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Abstract
This paper presents an automation pipeline for interpreting hidden neuron activations in Convolutional
Neural Networks (CNNs), a crucial objective of Explainable AI (XAI). Previously, our research group
addressed this objective by employing concept induction and semantic reasoning using a concept
hierarchy derived from the Wikipedia knowledge graph. However, the process was executed manually,
taking several days to complete. In this study, we have fully automated the workflow, achieving consistent
results while significantly reducing the execution time. The automation pipeline streamlines model
training, data preparation, concept induction, image retrieval, classification, and statistical validation,
thereby completely eliminating the manual intervention. This automation enables us to efficiently
interpret and validate CNN neuron activations by modifying parameters, such as incorporating a broader
range of training images and classes and examining additional concept induction results across various
neuron layers using different analytical tools.
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Demo video: https://youtu.be/a_tHVwexlEE, Github: https://bit.ly/ExAI_Automation_DaSe

1. Introduction and Related Work

Deep learning has revolutionized the field of artificial intelligence (AI), achieving breakthroughs
in fields such as image recognition, speech recognition, drug discovery, robotics etc. [1]. How-
ever, its “black box” nature poses challenges, especially in critical domains needing transparency
and explainability [2]. Explainable AI steps in to address these issues, striving to make AI sys-
tems more interpretable and their decision-making processes more transparent [3]. Previously,
Dalal et al. has demonstrated that hidden neuron activations in CNNs could be meaningfully
interpreted using structured background knowledge and ontology reasoning [4, 5, 6]. This
approach utilized a large-scale knowledge base derived from Wikipedia’s concept hierarchy [7]
and employed concept induction [8, 9] to generate interpretable class labels for hidden neurons.
Building on this foundation, the current study automates the entire interpretability process to
enhance efficiency and ensure reproducibility, eliminating the need for human intervention.
We optimized resource allocation and implemented parallel processing to significantly reduce
the execution time. This paper provides a detailed description of our automated approach, its
technical components, performance evaluation results, and broader implications for XAI.
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2. System Architecture and Implementation

Our system uses automation in four stages (Figure 1) below to streamline processes and to
enhance efficiency.

2.1. Stage 1: Model Training and Data Configuration

Initially, our automation pipeline trains and configures a CNN model using the ADE20K dataset
[10]. This process is executed on Beocat [11], a high-performance computing environment
optimized for managing extensive datasets. A Bash script automates job scheduling, resource
allocation via SLURM, initializes the Python environment, securely clones the stage 1 repository
from GitHub, and installs the necessary dependencies to establish the training environment.
We employ a ResNet50V2 architecture implemented in TensorFlow, fine-tuned to enhance
model performance using techniques such as data augmentation, early stopping, and batch
normalization. Our model is trained on 6,187 images, using Adam optimization algorithm
(learning rate 0.001) and categorical cross-entropy as the loss function. Post-training, the model
is saved and used to analyze activations within the dense layer across 1,370 ADE20K images
and it generates positive and negative example sets based on activation thresholds. P consists of
images activating a neuron above 80% ofmaximum activation, while N includes images activating
below 20%. These sets are annotated with classes from background knowledge and will generate
configuration files for each neuron which are pivotal for the Concept Induction analysis in
Stage 2, providing structured input data for generating and validating label hypotheses.

2.2. Stage 2: Parallelized Concept Induction and Label Hypothesis Generation

We used the concept induction process to generate label hypotheses for each of the 64 neuron
activations in the CNN’s dense layer using the heuristic Concept Induction system ECII [9]. We
automated the simultaneous execution of tasks for all 64 neurons by employing parallel pro-
cessing with a SLURM-configured Bash script in Beocat. The script initializes the environment,
installs necessary Java and Maven dependencies, and clones the latest stage 2 repository from
GitHub. Each neuron-specific configuration file from Stage 1 was used to generate semantic
concepts, producing output concept files with hypothesized labels and coverage scores using a
background knowledge base from the Wikipedia concept hierarchy.

2.3. Stage 3: Parallelized Image Retrieval and Classification

Image retrieval and classification were automated for all neurons to validate the label hypotheses
generated in Stage 2. A Bash script manages parallel task execution using SLURM, generating
indices for neurons with configuration files. It clones the Stage 3 project repository, sets up
the environment, installs dependencies. The script runs a Python program that utilizes the
pygoogle_image library to extract labels from the top 3 solutions for each neuron, retrieves
100 images per label from Google, and classifies them using the trained CNN model. Retrieved
images are divided into evaluation and verification sets for statistical analysis.



Figure 1: Automated four-stage pipeline for analyzing neuron activations, inducing concepts, and
evaluating neuron significance using a ResNet50V2 model and ECII tool, created with BioRender.com.

2.4. Stage 4: Statistical Analysis and Verification of Neuron Activations

Label hypotheses are validated through statistical analysis of neuron activations. A Bash script
sets up the environment, clones the stage 4 repository, and installs dependencies. The script runs
a Python program that combines activation data from evaluation and verification sets, generates
summary statistics, and conducts a Mann-Whitney U test [12] to compare activation values for
target and non-target images. Evaluation sets, containing images that strongly activate neurons,
provide initial activation metrics. Verification sets undergo further statistical testing to confirm
the accuracy and robustness of the label hypotheses.

3. Results and Conclusion

The automation pipeline, executed to enhance the interpretation of hidden neuron activations
in CNNs, achieved significant performance improvements.

In stage 1, it eliminated the need for manual analysis to identify and categorize the positive
and negative images from the model output. It also generated neuron-specific configuration files
with embedded ontology references in OWL format, which serve as input for the subsequent
concept induction analysis, completing the execution under 40 minutes.
In stage 2, parallel execution of ECII tool for all 64 neurons reduced the concept induction
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execution time from over 10 hours to 20 minutes. The ECII tool processed neuron-specific
configuration files to generate output concept files with hypothesized labels, sorted by coverage
scores, along with precision, recall, and f-measure metrics.

In Stage 3, the image retrieval and classification processes were automated to run concurrently
for all neurons to validate label hypotheses from Stage 2. It extracted labels from ECII output,
retrieved relevant images from the internet, and classified them using our trained CNN model
from stage 1. Model generated the evaluation sets to include activations from images that
activate the neuron, providing initial insights into neuron activation patterns while verification
sets were generated for detailed statistical analysis in the next stage. This parallelized approach
reduced processing time to about 10 minutes, compared to 16 hours without parallelization.

Finally, Stage 4 performed statistical analysis and validated the results in just 3 minutes. The
system analyzed activation data, generated a detailed summary of statistics, and verified the
label hypotheses. The statistical analysis showed that concept induction analysis with structured
background knowledge yields meaningful labels that consistently explain neuron activation. The
Mann-Whitney U test rejected the null hypothesis (p < 0.05), confirming significant differences
in activation values between target and non-target images.

Overall, the entire pipeline was completed in approximately 1 hour 15 minutes, demonstrating
substantial improvements in performance, indeed the explainability of the CNN model. The
automation and parallelization strategies drastically reduced execution times, minimized manual
effort, and ensured consistent and reproducible results, demonstrating the robustness and
efficiency of our approach.

4. Future work

We will expand and diversify the dataset, explore various neural network architectures, and
integrate various analytical tools. Additionally, we aim to enhance model interpretability by
examining additional concept induction results across various neuron layers.
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