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Abstract
Connected and Autonomous Vehicles (CAVs) are expected to improve road safety and traffic efficiency in the near
future. Recently, Multi-Agent Reinforcement Learning (MARL) algorithms have been applied to optimise lane
change control decisions to improve the average speed of CAVs. The MARL algorithms, however, are limited by a
lack of safety guarantees. Control Barrier Functions (CBFs) have been used for ensuring safety of a Reinforcement
Learning (RL) agent performing safety-critical control tasks such as robotic navigation and autonomous driving.
In this work, the CBF has been defined for a Multi-Agent System (MAS) of CAVs to ensure safety of a MARL
lane change controller with three major contributions. The first is an architecture to integrate the high-level
behavioural layer with a safe controller at the low-level motion planning layer. The high-level control layer
implements a state-of-the-art MARL lane change controller, while the safe low-level motion planning layer
constrains the vehicle to safe states using CBF functions. Secondly, multi-agent actor dependencies are defined
to ensure that control decisions are made by CAVs in a specific order. Finally, decentralised CBF constraint
formulations are defined to comply with the safety specifications. The proposed design, CBF-CAV, can guarantee
safe manoeuvres while executing a behavioural control decision made by the MARL controller.
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1. Introduction

As a result of the increasing trend in private vehicle ownership, there are over a billion vehicles in the
world’s motor fleet currently, and this is expected to continue growing in the near future [1]. This
trend is likely to cause increased congestion and road accidents. According to a report from the World
Economic Forum (2018), road congestion cost 87 billion dollars to the US economy in 2018 due to loss
of productivity [2]. Furthermore, a European Union (EU) report states that around 78% of road crashes
are considered to be a result of human errors [3]. To minimise congestion and improve traffic safety,
Autonomous Vehicles (AVs) are considered one of the main interventions in Intelligent Transportation
Systems (ITS) [4].
AV technologies are evolving with the developments in communication technologies and Artificial

Intelligence (AI). Connected Autonomous Vehicles (CAVs) are leveraging recent advancements in
vehicular communication (V2X) technologies to make collaborated manoeuvres to improve traffic
safety and efficiency. AI has been a popular option to solve some of the complex problems in AV
technologies, such as localisation, mapping, perception, route planning, and motion control [5]. For
CAV motion controllers specifically, our previous work shows that Multi-Agent Reinforcement Learning
(MARL) is a popular choice [6]. Lane changing is one of the complex problems in motion control, as
improper lane change may cause a collision that could damage the costly components in AVs or even
cause loss of lives. Many forms of MARL using Deep Q-Networks (DQNs) [7, 8, 9], and Actor-Critic
Networks (ACN) [10, 11, 12] has been applied for designing lane change controllers. Among them,
MARL-CAV [12] is an open-sourced state-of-the-art MARL lane change controller designed for CAVs
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[13]. The MARL-CAV significantly improves traffic efficiency and safety. This approach, however, uses
a predication-based priority assignment to avoid collisions and encourage safe behaviour, and therefore
safety is not guaranteed, which limits its applicability.

Our previous work identifies that Control Barrier Functions (CBFs) are suitable for ensuring the safety
of CAV lane change controllers [13]. CBFs have been recently applied to ensure the safe operation
of Reinforcement Learning (RL) based single-agent AV controllers [14]. This CBF implementation
demonstrates a longitudinal safety constraint in a simple scenario. The CBF can be formulated by
considering dynamic safety constraints relative to the surrounding vehicles [15]. This single-agent
CBF, however, assumes that other agents make worst-case decisions. Such a safety constraint results in
conservative behaviour, negatively affecting traffic efficiency.

Overall, CAV lane change controllers can be designed using MARL to improve traffic efficiency, but
they do not ensure safety. This design aims to integrate the CBF safety constraints with the MARL-based
lane change controller [12] to ensure safety by considering multi-agent vehicular dynamics to design
safety constraints. The main contributions of this work are:

• The architecture to integrate CBF constraints to the high-level MARL-based lane change con-
trollers (Section 3).

• The structure for defining the dynamics of multi-agent interaction between CAVs (Section 4.2).
• The specifications and formulations of the CBF constraints to ensure the safety of CAVs (Section 4.1
and Section 4.3).

2. Background

The background details related to AV control hierarchy, vehicle dynamics, RL, and CBFs are provided
in this section. First, the scope of this research is explained based on control hierarchies. Next, the
kinematic bicycle model is explained, and the assumptions related to vehicle dynamics are outlined.
Then, notations used for RL formulations are discussed. Finally, a general form of a CBF is defined
along with an optimisation problem for evaluating the safe control inputs.

2.1. Hierarchy of control layers

The control decisions of AVs can be separated into four hierarchical levels such as route planning,
behavioural layer, motion planning, and local feedback control [16]. The route planning layer first
identifies a feasible route to the destination provided by the user using the road network information.
The route generated from this layer consists of a sequence of waypoints. While moving along these
waypoints, the behavioural layer makes high-level driving decisions such as following a lane, performing
a lane change, negotiating at the intersection, or moving in an unstructured environment. The motion
planning layer generates reference control actions, such as acceleration and steering, to execute a
specific manoeuvre from the high-level decision. In the last layer, a local feedback controller performs
necessary actuation, such as steering, throttling, and braking, to follow the control references.
The lane change controller can be developed by engineering high-level behavioural and low-level

motion planning layers. Specifically, a behavioural layer can be designed to make discrete decisions to
change lanes or follow the current lane. Based on this decision, the motion planning layer can identify
the control references to execute the desired driving manoeuvre. Therefore, this article mainly focuses
on designing these two layers in the AV control hierarchy.

2.2. Vehicle dynamics

In this article, the kinematic bicycle model is considered to define vehicle dynamics. This model
considers the two wheels in the front as one wheel and the same for the back wheels, as illustrated in
Figure 1. The distance between the front and back wheels is denoted as 𝑉𝑙. The vehicle’s position is
defined using 𝑥 and 𝑦, longitudinal and lateral coordinates along the road. The vehicle’s velocity (𝑣) is



Figure 1: Kinematic bicycle model

controlled by adjusting the acceleration input (𝑢1), and the steering angle (𝛿) is controlled by adjusting
the steering velocity (𝑢2). The steering velocity represents the rate of change in steering angle with
time [17]. The steering angle is considered the same as the angle of the front wheels with respect to
the current heading of the vehicle (𝜓). The equations for the kinematic bicycle model that assumes the
centre of gravity (𝐺) on the axle with equal distance from the front and back wheels can be written as
[18],

̇𝑥 = 𝑣𝑥, ̇𝑦 = 𝑣𝑦, ̇𝑣𝑥 = 𝑢1 cos (𝜓 + 𝛽),

̇𝑣𝑦 = 𝑢1 sin (𝜓 + 𝛽), ̇𝜓 = 𝑣
𝑉𝑙
sin 𝛽, ̇𝛿 = 𝑢2

(1)

where 𝛽 is a slip angle at the centre of gravity:

𝛽 = tan−1 (1
2
tan 𝛿) (2)

2.3. Reinforcement learning

RL is a computational approach for learning a sequence of actions to achieve a specific goal. The RL
problem is formulated using a Markov Decision Process (MDP) defined by the tuple (𝒮 ,𝒜 , 𝒫 ,ℛ, 𝛾 ). 𝒮
is the state space, the set of state variables that an agent can observe. An agent observes a state 𝑠𝑡 ∈ 𝒮
at a time step 𝑡. 𝒜 is the action space consisting of the set of actions that an agent can perform. At a
time step 𝑡, an agent performs an action 𝑎𝑡 ∈ 𝒜. 𝒫∶ 𝒮 × 𝒜 × 𝒮 → [0, 1] is the state transition function
that defines the likelihood of changes in the state observed from the environment based on an action
𝑎𝑡 ∈ 𝒜. ℛ∶ 𝒮 × 𝒜 × 𝒮 → ℝ is a reward function that defines the agent’s goal. At a time step 𝑡, the
agent receives a reward 𝑅𝑡, which is a real number calculated for a transition from the previous state
to the current state through an action. The reward function formulation plays a vital role in defining
agents’ behaviour in the system. 𝛾 ∈ (0, 1] is a discount factor used to define the discounted reward 𝐺𝑡,

𝐺𝑡 =
∞
∑
𝑘=𝑡+1

𝛾 𝑘𝑅𝑘

The discounted reward can provide a measure to choose an action that has higher probability of getting
better rewards in the future. Using the discounted reward, a state-action value function, also known
as the Q-value, can be derived for a policy. A policy 𝜋 is a mapping from states to the probability
of selecting possible actions. The Q-function under policy 𝜋 provides an expected future reward by
choosing action 𝑎𝑡 from state 𝑠𝑡. It can be defined as,



𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼[𝐺𝑡|𝑠𝑡, 𝑎𝑡]

For simple problems with a small number of possible states and actions, Q-values can be calculated
based on the transition probability 𝒫 using the following equation:

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = ∑
𝑠𝑡+1

𝒫 (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)[𝑅𝑡 + 𝛾max
𝑎𝑡+1

𝑄∗(𝑠𝑡+1, 𝑎𝑡+1)]

For complex tasks with a large state and action space, such as autonomous driving, it is often very
difficult or impossible to model the transition probability 𝒫. Therefore, approximation methods are
usually used to find a policy to achieve higher rewards in such tasks. These approximations can be
implemented using deep neural networks [19]. Deep RL (DRL) approximation algorithms achieved
impressive results in playing Atari games [20]. Some of the recent RL approximation algorithms include
Deep Q-Networks (DQN) and policy gradient methods, such as Actor-Critic Networks (ACNs). The
open-source ACN algorithms such as PPO [21] and ACKTR [22] have been developed and published on
repositories like StableBaselines-3 [23] and OpenAI baselines [24]. These algorithms are applied to solve
optimisation problems in various research areas, including manufacturing, robotics, large language
models, and autonomous vehicles.

The RL algorithms extended to MAS considering various forms of learning and control components
are known as MARL [25]. The learning components learn an approximate optimal policy, and the
control components execute that policy. These components are integrated into an agent in single-agent
tasks such as a robot cleaning the house. Many real-world tasks, however, can be considered to be MAS,
as multiple agents may need to work together in the same environment. For example, systems such
as multiplayer online games, cooperative robots in factories, traffic control systems, and CAVs can be
considered as MAS [26]. However, MARL applications are limited to non-safety-critical tasks, as they
can not ensure safety because of the blackbox property [27]. To overcome this limitation, CBF safety
constraints can be used.

2.4. Control barrier functions

Consider a discrete time nonlinear control system defined by the following transition dynamics

̇𝑠 = 𝑓 (𝑠𝑡) + 𝑔(𝑠𝑡)𝑢𝑡 (3)

where change in state variables ̇𝑠 per unit time is defined using unactuated dynamics 𝑓 ∶ 𝑆 → 𝑆, and
actuated dynamics 𝑔 ∶ 𝑆 → ℝ𝑛,𝑚, 𝑛 and 𝑚 are number of variables in the state space 𝑆 and action space
𝑈 respectively, 𝑠𝑡 ∈ 𝑆 is the system state, and 𝑢𝑡 ∈ 𝑈 is the control action at time step 𝑡. The 𝑓 and 𝑔 are
defined based on known system dynamics and they are locally Lipschitz continuous, in other words,
continuous functions limited by a maximum rate of change. For example, the kinematic bicycle model
defined in equation (1) can be defined as a discrete time nonlinear control system (3) as follows,

̇𝑠 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑣𝑥
𝑣𝑦
0
0

𝑣
𝑉𝑙
sin 𝛽
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 0

cos (𝜓 + 𝛽) 0
sin (𝜓 + 𝛽) 0

0 0
0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[𝑢1𝑢2
] (4)

Consider a safe set 𝐶 defined as the super-level set of the continuously differentiable function
ℎ ∶ 𝑆 → ℝ

𝐶 ∶ {𝑠𝑡 ∈ 𝑆 ∶ ℎ(𝑠𝑡) ≥ 0} (5)

To ensure the safety of the control system (3), the safe set 𝐶 must be forward invariant. When 𝐶 is
forward invariant, safe actions can be defined for each state 𝑠𝑡 ∈ 𝐶 such that the system continues to



stay in 𝐶. The safe set 𝐶 is considered invariant if the function ℎ is a Control Barrier Function (CBF) such
that there exists 𝜂 ∈ [0, 1] for all 𝑠𝑡 ∈ 𝐶 satisfying the following equation (6)

sup
𝑢𝑡∈𝑈

[ℎ (𝑓 (𝑠𝑡) + 𝑔(𝑠𝑡)𝑢𝑡) + (𝜂 − 1)ℎ(𝑠𝑡)] ≥ 0 (6)

where 𝜂 defines the magnitude at which the system is pushed within the safe set 𝐶 [14]. Using smaller
values of 𝜂 can enforce the constraints strictly, whereas higher values can relax the constraints. Therefore,
𝜂 represents how strongly the barrier function pushes the states inwards within 𝐶. The existence of a
CBF implies that for all 𝑠𝑡 ∈ 𝐶, there exist 𝑢𝑡 such that 𝐶 is forward invariant [28]. Therefore, the goal is
to find a minimal safe action 𝑢cbf𝑡 that satisfies (6) to ensure the safety of a control system (3).
Let us consider the affine barrier function of the form

ℎ(𝑠𝑡) = 𝑝T𝑠𝑡 + 𝑞 (7)

where 𝑝 ∈ ℝ𝑛 and 𝑞 ∈ ℝ are the parameters used to define a safety constraint ℎ on the state 𝑠𝑡. Combining
the affine barrier function with the condition (6), the following constraint can be defined for the control
action 𝑢𝑡,

−𝑝T𝑔(𝑠𝑡)𝑢𝑡 ≤ 𝑝T𝑓 (𝑠𝑡) + 𝑝T(𝜂 − 1)𝑠𝑡 + 𝜂𝑞 (8)

To consider multiple safety constraints defined using CBFs, 𝐶 can be considered as the intersecting
half spaces defined by 𝑘 affine barrier functions [15]. The affine constraint on 𝑢𝑡 can be defined by
stacking all the constraints.

𝐴𝑢𝑡 ≤ 𝑏,

where, 𝐴 = [𝑎1, 𝑎2, ..., 𝑎𝑘], with 𝑎𝑖 = −𝑝T𝑖 𝑔(𝑠𝑡)

𝑏 = [𝑏1, 𝑏2, ..., 𝑏𝑘], with 𝑏𝑖 = 𝑝T𝑖 𝑓 (𝑠𝑡) + 𝑝T𝑖 (𝜂 − 1)𝑠𝑡 + 𝜂𝑞𝑖

(9)

This constraint can be used to reformulate the CBF given by (6) into the following optimisation
problem

𝑢𝑡 = argmin
𝑢𝑡

||𝑢𝑡||2

s.t 𝐴𝑢𝑡 ≤ 𝑏,
(10)

which can be efficiently solved in each time step using quadratic program [29].

3. Integrating CBF with MARL for highway merging

In the AV control hierarchy (Section 2.1), the safety constraints can be integrated with the motion
planning layer to ensure safe lane change manoeuvres [30]. The safety constraints act as a shield to
override the control decisions from the motion planning layer to ensure that a vehicle stays in a safe
state [31]. The architecture to integrate the MARL behavioural layer, motion planning layer, and safety
constraints is presented in this section to develop a safe MARL lane change controller, illustrated in
Figure 2.

3.1. MARL behavioural layer

A vehicle, referred to as the ego vehicle, makes behavioural decisions based on its state information,
measured by onboard sensors such as LIDAR, RADAR, Camera, GPS, and IMU, as well as information
about the states of the surrounding 𝒩 vehicles. The ego vehicle can decide whether to change lanes,
follow the lane, speed up, or slow down [12]. Since the ego vehicle can observe vehicles within the
range of vehicular communication (V2X), the previously defined MDP (in Section 2.3) can be extended
as a Partially Observable MDP(POMDP) for this MARL application. Moreover, V2X is assumed to be a



Figure 2: Architecture for integrating MARL with safety constraints

perfect communication interface without any delays or packet drops. The MARL formulation defined
in this section is similar to the MARL-CAV formulation, [12], with minor changes in the state space and
reward function.
The state space 𝒮𝒾 of a vehicle 𝑖 consists of state variables including,

• 𝑥 : The longitudinal position of the vehicle.
• 𝑦 : The lateral position of the vehicle.
• 𝑣𝑥 : The longitudinal velocity of the vehicle.
• 𝑣𝑦 : The lateral velocity of the vehicle.
• 𝜓 : The vehicle heading with respect to the road.

These variables are observed with respect to a global coordinate system, while observed vehicle
state variables are relative to the ego vehicle. As the ego vehicle observes states from 𝒩 surrounding
vehicles, the overall multi-agent state space is defined as a Cartesian product of the individual states,
𝒮 = 𝒮0 ×𝒮1 ×𝒮2 × ... ×𝒮𝒩. The𝒩 = 5 is observed to achieve the best performance [12]. We have added
the heading 𝜓 to the state variables considered by MARL-CAV to capture the lane change intentions of
the CAVs, which ensures safety.
The action space 𝒜 is the same as defined in MARL-CAV, which consists of five discrete variables

representing a specific behaviour, namely, right lane change, left lane change, follow lane, speed up, slow
down. The behavioural layer chooses one of these high-level actions. The low-level controller explained
in Section 3.2 further executes these decisions.
The reward function constitutes rewards for avoiding collision 𝑟𝑐, maintaining desirable speed 𝑟𝑠,

maintaining desirable headway 𝑟ℎ, and feedback from the CBF evaluation 𝑟𝑓 along with an associated
weight 𝑤∗ for each reward component. These weights can be tuned to prioritise the CAV objectives.
Therefore, the reward for a CAV 𝑖 at time 𝑡 is defined as

𝑟𝑖,𝑡 = 𝑤𝑐𝑟𝑐 + 𝑤𝑠𝑟𝑠 + 𝑤ℎ𝑟ℎ + 𝑤𝑓 𝑟𝑓
The feedback from the CBF evaluation, 𝑟𝑓, is an additional component added to the reward formulation

used in MARL-CAV. This can reward the agent for staying in the safe state, which minimises the control
overrides required from the CBF layer. Further, this reward encourages the agent to explore within the
safe states [14]. Note that the reward 𝑟𝑖,𝑡 is the reward associated with an individual agent. To achieve



collaborative goals, MARL-CAV combines rewards from the surrounding agents to define a local reward
as

𝑅𝑖,𝑡 =
1
𝒩

𝒩
∑
𝑗=0

𝑟𝑗,𝑡

The MARL-CAV is demonstrated with multiple RL algorithms, such as Multi-Agent extensions (MA*)
of PPO [21], ACKTR [22], and DQN [20], namely MAPPO, MAACKTR, and MADQN. The multi-agent
extension of these algorithms is inspired by the parameter sharing approach proposed in the Multi-
Agent Actor Critic (MA2C) RL algorithm [32]. Among them, MAPPO performed best compared to
other algorithms in Chen et al. 2023’s MARL benchmark analysis [12]. Therefore, this work considers
the MAPPO algorithm to train the high-level behavioural layer.

3.2. Motion planning layer

For the low-level motion planning layer, a Proportional-Integral-Derivative (PID) controller can be
used to generate control actions, such as acceleration and steering velocity, to execute a behavioural
command (defined in Section 3.1). Because of its simplicity, the PID controller can generate control
actions in real time. Moreover, it does not require any pre-defined model. While it is possible to
integrate the behavioural and motion planning layer using learning-based methods to design end-to-end
controllers, they have been criticised for the difficulty in training policies to perform complex tasks
[33]. Especially for autonomous driving tasks with dynamic surroundings, end-to-end controllers
suffer from poor sample efficiency, resulting in high resource requirements [27]. Another option to
integrate the high-level and low-level control layers with learning-based methods is to use hierarchical
RL [34]. However, this approach is difficult to reproduce because of the complex training process. Other
model-based approaches, such as Model Predictive Controller (MPC), require a model for generating
low-level control actions [35]. Estimating such a model for generating CAV control actions in a complex
scenario can be difficult. Therefore, the PID controller is a viable option for the low-level control layer
along with the high-level MARL controller.

Since the high-level MARL controller is not guaranteed to make safe control decisions, the low-level
controller can generate unsafe control actions. The low-level control action 𝑢ll𝑡 at time 𝑡 generated from
the PID controller aims to execute the high-level behavioural decision. Therefore, the control action 𝑢ll𝑡
must be constrained to ensure safety.

3.3. Safety with CBF shield

Safety of a control system can be ensured by overriding the possibly unsafe lower-level control action
𝑢ll𝑡 with a correction 𝑢cbf𝑡 to comply with safety constraints defined using CBFs [14]. Therefore, the final
control action 𝑢𝑡 can be defined as

𝑢𝑡 = 𝑢ll𝑡 + 𝑢cbf𝑡 (11)

With the updated definition for the action 𝑢𝑡 (11), the constraints defined in (9) can be updated to modify
the optimisation problem (10) as follows

𝑢cbf𝑡 = argmin
𝑢cbf𝑡

||𝑢cbf𝑡 ||2

s.t 𝐴𝑢cbf𝑡 ≤ 𝑏ll,

where 𝑏ll = [𝑏ll1 , 𝑏ll2 , ..., 𝑏ll𝑘 ], with 𝑏ll𝑖 = 𝑝T𝑖 𝑓 (𝑠𝑡) + 𝑝T𝑖 (𝜂 − 1)𝑠𝑡 + 𝜂𝑞𝑖 + 𝑝T𝑖 𝑔(𝑠𝑡)𝑢ll𝑡

(12)

In the above optimisation problem (12), 𝑢cbf𝑡 is optimised to evaluate the minimal correction required to
ensure the safety of the system.



4. Decentralised CBF for CAVs

In the previous sections, the CBF ℎ(𝑠𝑡) has been defined based only on the ego vehicle’s state. The
safety constraints defined in this section consider MAS dynamics because CAVs depend on the control
decisions of other vehicles to ensure their own safety. These safety constraints are defined for pure
CAV traffic. The extension of the safety constraints to mixed CAV traffic, consisting of vehicles with
varying levels of autonomy and connectivity, is left for future work. In this section, specifications for
decentralised CBFs are defined first (Section 4.1). Then, the multi-agent actor dependencies are defined
for CAVs(Section 4.2). In the end, CBF formulations are defined based on the actor dependencies to
comply with the specifications (Section 4.3).

4.1. Specifications

The following specifications are considered to formulate decentralised CBFs for CAVs:

1. Ensure the safety of all CAVs in a MAS.
2. Safe acceleration control to avoid collision with the preceding vehicle.
3. Safe steering control to avoid collisions during lane change manoeuvres.
4. Respect the CAV controller’s physical limits.

4.2. Multi-agent actor dependencies

As CAVs can share their states with the surrounding vehicles, the state 𝑠𝑡 of the ego vehicle constitutes
its own ego states, 𝑠e𝑡 , and observed states, 𝑠o𝑡 , of observed vehicles. With this consideration, a dynamic
CBF ℎ for two CAVs can be defined as

ℎ(𝑠𝑡) = ℎ(𝑠e𝑡 ) + ℎ(𝑠o𝑡 ) (13)

Notice that each term in the previously-defined optimisation constraint (12) is defined based on the
state and the action variables from a single agent. For MAS, each term can be separated into variables
associated with the ego vehicle ∗e and the observed vehicle ∗o as follows

𝐴e𝑢e𝑡 + 𝐴o𝑢o𝑡 ≤ 𝑏e + 𝑏o (14)

where 𝐴e and 𝑏e are equivalent to 𝐴 and 𝑏ll (from(12)), but evaluated using the state 𝑠𝑡 and the action 𝑢ll𝑡
associated with the ego vehicle. Similarly, 𝐴o and 𝑏o are derived from the state and the action variables
associated with the observed vehicle.

The safe action for an ego vehicle can be obtained by optimising the minimum control correction 𝑢e𝑡 ,
assuming that the observed vehicle shares its state variables and safe control decisions. Therefore, the
multi-agent constraint in (14) is modified to update the quadratic program (12) for optimising 𝑢e𝑡 ,

𝑢e𝑡 = argmin
𝑢e𝑡

||𝑢e𝑡 ||2, s.t 𝐴e𝑢e𝑡 ≤ 𝑏ma, and 𝑏ma = 𝑏e + 𝑏o − 𝐴o𝑢o𝑡 (15)

The actor dependency exists between ego vehicle and observed vehicles as the term 𝑏ma in the above
equation (15) requires the observed vehicles to make their control decision, 𝑢o𝑡 , before the ego vehicle.
Based on the ego vehicle’s high-level behaviour, the observed vehicles are identified to be considered in
CBF constraints.
If the ego vehicle is following a lane, its control action depends on the immediate leading vehicle

within the communication range, as illustrated in Figure 3a. In this case, the longitudinal distance
between the ego and the leading vehicle Δ𝑥l must be constrained to ensure safety. If a vehicle in the
adjacent lane intends to change lanes to the ego vehicle’s current lane behind the immediate leading
vehicle, the ego vehicle’s decision depends on the adjacent vehicle, as shown in Figure 3b. In this case,
the longitudinal and lateral distances, Δ𝑥a and Δ𝑦a, with the adjacent vehicle are constrained. As the ego



(a) Follow lane (b) Follow lane with a lane changing vehicle

(c) Lane changing vehicle

Figure 3: Actor dependency for CAVs with decentralised CBF shield

vehicle’s decision depends on the adjacent vehicle’s action, this dependency encourages collaborative
lane change behaviour among CAVs.
While changing lanes, the ego vehicle depends on the actions of immediate leading vehicles in the

current lane and the adjacent target lane. Similar to the previous case, longitudinal distance from the
leading vehicle Δ𝑥l is constrained. Moreover, the longitudinal and lateral distances from the adjacent
vehicle, Δ𝑥a and Δ𝑦a, are constrained. This dependency is illustrated in Figure 3c.

Collectively, the safety of all the CAVs can be ensured by following the actor dependency as an
individual CAV ensures safety with respect to its preceding vehicles. To honour this dependency,
CAVs in a MAS are assumed to make control decisions sequentially in the decreasing order of their
longitudinal position. Moreover, this actor dependency is applicable only to roads with two lanes. These
limitations will be addressed in future work.

4.3. CBF formulation

CBF constraints for CAVs, CBF-CAV, are defined to ensure safe longitudinal and lateral motion without
violating the physical control limits of the vehicles. This section defines CBFs for each type of safety
constraint, along with the conditions for their applicability.

4.3.1. Longitudinal motion

The safety constraint for longitudinal motion allows the ego vehicle to maintain a safe headway with a
preceding vehicle in the current lane. This constraint can be defined as,

ℎlon = Δ𝑥l − 𝑥safe (16)

where Δ𝑥l is the longitudinal distance from the rear end of the preceding vehicle and the front of the
ego vehicle. The 𝑥safe is the safe distance that must be maintained between two vehicles to ensure that
the following vehicle has enough time to slowdown if the leading vehicle start slowing down abruptly.
The safe distance threshold can be evaluated from the ego vehicle velocity 𝑣e and time headway 𝜏 as
shown below,

𝑥safe = 𝜏 ∗ 𝑣e (17)



Both lane following and lane changing vehicles use this constraint, as the ego vehicle is expected to
maintain a safe distance from the leading vehicle in all driving scenarios. Moreover, the leading vehicle
must be within the ego vehicle’s communication range to enforce this constraint.

4.3.2. Lateral motion

This constraint ensures safety when a CAV moves laterally to change lanes. During the lane change,
a vehicle must maintain a safe distance 𝑥safe with a leading vehicle in the same lane. This constraint
can be enforced with a previously defined CBF (17). As the vehicle moves laterally, either a safe lateral
distance 𝑦safe or a safe longitudinal distance 𝑥safe must be maintained with a leading vehicle in the
adjacent lane. This constraint is defined as ℎlat

ℎlat =
Δ𝑥a
𝑥safe

+
Δ𝑦a
𝑦safe

− 1 (18)

where 𝑥safe is the same variable defined in equation (17), 𝑦safe is a constant defined based on lane width
𝐿𝑤 and vehicle width 𝑉𝑤 to ensure comfortable lateral distance when the adjacent leading vehicle is
moving in parallel.

𝑦safe = 𝐿𝑤 − 𝑉𝑤 (19)

A safe distance can be maintained with a vehicle in the adjacent lane with this constraint. Before
changing a lane, this constraint ensures that the ego vehicle maintains a safe lateral distance from
the adjacent vehicle. During the lane change, this constraint allows partial violations of lateral and
longitudinal constraints while maintaining sufficient distance to avoid collision. During the execution
of lane change manoeuvre, the partial violations allow a vehicle to gradually reduce the lateral distance
Δ𝑦a while gradually increasing the longitudinal distance Δ𝑥a with the adjacent vehicle. The gradual
increase in longitudinal distance ensures that a safe distance is maintained after completing the lane
change manoeuvre. For example, if a vehicle in the adjacent lane is parallel to the ego vehicle, then the
lateral safe distance must be maintained, Δ𝑦a ≥ 𝑦safe. In another case, if the adjacent vehicle is about
to enter the ego vehicle’s lane, then the ego vehicle must gradually increase the longitudinal distance,
such that Δ𝑥a ≥ 𝑥safe when the adjacent vehicle enters the current lane. This constraint is applied to
lane changing vehicles and lane following vehicles if they are obstructed by the adjacent leading vehicle
changing lanes.

4.3.3. Control limits

Given that vehicle control inputs are subject to physical limitations, they must be constrained. The
physical constraints are defined on the steering angle (𝛿), which is constrained within the range
[-𝛿max, 𝛿max]. This physical constraint is defined using two CBFs ℎmax

𝛿 and ℎmin
𝛿 . Note that the steering

angle is one of the state variables, hence the constraints are defined using CBFs.

ℎmax
𝛿 = 𝛿 − 𝛿max

ℎmin
𝛿 = −𝛿 − 𝛿max (20)

The acceleration range of the vehicle is defined as [−𝑢max
1 , 𝑢max

1 ]. This physical constraint can be
enforced by including it in the constraints of the optimisation problem defined in (12).

−𝑢max
1 ≤ 𝑢1 ≤ 𝑢max

1 (21)

These constraints are applied to all CAVs, as they must be honoured in all scenarios.



5. Conclusion

The proposed CBF formulations, CBF-CAV, integrated with the behavioural layer with MARL lane
change controller can have minimal impact on the efficiency, because the CBF constraints override the
actions only when a vehicle is about to go towards unsafe states. Moreover, by restricting agents to the
safe states, the MARL controller can be trained efficiently by exploring the safe states only. Furthermore,
the actor dependencies are used to consider MAS dynamics in the CAV traffic. These constraints ensure
both lateral and longitudinal safe motions for all CAVs in a traffic scenario.

The provided formulations are suitable for pure CAV traffic, where a lower safe distance can be used.
In the future, this can be extended to mixed traffic with dynamic CBFs to maintain higher safe distances
with human driven vehicles, assuming they take worst-case control decisions.
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