using a bottom-up approach. The preliminary study de-
composed a limited number of problems, but the results
seem quite promising. ChatGPT correctly identified how
to decompose the main problem into smaller subtasks
and provided a well-documented implementation of each
step.

Future directions for our work include:

• Integrating the tool with ChatGPT’s APIs to
fully automate decomposition and implementa-
tion functionalities;

• Enabling users to fully modify existing decompo-
sitions and implementations;

• Testing our system with a larger number of prob-
lems;

• Defining precise evaluation criteria for proper
task decomposition;

• Measuring if the tool can improve computational
thinking learning skills in users.

• Using the tool to identify weaknesses and mis-
conception of students when facing a sequence
of tasks that require common solving techniques.
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