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1. Motivation

Machine breakdowns pose a substantial expenses for equipment manufactures, such as Canon

and Philips, and their customers. A considerable portion of the expenses comprises salaries

for service engineers, costs for providing spare parts, and training service engineers for fault

diagnosis. Furthermore, breakdowns and subsequent downtime have extensive implications

on the plant capacity as customers are unable to utilize the machine during these periods.

Therefore, manufacturers must prioritize effective fault diagnosis to minimize costs and mitigate

the adverse impacts on the operation of their customers. The current maintenance approach

of the manufacturers involved in this project includes training their own service engineers

to diagnose the fault, by providing them with valuable documentation and sometimes videos.

However, this documentation cannot encompass all the necessary support for service engineers

because of the complexities involved in navigating intricate documentation and the ever-

increasing complexity and size of machinery, particularly with Cyber–Physical Systems (CPS)

like Canon printers and Philips magnetic resonance imaging scanners. Additionally, providing

training video to support service engineer is costly in terms of time and resources.

2. Proposal

To overcome this challenge and enhance support for service engineers, several methods for

fault diagnosis of CPS have been introduced including model-based [9], signal-based [10], and

quantitative-knowledge-based [2]. However, these methods have limitations, such as the need

for precise physical models and reliance on extensive historical (sensor) data, both of which

can be prohibitively expensive to develop. To mitigate these limitations, a promising approach

Posters, Demos, and Industry Tracks at ISWC 2024, November 13–15, 2024, Baltimore, USA
$ a.naghdipour@vu.nl (A. Naghdi Pour); b.b.kruit@vu.nl (B. Kruit); j.y.chen@vu.nl (J. Chen);

peter.kruizinga@cpp.canon (P. Kruizinga); godfried.webers@philips.com (G. Webers); k.s.schlobach@vu.nl

(S. Schlobach)

� https://https://github.com/Ameneh71 (A. Naghdi Pour); http://bennokruit.nl/ (B. Kruit);

https://jieyingchenchen.github.io/ (J. Chen); https://www.few.vu.nl/~schlobac/ (S. Schlobach)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:a.naghdipour@vu.nl
mailto:b.b.kruit@vu.nl
mailto:j.y.chen@vu.nl
mailto:peter.kruizinga@cpp.canon
mailto:godfried.webers@philips.com
mailto:k.s.schlobach@vu.nl
https://https://github.com/Ameneh71
http://bennokruit.nl/
https://jieyingchenchen.github.io/
https://www.few.vu.nl/~schlobac/
https://creativecommons.org/licenses/by/4.0


Documented 
Knowledge Logbook Data

Tacit Knowledge

Phase 1:
Knowledge Graph 

Construction

Phase 2:
Diagnosis

Input

FMEA

Bill of 
Materials

Troubleshooting 
Manual Information 

Extraction

Ontology 
Engineering

Querying & 
Reasoning

Symptom 
Observation

Output

Root Cause

Repair 
Procedure

Figure 1: Construction and application framework of the domain fault knowledge graph

is qualitative-knowledge-based fault diagnosis [3] [1]. One key aspect of this method is the

need for a reasonable model that accurately describes knowledge related to faults. Classical

models like fault trees [6], petri nets [8], and rule systems [7], have been used in the past, but

they typically require prior analysis of potential equipment fault modes and involve manual

editing, which makes them inflexible and challenging to update dynamically. Therefore, we

proposes to use knowledge graph (KG) technology to mine fault knowledge from vast and

diverse documents and then construct a structured and interconnected fault knowledge base.

3. Framework

Figure 1, presents our framework for the construction and application of a fault knowledge

graph, which we have created in close collaboration with our industrial partners. Two main

phases including knowledge graph construction and diagnosis are depicted along with input

sources and output results. The input sources are knowledge and data that have been used in

diagnosing faults. We identified and categorized them by regularly interviewing authorities

in the two aforementioned manufacturers. It is worth mentioning that these various sources

are complementary, we utilize all of them to leverage their strengths while compensating for

their limitations. For example, the Bill of Materials provides the physical structure and location

of each part but lacks information on potential issues. In contrast, sources like Failure Mode

Effects Analysis, troubleshooting manuals, and logbook data offer insights into these problems.

Integrating these sources enables more accurate and effective fault diagnosis.

In the first phase, we manually developed an upper-level ontology that serves as the founda-

tion for structuring the schema of the knowledge graph. This involved a comprehensive analysis

of various input sources to identify valuable knowledge, relevant entities, and relationships

for fault diagnosis. We also formulated competency questions to highlight key queries for the

knowledge graph and conducted interviews with industrial partners to align their expectations

with the ontology. Our fault diagnosis ontology is further inspired by the Industrial Domain

Ontology [5] and the Industrial Ontology Foundry-Maintenance Reference Ontology [4] by

considering and comparing the entities and relations. Currently, we are using this ontology to

create a cohesive KG that allows for the analysis of fault frequencies, locations, interactions,

and solutions. To this end, we apply different information extraction techniques such as Regular

Expressions, Named Entity Recognition and Large language Models to populate data based

on the ontology. Ongoing development indicate that the upper-level ontology allows us to



model a diverse set of qualitative features related to the functioning and repair of complex

cyber-physical systems.

4. Future Work

The next phase, diagnosis, shows the application of our proposed method in which service

engineers observe symptoms of the failure, which should be converted to a query for KG-based

reasoning. As a result, the root cause of the issue along with a procedure should be suggested

to solve the issue. To this end, we are planning develop querying and reasoning systems for

diagnosis, with the aim of supporting different fault diagnosis reasoning techniques.
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