
HybridContextQA: A Hybrid Approach for Complex
Question Answering using Knowledge Graph
Construction and Context Retrieval with LLMs
Ghanshyam Verma1, Simanta Sarkar1, Devishree Pillai1, Hotaka Shiokawa2,
Hamed Shahbazi2, Fiona Veazey2, Peter Hubbert2, Hui Su2 and Paul Buitelaar1

1Insight SFI Research Centre for Data Analytics, Data Science Institute, University of Galway, Ireland
2Fidelity Investments, USA

Abstract
Augmenting domain-specific knowledge with Large Language Models (LLMs) to answer complex condi-
tional questions is an important area of research. LLMs are good at answering general domain questions,
however, their performance decreases when applied to a specific domain with complex conditional
questions. We hypothesize that extracting context from relevant documents and Knowledge Graphs
(KGs), and then feeding this combined knowledge to the LLM prompts, can provide better context to
answer the complex conditional questions.

To test our hypothesis, we propose a hybrid approach called Hybrid Context for Complex Question-
Answering (HybridContextQA) that can extract relevant context from documents as well as from a KG.
To implement this, we create a Retrieval-Augmented Generation (RAG)-based hybrid context retrieval
pipeline. This pipeline creates a KG from the provided documents and stores it in a Neo4j graph store.
An LLM is used to automatically create a KG from the provided documents. The pipeline also stores the
context extracted from the documents in vector form in a vector database. This combined context from
KG and vector store can then be used for answering the complex conditional questions of that domain
using an LLM.

We perform our experiments on a complex question-answering (QA) dataset called ConditionalQA.
This dataset contains complex questions with conditional answers. We also compare the proposed
approach with other approaches such as Code Prompt, Text Prompt, and Think-on-Graph. We find
that the HybridContextQA approach performs better than the existing approaches for multiple LLMs,
including Mistral and Mixtral.

We also conduct comprehensive experiments to analyze the contribution of the context from KG
and vector form. We release the code implementing the HybridContextQA approach and the end-to-end
pipeline with LLM prompts1.

1https://github.com/GhanshyamVerma/ComplexQA
KBC-LM’24: Knowledge Base Construction from Pre-trained Language Models workshop at ISWC 2024
$ ghanshyam.verma@insight-centre.org (G. Verma); simon.simanta@insight-centre.org (S. Sarkar);
devishree.pillai@insight-centre.org (D. Pillai); Hotaka.Shiokawa@fmr.com (H. Shiokawa);
hamed.shahbazi@fmr.com (H. Shahbazi); fiona.veazey@fmr.com (F. Veazey); peter.hubbert@fmr.com (P. Hubbert);
hui.su@fmr.com (H. Su); paul.buitelaar@universityofgalway.ie (P. Buitelaar)
� https://www.universityofgalway.ie/ (G. Verma); https://www.universityofgalway.ie/ (S. Sarkar);
https://www.universityofgalway.ie/ (D. Pillai); https://www.fidelity.com/ (H. Shiokawa); https://www.fidelity.com/
(H. Shahbazi); https://www.fidelityinvestments.ie/ (F. Veazey); https://www.fidelityinvestments.ie/ (P. Hubbert);
https://www.fidelity.com/ (H. Su); https://www.universityofgalway.ie/ (P. Buitelaar)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://github.com/GhanshyamVerma/ComplexQA
mailto:ghanshyam.verma@insight-centre.org
mailto:simon.simanta@insight-centre.org
mailto:devishree.pillai@insight-centre.org
mailto:Hotaka.Shiokawa@fmr.com
mailto:hamed.shahbazi@fmr.com
mailto:fiona.veazey@fmr.com
mailto:peter.hubbert@fmr.com
mailto:hui.su@fmr.com
mailto:paul.buitelaar@universityofgalway.ie
https://www.universityofgalway.ie/
https://www.universityofgalway.ie/
https://www.universityofgalway.ie/
https://www.fidelity.com/
https://www.fidelity.com/
https://www.fidelityinvestments.ie/
https://www.fidelityinvestments.ie/
https://www.fidelity.com/
https://www.universityofgalway.ie/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

1. Introduction

The integration of Large Language Models [1] with domain knowledge to answer complex
conditional questions of that domain is a crucial area of research. While LLMs excel in answering
general domain questions, their performance significantly decreases when applied to complex
conditional questions of a particular domain. One of the reasons for their low performance on
domain-specific QA tasks is that they have not been trained specifically for those domains [2].
In those cases, LLMs exhibit hallucinations: generation of seemingly plausible but nonsensical
or unfaithful answers based on provided sources [3]. In the case of conditional questions, it
also becomes hard to answer the question with the right condition if there is no proper context
provided to the LLM. These limitations highlight the need for innovative approaches to enhance
the performance of LLMs in answering complex conditional questions of a specific domain.

One promising direction is to leverage a domain-specific KG and augment it with an LLM. KGs
are powerful tools for organizing and structuring knowledge [4, 5], and their integration with
LLMs has shown promising results in various domains [1]. When building a KG from provided
documents, incomplete extraction of important triples can negatively impact the performance of
the LLM in answering complex questions. This is because the LLM may lack sufficient context
or required conditions, particularly for conditional answers. Here, providing additional context
in the form of vectors that are extracted from the same documents can complement the context.

We hypothesize that extracting the context in the KG and vector form, and then using that
combined context to answer the complex conditional questions, can give better performance
than the individual form of context. To test this hypothesis we propose the HybridContextQA
approach that extracts the context from the provided documents in the form of a KG and vector
and then feeds this combined context to an LLM to answer the complex conditional questions.
To implement this we create an end-to-end pipeline that automatically constructs a KG using
an LLM on provided documents and store this KG in a Neo4j graph store. The pipeline also
extracts the context in vector form and stores it in a vector store. The combined knowledge
store is then used to answer the complex questions.

To test this hypothesis, we create our own KG from the documents of the ConditionalQA
dataset [6] using the KG creation module of the pipeline. The ConditionalQA dataset has been
created using publicly available UK policy documents. We also extract the context in vector form
from the same ConditionalQA documents. It is interesting to identify the contribution of the
KG and vector context in answering the complex question. For that, we perform comprehensive
experiments to analyze the contribution of the KG and vector context.

The main contributions of this paper are as follows:
1. We construct a pipeline for automatic KG creation that exploits the capabilities of LLMs

for this task.
2. We propose a hybrid approach called HybridContextQA to extract the context in the form

of a KG and vectors and then use this combined context to answer the complex conditional
question.

3. We perform comparative analysis and provide insights on the effectiveness of the proposed
HybridContextQA approach in comparison to existing approaches, particularly for a domain-
specific complex conditional QA task.

4. We release our code that implements HybridContextQA in the form of an end-to-end

pipeline for KG creation, context extraction in vector form, and for performing the downstream
task of QA using an LLM 1.

The rest of the paper is structured as follows. In Section 2, we describe related work. Section 3
describes the ConditionalQA dataset. In Section 4, we explain our approach. Section 5 describes
the experimental design. In Section 6, we discuss and compare results in detail. Finally, we
conclude in Section 7.

2. Related Work

LLMs have demonstrated significant performance in simple QA tasks, yet their effectiveness in
complex, conditional, domain-specific QA tasks remains an area requiring further investigation.
In this context, Sun et al. have introduced ConditionalQA, a dataset specifically designed for
complex conditional questions, which serves as a benchmark for testing the capabilities of LLMs
in handling such tasks [6].

Puerto et al. proposed a code prompting approach, that enhances LLMs’ ability to tackle
complex conditional questions by employing a chain of prompts that translate the natural
language problem/question into code, which is then used to prompt the LLM [7]. While
this code prompting method has demonstrated improved performance over traditional text
approaches, it does not incorporate KGs for question answering.

The integration of KGs with LLMs has been actively researched, with multiple studies
demonstrating that KGs can enhance the performance of LLMs across various domains, including
the legal domain [1]. KGs provide structured representations that can complement the implicit
knowledge encoded in LLMs, leading to more accurate and context-aware responses. Several
notable approaches have been developed to improve inference by combining the strengths
of KGs and LLMs, such as MindMap [8], Think-on-Graph [9], and Knowledge Solver [10] for
instance.

MindMap specifically extracts information from a biomedical KG named EMCKG and incor-
porates this data into LLM prompts, aiming to enhance inference capabilities [8]. This approach
was evaluated using a biomedical QA dataset called GenMedGPT-5k, and it has shown that
integrating KG-derived information can indeed improve LLM performance.

Think-on-Graph utilizes LLMs as agents that iteratively perform beam searches on a KG to
identify relevant reasoning paths, which are then used in LLM prompts to answer questions [9].
This approach has shown promising results, providing evidence in support of utilizing KGs in
combination with LLMs to perform QA tasks.

However, these approaches have not yet been tested on QA datasets of a domain-specific
complex conditional nature. On the other hand, Retrieval-Augmented Generation (RAG) is a
promising approach that incorporates knowledge from external databases or documents with
LLMs such that a QA system can be built [11]. However, most of the RAG pipelines are based
on keyword and similarity-based searches which can limit the overall performance of the RAG
systems [12].

1https://github.com/GhanshyamVerma/ComplexQA

https://github.com/GhanshyamVerma/ComplexQA

These gaps highlight the need for further research to explore the potential of integrating KGs
with LLMs using hybrid approaches that exploit both semantic and similarity-based retrievers
for enhancing performance in complex, conditional, domain-specific QA tasks.

3. Dataset

ConditionalQA [6] is a QA dataset introduced by Sun et al. This dataset challenges existing
QA models, by requiring compositional logical reasoning across multiple contexts having
many complexly interrelating parts, elements, conditions, or considerations. It includes long
context documents with logically complex information, multiple-hop questions, and various
question types (extractive, yes/no, multiple answers, not-answerable) [6]. The ConditionalQA
dataset aims to stimulate research in understanding complex documents to answer challenging
questions.

The documents in ConditionalQA focus on UK public policies. Examples include topics like
“Vaccine-Damage-Payment” or “Tax-on-Shopping”. Each document covers a specific policy
topic and is organized into sections and subsections. The content within a section is closely
related, but there may also be cross-references to other sections [6].

To answer the complex questions of the ConditionalQA data, we need to consider the following
three main components: Document: It describes a UK public policy. The content is coherent
and hierarchical. It is structured into sections and subsections. These policy documents are
scraped from UK public policy websites. The content is then processed by serializing the
Document Object Model (DOM) trees of web pages into lists of HTML elements (such as <h1>,
, <p>,and <tr>). Question: It asks about a specific aspect of UK public policy. The questions
can be related to a person’s eligibility to apply for something or other aspects, using words
like "who," "what," "how," "where," or "when." Even if a question is “not answerable,” it remains
relevant to the document content. User Scenario: It provides background information or the
real-word situation of a person for the question. The scenario may also be simulating real-world
information-seeking challenges [6].

A QA model should predict answers with associated conditions, if any. The answers can
fall into multiple categories: “Yes” or “no” responses to questions like, “Can I get this benefit?”
Extracted text spans for questions asking “how,” “when,” “what,” etc., or “Not answerable” if
no relevant answer exists in the document. Since complete information for a definite answer
is sometimes lacking, the model must also recognize the conditions necessary for a correct
answer. A condition represents additional information that must be satisfied but is not explicitly
mentioned in the user’s query.

In the context of ConditionalQA, conditions are present in the content of the documents. A
QA model should retrieve the correct answer from the provided documents, along with the
conditions that must be met for the answer to be valid. See Figure 1 for an example of a QA
pair from ConditionalQA dataset. Figure also shows the answer and condition with parts of
the document that are important for answering the question. The model evaluates selected
conditions from the document as a retrieval task, aiming for a perfect F1 score at the element
level. If no conditions are required, the model should return an empty list.

This dataset challenges QA models by incorporating these conditional dependencies, making

Scenario and Question

Scenario: As a vulnerable adult I received the Covid-19 vaccination in January 2021. Almost immediately I started to feel very unwell, and
over the next few weeks the left side of my face became paralysed, almost like I had had a stroke. I am now unable to talk properly.

Question: Can I claim off the government for damage caused by the vaccine?

Ground Truth

Answer: Yes
Condition: [Disablement is worked out as a percentage, and ‘severe disablement’ means at least 60% disabled.]

Document
URL: https://www.gov.uk/vaccine-damage-payment

Title: Vaccine Damage Payment
Section 1: Overview
If you’re severely disabled as a result of a vaccination against certain diseases, you could get a one-off tax-free payment of £120,000. This
is called a Vaccine Damage Payment.
…

Section 3: Eligibility
You could get a payment if you’re severely disabled and your disability was caused by vaccination against any of the following diseases:
• coronavirus (COVID-19)
• …

What counts as ‘severely disabled’
Disablement is worked out as a percentage, and ‘severe disablement’ means at least 60% disabled.
…

Figure 1: An example of a QA pair from the ConditionalQA dataset. The figure also highlights the
answer, condition, and relevant parts of the document that are crucial for answering the question.

it more intricate than traditional QA datasets. We use ConditionalQA to explore how well our
model handles complex reasoning and context-aware answers.

4. Proposed Approach

We propose the HybridContextQA approach that not only extracts the context from the KG, but
also from the vector index. It then uses the combined context to answer the complex questions
related to UK policies.

To implement the proposed approach, we create a RAG-based hybrid pipeline for KG creation,
context extraction in vector form, and perform the complex QA task. The pipeline uses UK
policy documents to construct the KG. The pipeline, shown in Figure 2, consists of five modules:
loading, indexing, storing, querying, and evaluating. The pipeline modules are described as
follows:

4.1. Loading

The Loading stage is the initial step in the RAG pipeline, where HTML text documents are
ingested into the system as document objects. The SimpleDirectoryReader is employed to read
these documents. Subsequently, the documents are divided into nodes based on HTML H1 and
H2 tags, with each section loaded as a node. We use HTMLDocsReader for extracting relevant
content from the HTML files, ensuring that each node contains meaningful and contextually
relevant data.

4.2. Indexing

Indexing is a crucial stage where the data is structured to allow efficient querying. In this
pipeline, we utilize two types of indexing: KG Indexing and Vector Indexing. The KG Indexing
involves using an LLM and a graph store (Neo4j) [13] to create a KG. We use LLM prompts
to extract KG triplets from the documents. The LLM extracts the KG triplets in the form of
subject, predicate, and object based on the provided instructions and the few shot examples in
the prompts. Please refer to Appendix A for the LLM prompts we used for the KG creation. The
created KG is then stored in the Neo4j graph store. The KG captures relationships and entities
within the data, making it easier to retrieve contextually relevant information. Vector Indexing
employs embedding models to generate vector embeddings which are numerical representations
of the data’s meaning persisted in a vector store for efficient similarity-based retrieval. An
embedding model is a machine learning model that transforms text into numerical vector
representations. These vectors capture the semantic meaning of the text, enabling efficient
similarity comparisons. In our system, we use the Hugging Face Embedding model, specifically
the BAAI/bge-large-en-v1.5, to generate vector embeddings of the documents.

4.3. Storing

Once the data is indexed, it is essential to store the index and other metadata to avoid re-indexing.
This stage ensures that the data structure is persistent and can be efficiently retrieved for future
queries. The persistence of the Knowledge Graph Index and Vector Store Index is managed using
the StorageContext class. Neo4j is used for the graph store, while the Facebook AI Similarity
Search (FAISS) library [14] is used to implement the vector store. The FAISS Vector Store is used
for storing vector embeddings, initializing a FAISS index, and persisting it to a storage directory
if it does not already exist. Similarly, the Knowledge Graph Index is stored or loaded from a
persisted directory, ensuring that the index is available for future queries without needing to be
rebuilt. The FAISS not only stores the embeddings but also allows for efficient similarity-based
retrieval during the querying phase. When a query is posed, the model also generates a vector
embedding for the query and retrieves the most relevant text by comparing similarity scores.

Figure 2: RAG-based HybridContextQA pipeline for KG creation, context extraction in vector form, and
performing complex QA task using an LLM.

4.4. Querying

The Querying stage involves retrieving and processing relevant information based on user
queries. This stage includes several components: Retrievers, Routers, Node Postprocessors,
and Response Synthesizers. Retrievers fetch relevant data using different strategies, such as
the VectorIndexRetriever for similarity-based retrieval and the KGTableRetriever for keyword-
based retrieval from the knowledge graph. We have written a custom hybrid retriever that
combines these two retrieval methods: the VectorIndexRetriever and the KGTableRetriever,
both of which are part of the LlamaIndex library. This hybrid retriever handles both keyword-
based searches (from the KG) and similarity-based searches (from the vector database). Routers
select the appropriate retriever based on the specified index type. Node Postprocessors handle
transformations or re-ranking of nodes before they are used in response synthesis.

The Response Synthesizer works by taking the user query and the retrieved text chunks
and KG triples, and synthesizing them into a coherent answer. In our implementation, we use
the simple_summarize configuration for response generation, which means all the retrieved
text and triples are combined into a single LLM prompt for summarization. The Response
Synthesizer generates the response from the LLM. It generates the final response based on the
retrieved data and the user’s query, with the BaseSynthesizer formatting the final response
from the retrieved nodes.

4.5. Evaluating

In the Evaluation stage, the retrieved data is passed into the final LLM prompt to answer the
complex question. ConditionalQA has various question types. Similar to the code prompting
paper [7], we use different prompts to answer the various types of questions. We use three
different prompts to answer three types of questions: Yes/No, span/extractive, and questions
with conditions. These prompts then process the retrieved data extracted from the previous
module and use an LLM to predict the answer. The answer is then matched with the ground
truth and performance is measured using the F1 score. We use the exact match policy between
ground truth and the predicted answer to compute the F1 score. We produce the results for
each question type and also the average F1 score that shows overall results combining all the
question types. Please refer to Appendix B for a detailed description of the evaluation criteria.

5. Experimental Design

We designed a set of experiments to compare the performance of HybridContextQA with
existing approaches. We perform experiments to compare the proposed approach with existing
approaches such as code prompt and text prompt [7]. Additionally, we perform experiments to
compare the proposed approach with the Think-on-Graph approach [9], which is an existing
approach that utilizes a KG to retrieve relevant context and then uses an LLM to answer the
question.

We also compare HybridContextQA with the KG retrieval-based approach within the RAG
pipeline. This is to evaluate how well HybridContextQA performs in comparison to the context
retrieval approaches that solely depend on the KG retrieval method.

To perform all the experiments, we use ConditionalQA data, specifically, the development
set provided by [6]. The training set has 2338 QA pairs and the development set has 285 QA
pairs, along with the UK policy documents required to answer the questions. We use some of
the QA pairs from the training set to perform few-shot learning. We also performed ablation
experiments to assess the impact of the coverage of the KG on the performance. We use various
LLMs for our experiments: GPT 3.5, GPT 4o, Mistral and Mixtral.

6. Results

Table 1 shows the results of Code Prompt, Text Prompt, Think-on-Graph, and the proposed
HybridContextQA approach using various LLMs. The LLMs used for answer generation are
GPT 3.5, GPT 4o, Mistral, and Mixtral. The results of Code Prompt and Text Prompt are taken
from the code prompt paper [7]. To produce the results using the Think-on-Graph approach,
we implemented the approach with the help of the provided code in the paper [9] and produced
the results on the ConditionalQA dataset.

Based on the results, we can observe that the proposed HybridContextQA approach performs
better than the rest of the approaches on three LLMs, which are GPT 4o, Mistral, and Mixtral
(see Table 1). In the case of Mistral, the HybridContextQA approach achieved a 45.17% average
F1 score, whereas Code Prompt, Text prompt, and Think-on-Graph achieved 28.26%, 28.84%,
and 16.24% average F1 scores, respectively, which is 16.91%, 16.33%, and 28.93% lower than
that of HybridContextQA, respectively. Similarly, in the case of Mixtral, the HybridContextQA
approach achieved a 53.71% average F1 score, whereas Code Prompt, Text prompt, and Think-
on-Graph achieved 40.88%, 46.60%, and 17.40% average F1 scores, respectively, which is 12.83%,
7.11%, and 36.31% lower than that of HybridContextQA, respectively. Moreover, the results of
HybridContextQA using other LLMs are also comparable with the existing approaches. These
results indicate that the use of combined context from a KG and the document, in the form of
vectors, can enhance the performance of a complex QA task. The reason for this performance
enhancement is that by using the combined context from the KG and the document, we can

Table 1
Results of Code Prompt, Text Prompt, Think-on-Graph and the proposed HybridContextQA approach
on ConditionalQA dataset.
LLM/
Model
used

Context Approach
Avg F1 Score

[[All type answer][]]
(271 QA pairs)

F1 Score (Yes/No)
[[Yes/No answer][]]

(106 QA pairs)

F1 Score (Span)
[[Span answer][]]

(102 QA pairs)

F1 Score (Conditional)
[[All type answer][Condition]]

(63 QA pairs)

Mistral

Document Code Prompt 28.26 41.74 16.30 22.76
Document Text Prompt 28.84 31.58 25.64 23.51
KG Think-on-Graph 16.24 21.58 12.05 5.53
Document + KG HybridContextQA (ours) 45.17 60.00 33.55 34.39

Mixtral

Document Code Prompt 40.88 44.80 40.99 34.62
Document Text Prompt 46.60 56.95 40.15 39.36
KG Think-on-Graph 17.40 23.14 12.90 5.54
Document + KG HybridContextQA (ours) 53.71 74.13 36.45 42.59

GPT 3.5

Document Code Prompt 57.64 78.64 44.40 48.02
Document Text Prompt 56.54 73.13 45.54 46.25
KG Think-on-Graph 16.29 13.97 20.67 9.48
Document + KG HybridContextQA (ours) 55.03 71.21 42.97 43.52

GPT 4o

Document Code Prompt 63.63 81.82 50.28 54.72
Document Text Prompt 59.16 81.82 40.32 48.20
KG Think-on-Graph 20.40 21.45 21.46 7.85
Document + KG HybridContextQA (ours) 63.71 81.58 50.71 51.99

Table 2
Results of context retrieval in different forms using different prompt settings.

Approach KG / Hybrid LLM/model used Shots Avg
F1 score

F1 Score
(Yes/No)

F1 Score
(Span)

F1 Score
(Conditional)

Prompt_v_1
max_triplets
= 25

KG Mixtral 0 37.57 64.73 7.14 37.5
Hybrid Mixtral 0 55.20 75.38 32.89 61.28
KG Mixtral 4 45.06 75 8.9 38.85
Hybrid Mixtral 4 60.72 87.5 30.08 66.55

Default Prompt
max_triplets = 25

KG Mixtral 4 45.54 75 10.06 38.88
Hybrid Mixtral 4 61.13 81.55 38.99 73.53

Default Prompt
max_triplets = 30

KG Mixtral 4 40.00 68.88 4.99 51.33
Hybrid Mixtral 4 57.35 87.5 21.9 70.01

Prompt_v_2
max_triplets = 25

KG Mixtral 4 53.94 75.23 30.06 52.5
Hybrid Mixtral 4 64.36 93.75 30.55 67.83

provide appropriate context to the LLM prompt to perform better reasoning over the provided
context to generate the final answer.

When we use the context from both KG and the document in the form of vectors, a question
arises as to how much contribution the KG context has and how much the vector context has in
overall performance gain. To answer that question to some degree, we performed an ablation
study on 10 documents from the dataset which comprises 30 QA pairs of the development set,
with the results shown in Table 2. In this table, the approach column shows the version of the
prompt and the number of max triplets used to extract the KG context and Hybrid index per
chunk of the document. Each chunk of the document contains 256 tokens. The results show
that when we increase the number of max triplets extracted, the performance increases at some
level (max triplets =25) then it drops. This is because after a threshold, the information that
we extract from the documents can include irrelevant information which can lead to a drop in
performance. Therefore, it is important that while extracting the context from the documents,
the irrelevant context should not be extracted otherwise it can affect the overall performance.

Table 2 also presents the results of context retrieval using the KG and the HybridContextQA
approach within the proposed RAG-based Hybrid pipeline. For the ablation study, we tested
three different prompts: Default prompt, Prompt version 1, and Prompt version 2. Please refer
to Appendix A for the different prompts. The Default prompt has a parameter, max triplets, to
set the number of triplets a user wants to extract. It also includes general in-context examples
to implement few-shot learning. Prompt version 1 does not have the max triplets parameter;
instead, it asks the LLM to extract all relevant triplets. Unlike the Default prompt, Prompt
version 1 does not have general few-shot examples but includes few-shot examples from the
ConditionalQA training data. Prompt version 2 has both the max triplets parameter and few-shot
examples from the training data. We achieved the best results using Prompt version 2 with max
triplets set to 25 (see Table 2). With this setting, KG-based context retrieval managed to get a
53.94% F1 score, whereas the HybridContextQA approach, which uses both KG and vector-based
context, achieved 64.36%. The context extracted from the documents in vector form improved
the performance by 10.42 percentage points. This demonstrates the contribution of context
extracted from documents in vector form. Thus, the HybridContextQA approach is better than
the individual context extraction approaches.

Overall, Think-on-Graph performed relatively lower than all the other approaches. This is
because it is designed to use only the KG and lacks the necessary relevant context to answer

the complex conditional questions of the ConditionalQA dataset.
The proposed approach is scalable; however, its efficiency depends on the size of the KG and

the vector database. For the ConditionalQA dataset, the system performs efficiently due to the
use of both FAISS (for fast similarity search) and Neo4j (for graph-based retrieval).

7. Conclusion

In this paper, we contribute significantly to the field of complex conditional question answering
by introducing the HybridContextQA approach that integrates LLMs with KGs for enhanced
context retrieval. Our findings indicate that traditional LLMs struggle with complex conditional
questions, particularly in specialized domains where precise contextual understanding is es-
sential. By leveraging both KGs and vector representations of document contexts, we have
demonstrated improvement in the performance of LLMs when tasked with answering complex
conditional questions. The experimental results validate our hypothesis that a combined context
from KGs and vector stores yields superior results compared to using either context type alone.
Our approach was rigorously tested against various existing methods, including Code Prompt,
Text Prompt, and Think-on-Graph, and showed consistent improvements across multiple LLMs,
including Mistral and Mixtral. The comparative analysis not only highlights the effectiveness
of our HybridContextQA approach but also provides insights into the specific contributions of
KGs and vector contexts in the QA process.

In conclusion, our research underscores the potential of integrating different techniques to
enhance the capabilities of LLMs in specialized domains. We believe that our HybridContextQA
approach can serve as a foundational framework for future research aimed at improving QA in
other complex domains. The open-source code and pipeline we have provided will facilitate
further exploration and development in this area, encouraging other researchers to build upon
our findings and refine the methodologies for knowledge extraction and context retrieval in
legal and other domain-specific applications.

8. Acknowledgments

This publication has emanated from research supported in part by a grant from Science Foun-
dation Ireland under Grant number SFI/12/RC/2289_P2 {Insight} and a grant from Fidelity
Investments. For the purpose of Open Access, the authors have applied a CC BY public copy-
right license to any Author Accepted Manuscript version arising from this submission.

We would also like to thank Shyam Subramanian, Priyanka Sahoo, Ares (Xiaoming) Zhang,
Ron(yourong) Xu, Venkatesh K, Stephanie Pearson, Alan McClean, Carmel McGroarty Mitchell,
Melissa Nysewander, Ping Yao, and Nola Giltinan for attending project meetings and providing
advice.

References

[1] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, X. Wu, Unifying large language models and
knowledge graphs: A roadmap, IEEE Transactions on Knowledge and Data Engineering
(2024).

[2] N. Kandpal, H. Deng, A. Roberts, E. Wallace, C. Raffel, Large language models struggle
to learn long-tail knowledge, in: Proceedings of the 40th International Conference on
Machine Learning, ICML’23, JMLR.org, 2023.

[3] Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, E. Zhao, Y. Zhang, Y. Chen, et al.,
Siren’s song in the ai ocean: a survey on hallucination in large language models, arXiv
preprint arXiv:2309.01219 (2023).

[4] M. Nickel, K. Murphy, V. Tresp, E. Gabrilovich, A review of relational machine learning
for knowledge graphs, Proceedings of the IEEE 104 (2015) 11–33.

[5] Q. Wang, Z. Mao, B. Wang, L. Guo, Knowledge graph embedding: A survey of approaches
and applications, IEEE Transactions on Knowledge and Data Engineering 29 (2017) 2724–
2743.

[6] H. Sun, W. Cohen, R. Salakhutdinov, ConditionalQA: A complex reading comprehension
dataset with conditional answers, in: S. Muresan, P. Nakov, A. Villavicencio (Eds.),
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Association for Computational Linguistics, Dublin, Ireland, 2022,
pp. 3627–3637. URL: https://aclanthology.org/2022.acl-long.253. doi:10.18653/v1/2022.
acl-long.253.

[7] H. Puerto, M. Tutek, S. Aditya, X. Zhu, I. Gurevych, Code prompting elicits conditional
reasoning abilities in text+ code llms, arXiv preprint arXiv:2401.10065 (2024).

[8] Y. Wen, Z. Wang, J. Sun, Mindmap: Knowledge graph prompting sparks graph of thoughts
in large language models, arXiv preprint arXiv:2308.09729 (2023).

[9] J. Sun, C. Xu, L. Tang, S. Wang, C. Lin, Y. Gong, H.-Y. Shum, J. Guo, Think-on-graph: Deep
and responsible reasoning of large language model with knowledge graph, arXiv preprint
arXiv:2307.07697 (2023).

[10] C. Feng, X. Zhang, Z. Fei, Knowledge solver: Teaching llms to search for domain knowledge
from knowledge graphs, arXiv preprint arXiv:2309.03118 (2023).

[11] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, H. Wang, Retrieval-augmented
generation for large language models: A survey, arXiv preprint arXiv:2312.10997 (2023).

[12] K. Sawarkar, A. Mangal, S. R. Solanki, Blended rag: Improving rag (retriever-augmented
generation) accuracy with semantic search and hybrid query-based retrievers, arXiv
preprint arXiv:2404.07220 (2024).

[13] A. Vukotic, N. Watt, T. Abedrabbo, D. Fox, J. Partner, Neo4j in action, volume 22, Manning
Shelter Island, 2015.

[14] M. Douze, A. Guzhva, C. Deng, J. Johnson, G. Szilvasy, P.-E. Mazaré, M. Lomeli, L. Hosseini,
H. Jégou, The faiss library, arXiv preprint arXiv:2401.08281 (2024).

https://aclanthology.org/2022.acl-long.253
http://dx.doi.org/10.18653/v1/2022.acl-long.253
http://dx.doi.org/10.18653/v1/2022.acl-long.253

A. Appendix A

A.1. Prompt templates for KG creation

Default Prompt for KG Triplet Extraction:

"Some text is provided below. Given the text, extract up to "
"{max_knowledge_triplets} "
"knowledge triplets in the form of (subject, predicate, object). Avoid stopwords."
"———————"

"Example:"
"Text: Alice is Bob’s mother."
"Triplets:(Alice, is mother of, Bob)"
"Text: Philz is a coffee shop founded in Berkeley in 1982."
"Triplets:"
"(Philz, is, coffee shop)"
"(Philz, founded in, Berkeley)"
"(Philz, founded in, 1982)"
"———————"

"Text: {text}"
"Triplets:"

Prompt for KG Triplet Extraction V1:

"You are a Knowledge Graph creation expert. Some text is provided below. Given the text,
extract all the relevant knowledge graph triplets in the form of (subject, predicate, object). Avoid
stopwords. which will contain relevant information to answer questions. "
"———————"

"Example:"
"Text: <p>Apply by the overseas route if your acquired gender has been . . . </p>"
"Triplets:(acquired gender, accepted in, approved country or territory)"
. . .
"Text: <p>You’ll get an ’interim certificate’ if you or your spouse do not . . . </p>"
"Triplets:"
"(you, get, interim certificate)"
"(spouse, fill in, statutory declaration)"
"(use, interim certificate, end marriage)"
"Text: <p>You can stay married if you apply for a Gender Recognition Certificate.</p>"
"Triplets:"(apply for, Gender Recognition Certificate, stay married)
"———————"

"Text: text"
"Triplets:"

Prompt for KG Triplet Extraction V2:

"Some text is provided below. Given the text, extract up to " "{max_knowledge_triplets} "
"knowledge triplets in the form of (subject, predicate, object). Avoid stopwords."
"———————"

"Example:"
"Text: <p>Apply by the overseas route if your acquired gender has been . . . </p>"
"Triplets:(acquired gender, accepted in, approved country or territory)"
. . .
"Text: <p>You’ll get an ’interim certificate’ if you or your spouse do not . . . </p>"
"Triplets:"
"(you, get, interim certificate)"
"(spouse, fill in, statutory declaration)"
"(use, interim certificate, end marriage)"
"Text: <p>You can stay married if you apply for a Gender Recognition Certificate.</p>"
"Triplets:"(apply for, Gender Recognition Certificate, stay married)
"———————"

"Text: text"
"Triplets:"

B. Appendix B

B.1. Evaluation

Avg F1 score: The Avg F1 score calculates the average F1 score for all questions of Condition-
alQA development set except non-answerable questions. The ground truth and the predicted
answer have a specific output format such as: [[Answer] [Condition]]. The Avg F1 score is
calculated by evaluating only the [Answer] part of the predicted answer output against the
ground truth and not the [Condition] part of the output. There are 271 such QA pairs out of 285
total QA pairs.

F1 score (Yes/No): The F1 score (Yes/No) denotes the overall F1 score for the Yes/ No answer
type questions of ConditionalQA development set. These may be questions with just Yes/No as
answers, with or without any corresponding conditions. The Yes/No F1 score is the average F1
score which is evaluated using just the [Answer] part of the output and not the [Condition]
part for each question. There are 143 such QA pairs out of 285 total QA pairs.

F1 Score (Span/Extractive): The F1 Score (Span) is the average F1 score for all extrac-
tive/span answer type questions of ConditionalQA development set. These questions have
span/extractive type answers in their [Answer] part of their output and they may or may
not contain any [Condition] in their output. While calculating the average F1 score, only the
extractive part generated in the [Answer] part is considered and not the [Condition] part of the
output. There are 128 such QA pairs out of 285 total QA pairs.

F1 Score (Conditional): The F1 Score (Conditional) calculates the average F1 score for all
questions of ConditionalQA development set which contains conditions in their output. These
questions may have Yes/No or extractive answers in the [Answer] part of the output. The F1
Score (Conditional) is calculated by evaluating both the [Answer] part and the [Condition] part
of the generated output against the ground truth. There are 63 such QA pairs out of 285 total
QA pairs.

	1 Introduction
	2 Related Work
	3 Dataset
	4 Proposed Approach
	4.1 Loading
	4.2 Indexing
	4.3 Storing
	4.4 Querying
	4.5 Evaluating

	5 Experimental Design
	6 Results
	7 Conclusion
	8 Acknowledgments
	A Appendix A
	A.1 Prompt templates for KG creation

	B Appendix B
	B.1 Evaluation

