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Abstract
In recent years, there have been significant advancements in the development of Large Language Models (LLMs). While
their potential for misuse, such as generating fake news and committing plagiarism, has posed significant concerns. To
address this issue, detectors have been developed to evaluate whether a given text is human-generated or AI-generated.
Among others, zero-shot detectors stand out as effective approaches that do not require additional training data and are often
likelihood-based. In chat-based applications, users commonly input prompts and utilize the AI-generated texts. However,
zero-shot detectors typically analyze these texts in isolation, neglecting the impact of the original prompts. It is conceivable
that this approach may lead to a discrepancy in likelihood assessments between the text generation phase and the detection
phase. So far, there remains an unverified gap concerning how the presence or absence of prompts impacts detection accuracy
for zero-shot detectors. In this paper, we introduce an evaluative framework to empirically analyze the impact of prompts on
the detection accuracy of AI-generated text. We assess various zero-shot detectors using both white-box detection, which
leverages the prompt, and black-box detection, which operates without prompt information. Our experiments reveal the
significant influence of prompts on detection accuracy. Remarkably, compared with black-box detection without prompts, the
white-box methods using prompts demonstrate a significant increase in AUC across all zero-shot detectors tested, which calls
for attention to the impact of prompts on zero-shot detectors. Code is available: https://github.com/kaito25atugich/Detector.
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1. Introduction
Recent years have seen significant advancements in the
development of Large Language Models (LLMs) [1, 2, 3],
and their practical applications have become widespread.
Meanwhile, their potential misuse have raised significant
concerns. In particular, the generation of fake news and
plagiarism using LLMs is a notable issue. Detectors that
evaluate whether a given text is human-generated or AI-
generated serve as a defense mechanism against such
misuse.

Detectors for AI-generated text can be broadly classi-
fied into three categories: a zero-shot detector leveraging
statistical properties [4, 5, 6, 7, 8, 9, 10, 11], a detector
employing supervised learning [12, 13, 14, 15], and a de-
tector utilizing watermarking [16, 17].

Zero-shot detectors, such as DetectGPT [5], which do
not require additional training, are designed in many
methods using likelihood-based scores. In other words,
the zero-shot detection is carried out by replicating the
likelihood at the generation phase. When using LLMs,
we usually input prompts and utilize the generated out-
put. However, at the detection phase, it is anticipated
that reproducing likelihood becomes challenging due
to the absence of the contextual information provided
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by prompts. It may potentially result in differences in
likelihood evaluations between the text generation and
detection stages. A summary of zero-shot detectors is
illustrated in Table 1.

In this paper, we assess towhat extent this phenomenon
affects likelihood-based zero-shot detectors. First, we pro-
pose two methods for detecting AI-generated text using
zero-shot detectors: white-box detection, which lever-
ages the prompts used to generate the text, and black-box
detection, which detects AI-generated text without rely-
ing on a prompt. Next, we conduct extensive experiments
and demonstrate a decrease in detection accuracy for ex-
isting zero-shot detectors in black-box detection.

Our results show a significant difference in the perfor-
mance of zero-shot detectors for AI-generated text with
and without prompts, highlighting the need to consider
the impact of prompts on these detectors.

These results further point out that likelihood-based
zero-shot detectors face challenges for practical use. Ad-
ditionally, the experimental results demonstrate that fast
zero-shot detectors are more robust compared to other
detectors due to their higher sampling rate.

2. Related work
In the context of intentionally undermining detection ac-
curacy using prompts, two main categories of studies can
be identified. The first category involves the deliberate
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Table 1
Summary of Zero-shot Detectors

Method Summary

Log-likelihood Detect using the log likelihood of the given text.

Rank
Calculate the likelihood of the given text and convert the likelihood of each
token into ranks based on the entire vocabulary, then use it to detect.

Log-Rank
Calculate the likelihood of the given text and transform the likelihood of each
token into ranks based on the entire vocabulary, then apply logarithm to these
ranks for detection.

Entropy Detect by calculating entropy using the likelihood of tokens in the vocabulary.

DetectGPT [5]
Using a masked language model, randomly replace words in the text. Observe
the likelihood of the replaced text and the original text using a scoring model,
and utilize the change to detect alterations.

FastDetectGPT [6]
Replace the mask model in DetectGPT with a auto-regressive model similar to
the scoring model. Sample words randomly from the vocabulary to replace words.
Calculate scores in the same manner as DetectGPT.

LRR [7] Detect using the ratio of log-likelihood to log-rank.

NPR [7]
Similar to DetectGPT, utilize logarithmic ranks rather than logarithmic
likelihood for scoring calculation.

Binoculars [8]
Utilize models trained with slightly different amounts of data and calculate the
perplexity of each model. Then leverage the difference in perplexity for detection.

crafting of prompts with malicious intent to deliberately
reduce detection accuracy. In contrast, the second cat-
egory encompasses research that employs tasks with
benign prompts, devoid of malicious intent.

2.1. Malicious prompts
First, we delve into studies that specifically concentrate
on the deliberate creation of malicious prompts.

In [19], Koike et al. proposed OUTFOX, utilizing in-
context learning with the problem statement 𝑃, human-
generated text 𝐻, and AI-generated text 𝐴. By construct-
ing prompts such as “𝑝𝑖 ∈ 𝑃 → ℎ𝑖 ∈ 𝐻 is the correct label
by humans, and 𝑝𝑖 ∈ 𝑃 → 𝑎𝑖 ∈ 𝐴 is the correct label
by AI,” they aim to generate text for a given problem
statement in such a way that the generated text aligns
with human-authored content. This approach makes the
detection of artificially generated content challenging.

Shi et al. conducted an attack on OpenAI’s Detec-
tor [22] by employing an Instructional Prompt, confirm-
ing a decrease in detection accuracy [18]. The Instruc-
tional Prompt involves adding a reference text 𝑋𝑟𝑒𝑓 and
an instructional text 𝑋𝑖𝑛𝑠 with characteristics that reduce
the detection accuracy to the original input 𝑋, thereby
undermining the detection accuracy.

In [20], Lu et al. proposed SICO, a method that low-
ers detection accuracy by instructing the model within
prompts to mimic the writing style of human-authored

text and updating the content of the instructions to re-
duce detection accuracy.

Kumarage et al. [21] proposed an attack named Soft
Prompt, which generates a vector using reinforcement
learning to induce misclassification by detectors. This
Soft Prompt vector is then used as input for DetectGPT
and RoBERTa-based detectors [12], demonstrating a de-
crease in detection accuracy [21].

2.2. Benign prompts
We review cases involving tasks with benign prompts.

Liu et al. conducted experiments using the CheckGPT
model, an approach based on supervised learning. Their
findings indicate that when using different prompts, al-
though all surpass 90%, there is an experimental demon-
stration of approximately a 7% decrease in detection ac-
curacy [15].

Dou et al. [14] performed experiments envisioning
the utilization of LLMs by students. In their study, they
demonstrated a decrease in DetectGPT’s detection accu-
racy when prompts were employed.

Hans et al. [8] pointed out the difficulty in reproduc-
ing likelihoods depending on the presence or absence of
prompts, using unique prompts like “Write about a capy-
bara astronomer.” In response to the capybara problem,
they proposed Binoculars.

We assume performing benign tasks such as summa-



rization. Therefore, unlike malicious prompt attacks,
there is no need to deliberately choose prompts that
would lower accuracy using the detector when construct-
ing prompts, nor is there a requirement to collect pairs
of data for in-context learning.

On the other hand, Dou et al. [14] experimentally
demonstrated unintended decreases in detection accu-
racy. However, they did not delve into why the accuracy
decreases or make references to other likelihood-based
zero-shot detectors. Additionally, Hans et al. [8] did not
provide specific verification regarding the impact of a
detector knowing or not knowing the prompt on detec-
tion accuracy. Therefore, the resilience of Binoculars
to changes in likelihood due to prompts has not been
adequately assessed. The supervised learning based ap-
proach [15] is excluded from our experiments in this
context.

In this study, we demonstrate that even in ordinary
tasks such as summarization, the presence or absence of
prompts unintentionally leads to a decrease in accuracy
when using likelihood-based zero-shot detectors.

3. Preliminary

3.1. Language model
Amodel that captures the probability of generatingwords
or sentences is referred to as a language model. Let 𝑉
represent the vocabulary. The language model for a word
sequence of length 𝑛, denoted as 𝑥1, 𝑥2, … , 𝑥𝑛 where 𝑥𝑖 ∈ 𝑉,
is defined by the following (1).

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) =
𝑛

∏
𝑡=1

𝑃(𝑥𝑡|𝑥1, … , 𝑥𝑡−1) (1)

3.2. Existing zero-shot detectors
We provide a brief introduction to existing zero-shot
detectors, summarized in Table 1. Here, 𝑃𝑇𝜃 refers to the
language model utilized for detection. The vocabulary 𝑉
is composed of 𝐶 tokens. The input text 𝑆 is composed
of 𝑁 tokens, represented as 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑁}, and the
token sequence from 𝑆1 to 𝑆𝑖−1 is denoted as 𝑆<𝑖.

3.2.1. Log-Likelihood

The log-likelihood is a method that utilizes the likelihood
of tokens composing a text for detection. The formula is
presented in (2). The log-likelihood is the average of the
log-likelihoods of tokens constituting a given text.

Log-likelihood = 1
𝑁 − 1

𝑁
∑
𝑖=2

log 𝑃𝑇𝜃(𝑆𝑖|𝑆<𝑖). (2)

3.2.2. Entropy

Entropy is a method that utilizes the entropy of the vocab-
ulary for detection. The formula is shown in (3). Entropy
is calculated using the likelihood of the vocabulary, tak-
ing the average across each context.

Entropy = −1
𝑁 − 1

𝑁
∑
𝑖=2

𝐶
∑
𝑗=1

𝑃𝑇𝜃(𝑗|𝑆<𝑖) log 𝑃𝑇𝜃(𝑗|𝑆<𝑖). (3)

3.2.3. Rank

Rank is a method that utilizes the order of likelihood
magnitude of tokens in the vocabulary when sorted. The
formula is presented in (4). Rank is the average position
of tokens constituting a given text. The function 𝑠𝑜𝑟 𝑡
is a function that sorts the given array in descending
order, and 𝑖𝑛𝑑𝑒𝑥 is a function that, given an array and an
element as input, returns the index of the element within
the given array.

rank = −1
𝑁 − 1

𝑁
∑
𝑖=2

𝑖𝑛𝑑𝑒𝑥(𝑠𝑜𝑟 𝑡(log 𝑃𝑇𝜃(𝑆𝑖|𝑆<𝑖)), 𝑆𝑖). (4)

3.2.4. DetectGPT

The language model aims to maximize likelihood during
text generation, whereas humans create text indepen-
dently of likelihood. DetectGPT focuses on this phe-
nomenon and posits a hypothesis that by rewriting cer-
tain words, the likelihood of the text decreases for AI-
generated content and can either increase or decrease for
human-generated content [5].

The overview of DetectGPT is presented in Figure
1. The replacement process is achieved by utilizing a
mask model 𝑃𝑀, such as T5 [24], on some of the words
contained in the given text 𝑆. This operation is repeated
for a total of 𝑘 iterations, and the average log-likelihood
of the obtained 𝑘 replacement texts is then computed. (5)
represents the score, calculating the difference between
the log-likelihood of the original text and the average
log-likelihood of the acquired replacement texts. It is
permissible to standardize by dividing by the standard
deviation of the log-likelihood of the replacement texts.
If the score is above the threshold 𝜀, it is deemed to be
AI-generated text.

DetectGPT =
log 𝑃𝑇𝜃(𝑆) − 𝑚̃

̃𝜎𝑆
(5)

where

𝑚̃ = 1
𝑘

𝑘
∑
𝑖=1

log 𝑃𝑇𝜃( ̃𝑆𝑖)

̃𝜎𝑆 =
1

𝑘 − 1

𝑘
∑
𝑖=1

(log 𝑃𝑇𝜃( ̃𝑆𝑖) − 𝑢̃)2
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Figure 1: DetectGPT Overview

and ̃𝑆𝑖 ∼ 𝑃𝑀(𝑆𝑖) represent the mean, sample variance, and
a sample from 𝑃𝑀(𝑆𝑖), respectively.

3.2.5. FastDetectGPT

In [6], Bao et al. highlighted challenges in DetectGPT’s
use of different models for substitution and score cal-
culation, as well as the cost-related aspect of requiring
model access for each substitution iteration. In response,
FastDetectGPT is a modified detector that reduces access
to the model, addressing the cost issue while enabling
substitutions. Although the methodology involves set-
ting hypotheses similar to DetectGPT, there is no funda-
mental change. It still operates on the assumption that
“AI-generated text is likely to be around the maximum
likelihood, whereas human-generated text is not.”

We present the overall architecture of FastDetectGPT
in Figure 2. In FastDetectGPT, the substitution process is
replaced with an alternative method that does not rely on
a mask model. Similar to the detection model, it utilizes
an autoregressive model, and 𝑃𝑇𝜃 and 𝑃𝑈𝜃 can be the same.
The substitution for the 𝑖-th word involves randomly
extracting a word from the next-word list, considering
the context up to the (𝑖 − 1)-th word in the input text,
and replacing the word with the chosen one. In other
words, performing this substitution 𝑁 times results in
the substituted text ̃𝑆, and by conducting sampling dur-
ing word selection, the replacement process generates 𝑘
substitution texts in a single access.

The subsequent score calculation is omitted as it fol-
lows the same procedure as DetectGPT.

3.2.6. LLR & NPR

LLR (Likelihood Log-Rank ratio) and NPR (Normalized
perturbed log rank) are classical log-rank enhancement
techniques proposed by Su et al. [7]. Both methods have
simple configurations. LLR literally takes the ratio of
log-likelihood to log-rank, as expressed in (6). Here, 𝑟𝜃
represents the rank when using 𝑃𝑇𝜃 .

𝐿𝑅𝑅 = −
∑𝑡

𝑖=1 log 𝑃𝑇𝜃(𝑆𝑖|𝑆<𝑖)

∑𝑡
𝑖=1 log 𝑟𝜃(𝑆𝑖|𝑆<𝑖)

(6)

On the other hand, NPR, like DetectGPT, performs the
substitution of words in the text 𝑘 times. It takes the ratio
of the average log-rank of the obtained substituted texts
to the log-rank of the original text. This is defined in (7).

𝑁𝑃𝑅 =
1
𝑘 ∑

𝑘
𝑝=1 log 𝑟𝜃( ̃𝑆𝑝)

log 𝑟𝜃(𝑆)
(7)

3.2.7. Binoculars

Hans et al. proposed Binoculars, a detection method
utilizing two closely related language models, Falcon-
7b [26] and Falcon-7b-instruct, by employing a metric
called cross-perplexity [8]. The overall framework is
illustrated in Figure 3.

Let the first model be denoted as 𝑀1 (such as Falcon-
7b), and the second model as𝑀2 (like Falcon-7b-instruct).
In this case, using 𝑀1, we calculate the log perplexity as
shown in (8).

log 𝑃𝑃𝐿𝑀1(𝑆) = − 1
𝑁

𝑁
∑
𝑖=1

log(𝑀1(𝑆𝑖|𝑆<𝑖)) (8)

Next, using𝑀1 and𝑀2, we calculate the cross-perplexity,
as shown in (9). Here, the symbol ⋅ represents the dot
product.

log𝑋-𝑃𝑃𝐿𝑀1,𝑀2(𝑆) =

− 1
𝑁

𝑁
∑
𝑖=1

𝐶
∑
𝑗=1

𝑀1(𝑗|𝑆<𝑖) ⋅ log(𝑀2(𝑗|𝑆<𝑖)) (9)

The score in Binoculars is determined by (10).

𝐵𝑀1,𝑀2(𝑆) =
log 𝑃𝑃𝐿𝑀1(𝑆)

log𝑋-𝑃𝑃𝐿𝑀1,𝑀2(𝑆)
(10)

4. Proposal
In this study, we propose a detection flow to investigate
the impact of prompts on likelihood. Before present-
ing the experimental setup, we introduce an additional
detection method.
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4.1. FastNPR
Word replacements in NPR are performed using a masked
model. In this research, aiming for cost reduction, we em-
ploy FastNPR, a method that replaces word replacements
with sampling, akin to FastDetectGPT.

4.2. Detection methods
We explain the detection methodology. Let 𝑥 represent
the text to be detected, and if 𝑥 is an AI-generated text, let
𝑝 denote the prompt used for its generation. Detection
can be categorized into two patterns: Black-box detection
and White-box detection. An overview is presented in
Figure 4.

Black-box detection occurs when the detector is un-
aware of prompt information, essentially mirroring exist-
ing detection methods. In this scenario, only the content
of 𝑥 is provided to the detector.

White-box detection, on the other hand, involves the
detector having knowledge of prompt information. For
human-generated text, only 𝑥 is input. In the case of
AI-generated text, the input consists of 𝑝 + 𝑥. It is impor-
tant to note that, in White-box detection, the prompt is
used solely for likelihood calculation and is not directly
included in the score computation.

5. Experiment

5.1. Configuration
To begin, we utilize the GPT2-XL [23] as the detection
model, excluding Binoculars. Due to GPU constraints,
Binoculars employs the pre-trained and instruct-tuned
Phi1.5 [27] instead of Falcon.

For DetectGPT and NPR, we generate five replacement
sentences for 10% of the entire text, while the Fast series
generates 10,000 replacement sentences. T5-Large [24]
is used for word replacement in DetectGPT and NPR,
while the Fast series employs the GPT2-XL, the same
detection model. Also, we use the XSum dataset [28].
For human-generated text, we extract 200 samples from
the XSum dataset, and for AI-generated text, we employ
the Llama2 7B Chat model [25], generating up to 200
tokens. The prompt used is “Would you summarize the
following sentences, please? text”.

5.2. Result
As evident from the results in Table 2, white-box detec-
tion exhibits higher accuracy, while black-box detection
shows lower accuracy. As anticipated, modifying likeli-
hood through prompts leads to a decrease in the detection
accuracy of likelihood-based detectors. Notably, there is
a consistent decrease of 0.1 or more across all methods,
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Table 2
Detection of Generated Summaries: Discrepancies Between
Cases with and Without Prompts

Method Black-box White-box
DetectGPT 0.453 1.000
FastDetectGPT 0.819 0.958
LRR 0.532 0.995
NPR 0.560 0.934
FastNPR 0.768 0.993
Entropy 0.330 0.978
Log-likelihood 0.474 0.998
Rank 0.432 0.977
Log-Rank 0.485 0.999
Binoculars 0.877 0.999

highlighting a significant observation.
Binoculars and the Fast series detectors demonstrate

robustness compared to other methods. In particular, the
Fast series detector maintains the same scoring calcu-
lation as conventional methods, suggesting robustness
factors in the sampling process. For further verification,
we conduct additional experiments.

In this experiment, we investigate the differences in
detection accuracy when varying the replacement ratio,
indicating the extent to which tokens in the text are re-
placed, and the sample size, representing the number
of replacement sentences. DetectGPT and NPR require
the use of a masked language model to replace plausible
tokens, making replacement not always feasible, espe-
cially for higher replacement percentages. Therefore, we
primarily vary the replacement ratio in the Fast series to
conduct the investigation.

The results for DetectGPT are presented in Table 3,
and the results for NPR are shown in Table 4. From these
results, it is evident that increasing the replacement ratio
and sample size helps mitigate the decrease in detection
accuracy. This observation is similar to Chakraborty et
al.’s assertion that increasing the sample size can enable
detection if the distribution slightly differs [29].

However, in our validation, the improvement in accu-
racy plateaus at around 10 samples, reaching a maximum
AUC of approximately 0.8, which is not considered high.

Particularly in recent years, there is a trend toward prac-
tical applications, emphasizing high true positive rates at
low false positive rates, suggesting that at least an AUC in
the late 0.9s would be necessary [30, 8]. Furthermore, the
lack of improvement in detection accuracy with Detect-
GPT and NPR may be attributed to the limited number
of substitutable tokens.

Table 3
Effect of Substitution Rate(SR) and Sample Size(SS) Variation
on AUC(DetectGPT)

Method SR SS AUC

FastDetectGPT 10% 5 0.640
FastDetectGPT 20% 5 0.697
FastDetectGPT 100% 5 0.779
FastDetectGPT 10% 10 0.704
FastDetectGPT 20% 10 0.739
FastDetectGPT 100% 10 0.821
FastDetectGPT 100% 10000 0.819
DetectGPT 10% 5 0.453
DetectGPT 20% 5 0.522
DetectGPT 30% 5 0.490
DetectGPT 10% 10 0.446
DetectGPT 30% 10 0.446

Table 4
Effect of Substitution Rate(SR) and Sample Size(SS) Variation
on AUC(NPR)

Method SR SS AUC

FastNPR 10% 5 0.628
FastNPR 20% 5 0.661
FastNPR 100% 5 0.747
FastNPR 10% 10 0.647
FastNPR 20% 10 0.715
FastNPR 100% 10 0.750
FastNPR 100% 10000 0.763
NPR 10% 5 0.560
NPR 20% 5 0.590
NPR 30% 5 0.577
NPR 10% 10 0.589
NPR 30% 10 0.588



6. Limitation and future work

6.1. Hypotheses for zero-shot detectors
While our investigation has focused solely on prompts,
similar phenomena could potentially be observed with
other factors. For instance, variations in Temperature or
Penalty Repetition between the generation and detection
stages might introduce differences in the selected tokens,
making detection challenging based on likelihood. Gen-
eralizing these observations, we hypothesize that any
act that fails to replicate the likelihood during language
generation could undermine the detection accuracy of
zero-shot detectors relying on likelihood from next-word
prediction.

6.2. Tasks
While our investigation has focused on summary text
generation, there are several other potential tasks to con-
sider, such as paraphrase generation, story generation,
and translation text generation. It is plausible that de-
tection accuracy could also decrease in these common
tasks. Since these tasks may be utilized without mali-
cious intent, it is crucial to conduct similar evaluations
for them.

6.3. Number of parameters
In this study, each detection method utilized a language
model of approximately 1 billion parameters. It would be
of interest to investigate whether increased robustness
can be observed when experimenting with larger lan-
guage models. Conversely, there are experimental stud-
ies that have demonstrated the ability of smaller language
models to achieve a higher likelihood for AI-generated
texts across a broader range of language models [31].
Considering these findings, conducting experiments with
smaller language models and verifying if there are differ-
ences in robustness could also provide valuable insights.

6.4. Relationship with supervised
learning detectors

Even when using supervised learning, it has been noted
that generated text from prompt-based tasks may exhibit
decreased detection accuracy [15]. However, there is a
possibility that these models could be more robust com-
pared to zero-shot detectors. For instance, RADAR [13]
achieved an AUC of 0.939 in the task used in this experi-
ment. In comparison, the RoBERTa-large detector [12]
had an AUC of 0.767. This suggests that robust detectors
against paraphrase attacks might demonstrate similarly
robust results in other tasks.

6.5. Relationship with watermarking
Watermarking techniques utilize statistical methods for
verification [16]. Since these methods are based on like-
lihood during both generation and verification, a fail-
ure to reproduce likelihood during the verification stage
may lead to a decrease in accuracy. On the other hand,
robust watermarking techniques against paraphrase at-
tacks have emerged [17]. These methods may exhibit
robustness against prompts as well.

6.6. Towards resilient zero-shot detectors
Currently, many methods perform likelihood-based de-
tection. Combining these methods with other sophis-
ticated techniques may lead to more robust detection.
One such approach is Intrinsic Dimension [11]. Intrin-
sic Dimension refers to the minimum dimension needed
to represent a given text. Tulchinskii et al. propose a
detector based on Persistent Homology to estimate the
Intrinsic Dimension and use it as a score. However, this
method requires a constant length of text and was not
applicable in our experiment. It would be interesting to
explore the application of this method in experiments
involving longer texts.

Approaches utilizing representations obtained with
masked language models, including Intrinsic Dimension,
calculate likelihood in a different way from the detectors
used in our experiment, which are based on autoregres-
sive language models. Combining these elements may
lead to the development of a more robust zero-shot de-
tector.

7. Conclusion
In this paper, we experimentally demonstrated a signifi-
cant gap in the detection of AI-generated text with and
without prompts for likelihood-based zero-shot detec-
tors. These findings call for attention to the impact of
prompts on enhancing zero-shot detectors in practical
applications.
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