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Abstract

Code quality evaluation involves scoring generated code quality based on a reference code. Extensive
research has demonstrated that current evaluations do not truly reflect code quality. We propose
Decompositional Semantic Analysis for Code Quality Evaluation. We employ a decompositional approach
to enable LLMs to analyze portions of code semantics independently each time, obtaining the code
semantics through multiple interactions with LLMs. We designed a Semantic Storage unit to make
independent analysis feasible, by retriving related semantic descriptions. Experimental results indicate
that our approach surpasses existing state-of-the-art methods in correlation with code execution.
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1. Introduction

Code quality evaluation involves scoring generated code quality based on a reference code for
a specific problem statement. Existing methods [1] [2] rely on superficial code matching as
an evaluation metric, which fails to capture code semantics accurately. Moreover, extensive
research has demonstrated that existing methods do not truly reflect code quality [3].

With the development of large language models (LLMs) in recent years, studies [4] have
proven the feasibility of using LLMs as evaluators for generative tasks. However, due to issues
like hallucinations and uncertainty in LLMs [5], their correlation with code execution remains
at a lower level [6], making the direct use of LLMs for code quality evaluation challenging.
To address these issues, we propose Decompositional Semantic Analysis for LLM-based Code
Quality Evaluation (DSA-CQE). We employ a decompositional approach to enable LLMs to
comprehend portions of code semantics independently each time, obtaining the code semantics
through multiple interactions with LLMs. We designed a Semantic Storage unit to make
independent analysis feasible, allowing LLMs to achieve more accurate semantics by breaking
down complex problems. Finally, the generated code is scored based on a semantic comparison
between the reference code and itself. Experimental results indicate that DSA-CQE surpasses
existing state-of-the-art methods in terms of correlation with code execution.
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2. Approach
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Figure 1: Framework of DSA-CQE.

Fig 1 illustrates the overall framework of DSA-CQE. DSA-CQE inputs the generated code and
the reference code, the output is the score of the generated code. First, the semantic of both codes
is obtained through a Decompositional Code Semantic Analysis unit. Subsequently, the code
semantic comparison unit determines the differences in semantics. Finally, the generated code’s
score is derived by analyzing these semantic differences through an LLM. In Decompositional
Code Semantic Analysis, we considered eight types of nodes of Abstract Syntax Tree (AST) [7]
as our predefined nodes: “For”, “While”, “Assign”, “If”, “ClassDef”, “FunctionDef”, “Switch”,
and “Call”. We perform a depth-first traversal of the code’s AST, extracting the “subtrees” under
these predefined nodes as sub-codes. This approach can decompose the originally complex code
into simpler subcodes, allowing the LLM to perform semantic analysis! on each part separately,
thereby reducing the hallucination phenomenon [5].

After decomposing the code into several sub-code, it is not feasible to analyze them individu-
ally, as most code segments are interrelated through references and dependencies. Analyzing
them in isolation could lead to missing external references, such as variables and function
definitions. We designed a Semantic Storage unit that stores textual descriptions of semantics
during the analysis process, which may be required for subsequent code semantic analysis. As
shown in Fig 2, a search is conducted within the Semantic Storage unit to retrieve relevant
semantic descriptions. These descriptions are concatenated with the original sub-code and,
together with a pre-designed prompt template, are input into the LLM to obtain the semantic
description of the sub-code. For example, variables such as ‘n’, ‘cap’, and ‘wei’, which appeared
previously in other sub-codes, can be easily misunderstood by the LLM without additional
semantic information. Without context, the LLM might misinterpret n as any generic integer or
cap as an abbreviation unrelated to the problem domain. However, after conducting semantic
analysis on the earlier sub-codes, the semantics of these variables have already been stored in
the Semantic Storage unit. We only need to retrieve these stored semantics and incorporate
them into the prompt template to provide the LLM with the necessary semantic context for
these external variables.

The semantics of the code stored in the Semantic Storage are not static. Each time a semantic
description of a sub-code is obtained, the LLM is prompted to update the semantic descriptions
of each external variable based on the new description. These updated semantic descriptions
are then re-stored in the Semantic Storage unit for further analysis. As shown in Fig 2, the
variable ‘dp’, initially described as “a dynamic programming array initialized to 0,” is updated to
“stores the maximum value for each possible weight” after semantic analysis.
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Figure 2: Demonstrates how the Semantic Storage unit eliminates external dependencies, as well as
the process of updating its internal semantic descriptions

Table 1

Kendall-Tau (z), Pearson (r,) correlations. The best performance is bold.
Method T T
CodeBleu 295 | 241
CodeBertScore 430 | .352
1-shot 106 | 105
Simplified DSA-CQE | .512 | .470
DSA-CQE .594 | 553

3. Experiments

We conducted our experiments (following previous work [4]) on the HumanEval dataset [8]
exclusively, as most of the code samples in the CoNala [9] subset of the dataset [3] used for eval-
uation are single-line codes lacking complex semantics. While the Card2Code Hearthstone [10]
subset contains semantically more complex structures, such as “classes”, these “classes” follow a
uniform structure with minimal variation. In practice, a significant portion of code demonstrates
both complexity and semantic diversity. In contrast, the HumanEval dataset contains a rich and
diverse range of code samples, making it the ideal choice for our experiments and evaluation.
Cassano et al. [11] ran test cases on the HumanEval dataset and provided the functional cor-
rectness of each piece of code. We use the Pearson [12] and Kendall [13] correlation coefficient
between the functional correctness scores and the scores given by different methods for com-
parison. To ensure fairness, we uniformly used GPT-3.5 Turbo [14] as the backbone model and
set the LLM temperature to 0.2. We used state-of-the-art evaluation methods based on n-gram
matching and deep learning, namely CodeBleu [1] and CodeBertScore [2], as baselines. The
prompt for 1-shot utilized Zhou’s prompt template [4]. Simplified DSA-CQE is our framework,
which replaces decomposition analysis with single-step analysis using LLMs!.

The experimental results are shown in the table 1. As can be seen, DSA-CQE performed
significantly better on the HumanEval dataset compared to traditional code evaluation methods,
with a Pearson correlation coefficient of 0.594. The single-step prompt and Simplified DSA-CQE
methods achieved Pearson correlation coefficients of 0.106 and 0.512, respectively. This indicates
that DSA-CQE, through decompositional semantic analysis, enhances the LLM’s comprehension
of code semantics and improves overall performance in code evaluation.

Our current experiment focuses solely on evaluating the quality of Python code. However,
since the method relies on the Abstract Syntax Tree, adapting it to other programming languages



involves merely substituting the relevant parser. For instance, Java code can be parsed using
JavaParser [15], while pycparser [16] can be used for C code.

4. Conclusion

In this poster, we propose Decompositional Semantic Analysis for LLM-based Code Quality
Evaluation. We employ a decompositional approach to enable LLMs to analysis portions
of code semantics independently each time, obtaining the code semantics through multiple
interactions with LLMs. We designed a Semantic Storage unit to make independent analysis
feasible, by retriving related semantic descriptions. The generated code is scored based on a
semantic comparison between the reference code and itself. The experimental results show that
DSA-CQE surpasses all existing methods in correlation with code execution.
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