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Abstract
This poster paper highlights the increasing importance of information retrieval (IR) engines in the
scientific community, addressing the inefficiencies of traditional keyword-based search engines amid the
growing volume of publications. Our proposed solution uses structured records, supported by advanced
information technology (IT) tools such as visualization dashboards, to transform how researchers access
and filter articles, moving away from a text-heavy approach. This vision is demonstrated through a
proof of concept focused on the “reproductive number estimate of infectious diseases” research theme.
We utilize a fine-tuned large language model (LLM) to automate the creation of structured records for a
backend database, enhancing information access beyond simple keywords. The result is a next-generation
information access system, available at https://orkg.org/usecases/r0-estimates.
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1. Introduction

The rapid expansion of scientific literature necessitates a reevaluation of their information
retrieval (IR) engines [1, 2]. Traditional keyword-based approaches are inadequate for tracking
fast-paced scientific advancements. There is a growing demand for structured scientific content
representations [3, 4] and advanced machine learning algorithms [5, 6] to enhance retrieval
accuracy. Initiatives like the Open Research Knowledge Graph (ORKG) [7] drive this paradigm
shift towards structured knowledge representations, enabling intelligent views and comparisons
of research facets [8, 9]. Our goal is to simplify access to scientific articles and reduce cognitive
load for researchers using information technology (IT). We propose dashboards as visual tools to
represent structured scientific knowledge, enhancing research filtering and discovery processes
[10]. Dashboards have been widely used, including during the Covid-19 pandemic, where they
helped track cases, analyze trends, and support decision-making with data from sources like the
WHO and Johns Hopkins [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36]. In contrast, our approach focuses on applying IT to structure scientific
knowledge itself, using information extraction (IE) mechanisms and large language models
(LLMs) to power next-generation information systems.
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In pursuit of our vision, this poster paper presents a proof of concept (POC) using the
ORKG-R0 semantic model [37] to structure articles on the ”reproductive number estimate of
infectious diseases” theme [38]. The model captures essential properties like disease name,
study location, date, 𝑅0 value, % confidence interval values, and computation method, enabling
effective comparison across studies. Four research questions (RQs) guide article search and
exploration: RQ1 identifies maximum 𝑅0 estimates, RQ2 examines study counts by disease
and location, RQ3 analyzes 𝑅0 value ranges by location for selected diseases, and RQ4 maps
study locations globally on the world map. These RQs are visualized in a dashboard to enhance
article filtering and provide researchers with concise insights into research progress.

2. Next-Generation Scientific Information Retrieval (IR)

We introduce a next-generation IR platform for “reproductive number estimates of infectious
diseases,” enhancing scientific article access with IT and four visual charted summaries tailored
to four specific RQs alluded to earlier. In the following subsections, we will detail the LLM-based
IE method, article collection, and platform workflow.

2.1. The Scientific Information Extraction (IE) Large Language Model (LLM)

We employ the ORKG-FLAN-T5 R0 LLM [39]. This model is an instruction fine-tuned variant of
FLAN-T5 Large (780 M) using the instruction-tuning paradigm introduced as FLAN (Finetuned
Language Net) [40, 41, 42, 43]. It processes a paper’s title and abstract to produce structured
summaries based on six key properties: disease name, location, date, 𝑅0 value, % confidence
interval (CI) values, and method, related to the 𝑅0 estimate [39].

Table 1
The top 20 infectious disease names (and number of papers) in our initial dataset.

covid-19 (1002) mers-cov (21) measles (15) hepatitis c (8)
dengue (41) cholera (18) hepatitis b (12) tuberculosis (8)
influenza (29) zika (18) zika virus (12) monkeypox (8)
hiv (23) african swine fever (17) ebola (11) west nile virus (7)
sars (22) ebola (17) hand, foot, and mouth disease (8) malaria (7)

2.2. The Scholarly Articles Collection

The initial set of articles in our collection was sourced from keyword-based searches
in the PubMed database, with the most recent search conducted on September
13, 2023. The search query used was: (basic reproduction number[TIAB] OR
basic reproductive number[TIAB] OR basic reproduction ratio[TIAB] OR basic
reproductive rate[TIAB] OR R0[TIAB]) NOT (R0 resection OR cancer), targeting
papers with any synonyms of 𝑅0 in the title or abstract. This yielded 7,127 articles. We
leveraged the ORKG-FLAN-T5 R0 LLM [39] to filter articles that did not report an 𝑅0 value as
unanswerable; or otherwise provide structured JSON descriptions for articles with 𝑅0 estimates.

https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints
https://pubmed.ncbi.nlm.nih.gov/
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Figure 1: (Left image) A visual analytical dashboard in our next-generation information retrieval
(IR) platform provides charts (a), (b), (c), (d) in a dashboard to help researchers make informed article
filtering decisions. (Right image) The backend workflow, managed by a web API, handles database
interactions for frontend rendering. It incorporates a schedule for database updates programmed to run
monthly, with LLM queries supplying structured scientific knowledge before each update.

After filtering out unanswerables, 2,051 articles remained, yielding 2,736 structured summaries.
The processed data was imported to a PostgreSQL 16 database, serving as the backend
storage. The top 20 most represented infectious diseases in our initial database is shown in
Table 1. Notably, the LLM’s high precision confirmed that the top reported diseases are indeed
ascertained infectious diseases. Our database covers studies from all seven continents.

2.3. The Information Retrieval (IR) PlatformWorkflow

The platform is accessible as a web application at the following URL: https://orkg.org/usecases/
r0-estimates. The visualization dashboard widget and underlying workflow are displayed in
Figure 1. In this workflow, the frontend communicates with the backend through a Web API for
database queries and data retrieval. A Python script scheduler, programmed to run monthly,
periodically updates the database with new articles querying PubMed and following the LLM
processing cycle before updating the database with structured summaries. Our workflow

https://orkg.org/usecases/r0-estimates
https://orkg.org/usecases/r0-estimates
https://orkg.org/usecases/r0-estimates
https://orkg.org/usecases/r0-estimates
https://gitlab.com/TIBHannover/orkg/nlp/experiments/virology-dashboard-frontend
https://gitlab.com/TIBHannover/orkg/nlp/experiments/virology-dashboard-backend
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maximizes the use of cutting-edge technology, including an optimized next-generation LLM.

Figure 2: Chart (a) in Figure 1 displays maximum 𝑅0 values by disease to enhance scholarly publication
filtering. The y-axis shows max 𝑅0 values, and the x-axis lists diseases. Users can filter by 𝑅0 range, and
clicking a bar reveals underlying publication details with links to PubMed articles.

2.3.1. Charting the data: collating, summarizing, and reporting

Our IR platform includes three main components: 1) a statistics snapshot showing total papers,
structured knowledge, infectious diseases, and locations, 2) a standard paper listing in a keyword-
based table, filtered as needed, built with the ag-grid JavaScript library, and 3) a visual analytical
dashboard with four charts addressing our research questions. This process involves collating
relevant properties, selecting the best chart from the React chart library to summarize the
response, and creating a query to report the visual summary. Each RQ is represented by a visual
chart. E.g., RQ1, “What are the maximum 𝑅0 estimates reported for diseases in our database?”
is illustrated with a bar chart that plots diseases on the x-axis against their maximum 𝑅0 values
on the y-axis. Hovering over a bar displays the disease and its max 𝑅0. This interactive chart,
which can be adjusted for specific 𝑅0 ranges, simplifies the comparison of 𝑅0 estimates across
numerous studies. Clicking on a bar provides a direct link to the contributing article on PubMed,
thereby enhancing scholarly information retrieval significantly beyond traditional methods.

3. Conclusion

In this poster paper, we present a POC for a new scholarly IR engine that enhances access and
reduces the cognitive load of traditional, keyword-based searches. We address the inefficiencies
of manual paper filtering in traditional IR systems, exacerbated by rapidly increasing publication
volumes. Our approach models key research aspects for machine processing, paving the way
for next-generation visual assistants that streamline scholarly research access.

https://github.com/ag-grid/ag-grid
https://recharts.org/en-US/examples
https://recharts.org/en-US/examples/SimpleBarChart
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