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Abstract 
The ongoing war waged by russia against Ukraine has accelerated the development of advanced 
technologies, including self-propelled artillery systems with integrated software, drones for enemy 
identification, and the widespread use of Starlink for internet connectivity in areas with limited access. A 
significant challenge facing Ukraine is demining territories liberated from temporary occupation. Official 
estimates indicate that over 30% of these areas are contaminated with explosive remnants of war, with 2.6 
million hectares of agricultural land requiring urgent demining, severely disrupting the country's agrarian 
economy. Safely detecting, classifying, and neutralising these mines without risking human lives remains 
a pressing issue. Current detection methods rely on active sensors like ultra-wideband (UWB) radar. 
Although effective, these systems can inadvertently trigger mine explosions due to transmitted and 
reflected electromagnetic signals. In contrast, passive detection methods that do not activate detonating 
mechanisms offer a safer alternative. This research presents a sophisticated system for the passive detection 
and classification of mines using deep neural networks. Two models were developed: one with a single 
hidden layer and another with two hidden layers, achieving accuracies of 97.9% and 99.2%, respectively. 
The two-hidden-layer model demonstrated superior performance, surpassing a comparable k-NN heuristic 
algorithm by 1% in classification accuracy. Key advancements include reduced misclassifications, improved 
training efficiency, enhanced ROC curve performance, and an AUC exceeding 0.99, indicating exceptional 
efficacy in differentiating mine types. The F1 score of over 0.8 reflects the model's reliability, while loss 
metrics below 0.1 underscore the effectiveness of the training process. Recommendations for future work 
include developing datasets based on empirical data to enhance robustness and exploring parameter 
optimisation using more powerful hardware. 
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1. Introduction 

The detection of landmines remains a persistent and escalating global challenge, endangering 
millions of people due to the lethal threat posed by these explosive devices. In 2016, an average of 23 
individuals per day worldwide were killed or severely injured by landmines or other explosive 
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remnants of war. Currently, approximately 61 countries and territories remain contaminated by 
landmines, with thousands continuing to live under the daily threat of injury or death from these 
hidden dangers [1]. Traditional landmine detection and identification methods are no longer 
sufficiently reliable or efficient, necessitating the adoption of modern automated tools, such as neural 
networks. Developing a passive system for detecting and classifying landmines with high accuracy 
using neural networks and magnetic field sensors is an urgent priority. Russia's war against Ukraine 
has further accelerated the deployment of innovative technologies by Ukrainian forces, including: 

 Cyber Attacks. Ukraine swiftly migrated its digital infrastructure to the public cloud, hosted 
across European data centres. Through collaborations with international tech companies 
such as Cloudflare and Microsoft, Ukraine has bolstered the resilience of its encryption and 
systems. 

 Satellites. Approximately 25,000 Starlink terminals have been deployed, supporting military 
operations and Ukrainian civilians deprived of internet access. Other commercial space 
enterprises have contributed to Ukraine's military efforts through remote sensing and 
satellite communications. For instance, Ukrainian entrepreneur Serhiy Prytula facilitated the 
acquisition of a satellite and access to ICEYE's data repository. 

 Drones. Unmanned aerial vehicles (UAVs), including Bayraktar, Furia, and Valkyrie, are used 
for reconnaissance and strike missions. Civilian drones have also been widely repurposed for 
reconnaissance. 

 Artificial Intelligence (AI). Ukrainian AI firm Primer has adapted AI-powered speech 
transcription and translation services to process intercepted Russian communications, 
automatically highlighting intelligence on Ukrainian forces. AI-powered facial recognition 
technology from Clearview AI has also been employed to identify deceased Russian 
personnel through their social media profiles [2]. 

A critical issue for Ukraine is the demining of liberated territories formerly under occupation. 
The State Emergency Service of Ukraine reported via its official Telegram channel that 
approximately 175,000 square kilometres of territory remain potentially hazardous due to explosive 
remnants of war – equivalent to 30% of the country's total land area. Moreover, 2.6 million hectares 
of agricultural land require demining due to the Russian invasion, significantly threatening Ukraine's 
agricultural output. Landmines pose a substantial obstacle to Ukraine's post-conflict reconstruction. 
Even before the full-scale invasion, an estimated 1.8 million Ukrainians lived in mine-affected areas 
since 2014, according to the United Nations Office for the Coordination of Humanitarian Affairs in 
Ukraine [3]. 

The ongoing war has triggered a large-scale humanitarian crisis, including the widespread use of 
landmines and other explosive devices, resulting in the fastest-growing refugee population since 
World War II. Anti-personnel and anti-vehicle mines, along with unexploded ordnance in Ukraine, 
present a severe threat to millions of people. Clearing these mines will take years, hindering 
reconstruction efforts and endangering displaced persons returning to their homes. While large-scale 
demining is not feasible during the conflict, efforts are underway to coordinate support for Ukrainian 
authorities in identifying, locating, and removing explosive devices wherever possible [4]. 

Landmine detection uses various methods, many of which employ active sensors. However, active 
sensors may inadvertently trigger mine explosions because they rely on transmitted and reflected 
signals. Passive detection methods, which do not activate detonating mechanisms, offer a safer 
alternative. Nonetheless, passive detectors are typically less effective than their active counterparts. 
Studies indicate that machine learning algorithms can significantly enhance their performance. 

This project envisions the safe detection and neutralisation of landmines. The system is designed 
to disarm mines during military operations and clear mined areas after they are liberated. On a global 
scale, this system could be utilised to clear mine-contaminated areas resulting from past conflicts, 
including those dating back to World War II. The primary objective of this work is the efficient 
detection and classification of landmines using a neural network. The system will classify mines 



based on input data, which includes a vector of three values: voltage, height above ground, and soil 
type. The output will display the most likely mine type. 

The work aims to develop an optimal neural network structure for effectively recognising 
different types of mines depending on the soil structure. The system's main task is the classification 
of mines using a deep artificial neural network of direct propagation. The object of research is the 
process of classifying mines of different types located in soils with other structures. The research 
subject is the methods and means of creating a neural network system for classifying mines during 
the execution of a combat mission or demining by public protection services. In particular, the mine 
classification process is investigated using a forward propagation artificial neural network with one 
and two hidden layers. The task of the work is to develop an optimal neural network system of direct 
propagation for recognising different types of mines located in various soils, using data from 
magnetic field sensors. For the successful development of the system, the following sequence of tasks 
was formed: 

1. The first task involves the analysis of the current state and prospects in the field of detection 
and recognition of mines of various types by neural networks. It is necessary to analyse 
scientific publications that are freely available on the Internet and have similar functionality. 

2. The second task involves system analysis and modelling of the neural network system. The 
result is a formalised unified description of business processes, project requirements, risks, 
objects of information, material, resource flows and other project components. 

3. Project development involves formulation of the problem, construction of models to solve 
the problem, description of the methods used, selection of development tools, and direct 
development of the system. The result of the task is a fully or partially finished software 
product, which is supposed to solve the given problem. 

4. Project testing involves the analysis of execution results, their evaluation, variation and 
validation. Deployment consists of developing a documented description of actions related 
to installing the system and its operation. The result of the implementation is a neural 
network system that has undergone verification and validation. 

The innovative contribution of this research lies in developing a complete system that allows safe 
and accurate detection and classification of mines buried in the ground. The described approach 
involves detecting and recognising mines located in soils with different structures using magnetic 
field sensors and a deep neural network of direct propagation. 

2. Related works 

2.1. Analytical review of research and development in military technologies 
utilising artificial intelligence 

Mine detection and classification systems are software solutions integrated into sensors, robotics, 
drones, or vehicles. Landmine detection and classification systems are software solutions 
increasingly integrated into advanced technological solutions, including sensors, robotics, 
unmanned aerial vehicles (UAVs), and autonomous ground vehicles. A modern approach to 
landmine detection challenges incorporates machine learning techniques such as computer vision, 
classification algorithms, and deep learning. These methods significantly enhance detection accuracy 
by improving upon traditional technologies, which would otherwise be inadequate without 
sophisticated software integration. This review concludes with a comparative analysis of existing 
systems alongside our proposed solution, followed by critical conclusions drawn from this 
comparison. One of the significant advancements in this field is using unmanned aerial vehicles 
(UAVs) for landmine detection. Recent progress in UAV-based remote sensing, employing 
lightweight multispectral and thermal infrared sensors, has rapidly detected landmine contamination 
across large areas, facilitating efficient mapping and detection efforts. Researchers at Binghamton 
University have focused on developing and testing automated remote detection techniques for anti-



personnel mines, particularly in identifying scattered anti-personnel landmines. Their study 
highlights the severe and long-lasting humanitarian and economic threats posed by the remnants of 
scattered plastic mines, such as PFM-1, which continue to affect communities in post-conflict 
regions. The methodology employed by these researchers is particularly suited for detecting plastic 
landmines containing liquid explosives encased in non-metallic materials such as polyethene or 
plastic. The system leverages multispectral and thermal datasets collected via an automated UAV 
imaging system, with PFM-1-type landmines serving as test subjects. The research team sought to 
automate landmine detection using supervised learning algorithms, precisely the Faster Regional-
Convolutional Neural Network (Faster R-CNN). Their trials using RGB-visible light imaging 
combined with Faster R-CNN resulted in a detection accuracy of 99.3% for partially concealed 
landmines, while fully concealed landmines were detected with 71.5% accuracy. 

In several test scenarios, combining centimetre-scale georeferencing datasets with the Faster R-
CNN algorithm enabled the accurate autonomous detection of test PFM-1 landmines. The potential 
of this approach extends to humanitarian demining operations, with the capability to calibrate the 
method for detecting other types of scattered anti-personnel mines. It could be crucial in demining 
efforts in various post-conflict areas worldwide. The research collected field data under different 
environmental conditions to best model real-world scenarios. These conditions included sparse 
vegetation in Chenango Valley State Park, agricultural and pasture fields at Binghamton University, 
and snow-covered terrain after three inches of snowfall. The collected datasets are proxies for 
minefields under desert, farming, and winter conditions, respectively. While these environments 
may not perfectly replicate real minefields, they offer reliable spectral analogues, allowing for 
comprehensive testing of the detection system across various landscapes Data was collected using 
advanced sensor technology, including the FLIR Vue Pro thermal infrared sensor and the Parrot 
Sequoia multispectral sensor, mounted on a DJI Matrice 600 Pro UAV platform. Ground control 
points (GCPs) were strategically placed at grid intersections, and precise geospatial data was 
gathered using the Trimble Geo 7x handheld global navigation satellite system (GNSS). The UAV 
executed flight missions over simulated minefields, each containing 28–30 PFM-1 landmines 
scattered randomly within the grid to simulate real-world conditions. Multiple flight paths ensured 
the collection of extensive datasets later used for training and testing the CNN model. The 
convolutional neural network (CNN) employed for mine detection processed data with an average 
time of 1.87 seconds to detect PFM-1 landmines within a 10 × 20 m minefield. Scaling this to larger 
areas, the system could scan one square kilometre in approximately two hours and 36 minutes, 
achieving an overall mine detection accuracy of 71.5%. Each UAV flight covered a 10 × 20 m area in 
3 minutes and 30 seconds. While the system demonstrated promising results, particularly with 
partially concealed landmines, the researchers acknowledged the need for further improvements to 
enhance detection accuracy for fully concealed mines. Detailed results of their findings are presented 
in Table 1 [5]. 

Table 1 
Detailed Research Results 

Training  
Sample 

Training 
Time 

Test Data Test  
Time 

Average Accuracy  

PFM-
1 

KSF-
Casing 

Both 
Mines 

Six flights, grass & 
rubble (Fall 2019) 

37 One flight rubble 
(Fall 2017) 

1.87 0.7030 0.7273 0.7152 

Random 70% of 7 total 
flights 

29 Random 30% of 7 
total flights 

5.47 0.9983 0.9879 0.9931 

 
In the study [6], an experiment was carried out to generate data for passive mine detection and 

classify mines based on their magnetic field anomaly characteristics, soil depth, and soil type. This 
approach was designed to identify the specific type of mine by analysing variations in magnetic 



anomalies. The method relies on three independent variables (input parameters): the type of soil 
(<G>) in which the mine is buried, the height of the detector above the ground (<H>), and the 
magnitude of the magnetic anomaly (<V>). A ferroprobe sensor was utilised to measure these 
magnetic anomalies. The detection process begins by determining whether the buried object is a 
mine. If a mine is identified, its type is then classified based on analysing the magnetic anomaly 
caused by the buried object. The classification considers the soil type and the distance between the 
sensor and the ground. Advanced machine learning algorithms are employed to classify the type of 
mine, where the mine type (<Mtype>) is expressed as a function of the three independent variables: 
Mtype = f (V, H, S). The study further analysed the relationship between magnetic field anomalies and 
various environmental factors, including soil type (Figure 1) and depth (Figure 2), identifying specific 
magnetic anomalies associated with different mine types (Figure 3) [6]. This detailed analysis 
enhances the precision of mine classification and provides valuable insights into how magnetic field 
anomalies vary depending on the surrounding environmental conditions. 

 

Figure 1: Magnetic field anomaly values relative to soil type for each mine type [6] 

 

Figure 2: Magnetic field anomaly values relative to depth for each mine type [6] 



 

Figure 3: Graphs of the training dataset: a – Absence of a mine, b – Anti-tank mine, c – Anti-
personnel mine, d – Booby trap mine, e – M14 mine, where x – sensor position (cm) and y – anomaly 
voltage (V) [6] 



Having established the dataset, the researchers developed several machine learning algorithms, 
including models based on artificial neural networks (ANN) and k-nearest neighbours (k-NN), to 
address the problem of mine detection and classification. After conducting a series of experiments, 
they determined that the heuristic k-NN algorithm, enhanced with fuzzy metrics, was the most 
effective among the developed models. This approach achieved a mine detection efficiency of 98.2%, 
outperforming the other models. In contrast, the artificial neural network-based model demonstrated 
an average success rate of 95.6%, with an error rate of 4.4% [6]. 

2.2. Comparison of existing products 

The "Landmine Detection Robot" is an advanced robotic system designed to identify landmines using 
integrated sensors and relay GPS coordinates of detected mines to a server, where an updated 
minefield map is maintained. Deploying multiple robots for mine detection enhances the 
identification of safe paths, a process conducted entirely autonomously without human involvement. 
The developers highlight that conventional mine clearance methods, such as manual tools, human-
operated metal detectors, or machinery, are labour-intensive, costly, time-consuming, and pose 
substantial risks to personnel and equipment. The project aims to provide more efficient and 
sophisticated solutions for detecting, locating, and neutralising landmines, improving safety in 
affected areas. The system comprises three primary components: a web application, a robot, and a 
web server. The web application, deployed using Amplify Serverless methods, serves as a user access 
point within a designated user group. Upon logging in, users can access the main control page for 
managing a specific robot or the administrator page if they belong to an authorised user group. The 
robot's control page displays input data, control parameters, and a graphical representation of the 
search area's map, enabling comprehensive management of the mine detection process. 

The robot is responsible for landmine detection, autonomous navigation, and data transmission 
at the project's core. The robot receives GPS coordinates from the server, stores search zone data and 
passively detects anti-personnel mines while navigating the search area. As it identifies mines, it 
updates the stored data and sends real-time information to the server, ensuring that the map and 
relevant data remain current. 

Web servers facilitate communication between the hardware and users, handling tasks such as 
data storage, parameter calculations, and input/output operations. The initial data, entered by users 
through the interface, include GPS coordinates and the search area boundaries, which are sent to the 
servers for processing. Once the server's cloud functions are triggered, they calculate the search 
area's boundaries and parameters, which are then transmitted to the robot. These values are stored 
on the server and provided to the robot over a network connection. 

Upon receiving the search parameters, the robot creates a data structure to track its path, detect 
mine locations, and determine the boundaries of the search area. It first retains this data locally and 
then periodically sends updates to the server via HTTP requests. These updates are stored on the 
server and accessible to the web application. As the data is processed, a virtual map displaying the 
mine locations and search progress is rendered in the user interface, providing users with visual and 
informative real-time data (Figure 4). This system architecture allows users to remotely monitor and 
control the mine detection process, facilitating more efficient and safer mine clearance operations 
[7]. The software developed for this project incorporates a diverse array of advanced tools and 
technologies: 

 Python is the primary programming language for developing machine learning models, data 
preprocessing, and implementing auxiliary algorithms and methodologies. 

 MATLAB is employed for comprehensive data analysis and signal processing throughout the 
project. 

 C++ is utilised to establish hardware interfaces and manage the operation of the mine 
detection system. 

 HTML/CSS/JavaScript is used to build the project's web-based user interface. 



 

Figure 4: Data Flow in the Landmine Detector Project 

The HOMARD project represents a cutting-edge research initiative to create an advanced system 
for detecting anti-personnel mines. This system integrates state-of-the-art robotics with 
sophisticated machine learning techniques, leveraging a combination of ground-penetrating radar 
sensors and advanced algorithms to detect landmines and other buried objects.  

Within the HOMARD framework, various programming languages and tools are employed to 
address different aspects of the system. Machine learning algorithms are primarily implemented in 
Python, utilising well-known libraries such as TensorFlow and Keras. The robot control software 
and data collection system are developed through C++ and Python, ensuring efficient hardware-
software integration. 

To enhance detection accuracy, researchers in the HOMARD project have experimented with 
various machine learning models, including Convolutional Neural Networks (CNNs) and Support 
Vector Machines (SVMs). While specific data on the operational performance and accuracy of these 
models has not yet been publicly released, the system is described by its developers as "promising," 
with expectations of significant contributions to mine detection technologies [8].  

Table 2 
Comparative Analysis of the Developed Mine Detection and Classification System 

Characteristics Projects 

Developed 
System 

HOMARD Landmine 
Detector 

Faster R-
CNN 

Hybrid 
model 

Functionality Average Average High Low Low 
Usability Average Average High Average Low 

Reliability High - High Average Average 
Performance Average - High High Average 

Utilises Python Yes Yes Yes - - 
Utilises C++ No Yes Yes - - 

Employs Cloud 
Technologies 

Yes - Yes No No 

Integrates Robots or 
Drones (UAVs) 

No Yes Yes Yes No 

Accuracy of the Machine 
Learning Model 

99.2% - - 98.2% 99.3% 



This section provides an analysis of research from publicly available sources, as well as 
commercial projects. Several systems have been identified that use machine learning tools to detect 
mines. Among them are both commercial projects and research for creating such projects. As a result 
of the analysis, a table was formed, according to which it is possible to highlight the following trends 
in the creation and research of mine detection systems [9-12]:  

 use of neural networks for accurate detection of mines such as convolutional, fully connected 
and their modifications; 

 machine learning algorithms use data from sensors mounted on drones or robots to increase 
mine detection safety; 

 systems additionally use a remote server for data collection, which has a positive effect on 
the speed of data processing; 

 typical means of implementing machine learning algorithms are the Python and C++ 
programming languages. 

3. Methods and means selection 

3.1. Analysis of system functionality goals 

The primary goal of the developed system is the high-precision detection and classification of 
landmines. A neural network model will be employed to achieve this, with continuous improvements 
driven by training on large datasets [12-18]. The system will offer remote access through a graphical 
user interface (GUI) and integrated sensors. Additionally, the system must be hosted on a cloud 
service to optimise performance. Objectives: 

 Objective 1 is to ensure High Detection Accuracy of Mines. The system must achieve a high 
classification accuracy, measured by the Accuracy metric for the neural network model. It 
will be accomplished by designing and training a robust model with extensive and diverse 
datasets. 

 Objective 2 is to provide a Remote User Interface. The system should allow users to interact 
with the software remotely without requiring direct sensor connections. Users will input data 
via the interface to receive classification results, ensuring ease of use and flexibility. 

 Objective 3 is to develop a Graphical User Interface. The GUI will bridge the software and 
the sensors, displaying critical data in a user-friendly format, including changes in magnetic 
field anomalies and proximity to buried objects. 

 Objective 4 is to facilitate Data Addition and Updating. Continuous improvement of the 
neural network model requires automatically expanding and updating the dataset. The 
software must support remote access to a cloud service for storing and managing classified 
data. 

 Objective 5 is to Enable Interaction with the Neural Network Model. A user-friendly interface 
is necessary for interacting with the neural network, allowing users to train the model from 
scratch, continue its training, create network copies, and save modifications. These features 
will empower users to enhance the model's capabilities over time. 

 Objective 6 is to Ensure Data and Model Security is paramount for the integrity of the dataset 
and the model. The system must implement robust usage restrictions, preventing 
unauthorised alterations to the neural network's architecture or the stored data. 

The following risks must be anticipated: 

 False Classification of Mines. The neural network may incorrectly classify objects as mines or 
non-mines, impacting the system's reliability. 



 Loss of Connection to the Remote Server. Operators working in areas with limited connectivity 
may experience difficulty accessing the remote server. In such cases, it is recommended that 
sensors with local storage capabilities be employed. 

 Non-Operational Remote Server. Server failure could disrupt system functionality. To mitigate 
this risk, the software should be hosted on multiple servers from different providers. 

 Interference with Database and System Code. Data integrity may be compromised due to 
malicious actions or transmission errors. Safeguards must be implemented to protect against 
unauthorised access and system corruption. 

As a result of identifying the system's objectives and risks, a detailed set of requirements has been 
established, summarised in Table 3 [18-27]. 

Table 3 
Formation of Requirements 

Type of 
Requirement 

Business 
Requirements 

User 
Requirements 

Functional 
Requirements 

Non-Functional 
Requirements 

Purpose They define the 
tasks and 

actions of users 
that the startup 

will support 

They define the 
objectives of the 
business structure 
that the startup 
will achieve and 
the problems it 
will solve. 

Description of 
what the system 
being developed 
in the innovative 
startup should do 

Description of how 
the system being 
developed in the 
innovative startup 
should operate to 
perform its 
functions. 

Content of 
the 

Requirement 

Soldiers will 
have the ability 

to effectively 
and safely 

detect 
landmines. 

Project 
boundaries: 
mined areas 
worldwide. 

Effects: timely, 
secure, high-

precision. 

Users of the 
system are 
individuals who 
neutralise 
explosive devices. 
The system 
enables users to 
perform detection 
and classification 
tasks for 
landmines. 
The effect of task 
execution is 
providing a safer 
area post-
demining 
compared to 
conventional 
methods. 

The system can 
detect and 
classify 
landmines 
remotely and 
using sensors 
with specialised 
software. 

Anyone can use the 
system. For 
successful 
classification, users 
must input specific 
data at given 
intervals. The 
system's quality 
attributes are 
accuracy, speed, and 
safety. 

 

3.2. Modelling System Requirements 

The modelling of requirements for the passive detection and classification system for landmines will 
be conducted using a use case diagram. Based on the defined objectives for system development, 
three primary actors have been identified: the soldier, the application, and the developer. The soldier 
is the leading actor in the system. The outcome of the requirement modelling process is creating a 
use case diagram that reflects both functional and non-functional requirements, as well as the 
interactions between the actors and the system. As an actor in the system, the soldier seeks to obtain 



information regarding the presence of a landmine in a specific area of land. The prerequisites for this 
use case include successfully installing the software on the sensor, remote access to the user 
interface, the sensors' operational status, and network access [27-34]. If the software is connected 
remotely, the reliability of the cloud service is also required. 

The use case diagram (Figure 5) illustrates the following critical actions of the soldier: 

 Connect to the remote server. 
 Input data from the sensor into the remote server. 
 Receive classification results. 

 

Figure 5: Use case diagram for the Soldier actor 

 

Figure 6: Use Case Diagram for the Application Actor 

The soldier will receive a definitive result regarding the type of mine if the remote interface is 
utilised. Suppose the user employs a sensor already connected to the software. In that case, additional 
information will be displayed, including the distance to the ground surface and a graph depicting the 
changes in depth readings and magnetic field anomalies. 

The software in the developed system will perform specific actions autonomously. Therefore, 
creating an actor that reflects this functionality, namely the Application, is appropriate. This actor 
represents the back-end component of the project, which will be hosted on a cloud service. The 



prerequisites for this use case include the successful deployment of the project and the database on 
the cloud service. The diagram (Figure 6) illustrates the following main tasks of the Application: 

 Data storage involves receiving and storing data that has been successfully classified in real-
time. 

 Mine classification occurs when a request is made by the soldier remotely. 
 Data submission to the database. 
 It updates the neural network model if installed on the local device. 

The software, as well as the neural network model, requires technical support following 
successful deployment. In this case, the actor of the Programmer is necessary (Figure 7). The model 
should not be updated automatically, as this could decrease accuracy, necessitating a rollback to a 
previous version. The responsibilities of the Programmer include analysing the obtained data, 
training and retraining the neural network, updating the software, and interacting with the cloud 
service. 

 

Figure 7: Use Case Diagram for the Programmer Actor 

3.3. Modelling system objects 

The modelling of system objects will be executed through the utilisation of class diagrams (Figure 
8). Most of the described methods align with the use case diagram while incorporating methods for 
intermediate calculations. In addition to the previously identified actors, supplementary classes such 
as Interface, Dataset, and Data will be introduced to augment functionality. The relationships 
between these classes are delineated as follows: 

 Soldier-Interface: an association link, signifying that the soldier employs the interface to 
classify mines; 

 Application-Interface: an association link illustrating that the application for its operational 
functionality leverages the interface; 

 Application-Dataset: a composition link of one-to-one, indicating that the dataset constitutes 
an integral component of the application; 

 Dataset-Data: an aggregation link of one-to-many, demonstrating that data is an essential 
part of a singular dataset; 

 Application-Programmer: an association link, as the programmer influences and possesses 
the capability to modify the application. 

The soldier class represents the corresponding actor from the use case diagram. It includes 
attributes such as an identifier and a name, which are essential for storing the user in the database. 
The class also implements all use case scenarios and additional intermediary functions such as 



retrieving distance, obtaining the mine classification, and generating graphs. A more detailed 
description of the methods and attributes can be found in Table 4. 

The Class Interface is essential for establishing interaction between the soldier and the 
application. This class lacks attributes; however, it encompasses functions such as displaying 
analysis results, receiving input data, and visualising the type of mine, distance, and changing 
indicator graphs. A more detailed description of the methods and attributes is provided in Table 5. 

 

Figure 8: Class Diagram 

Table 4 
Description of the Soldier Class Objects 

Classes of Objects Class Attributes Class Methods 
Class 
Name 

Purpose of 
the Class 

Attribute 
Name 

Attribute 
Content 

Method Name Action Content 

Soldier The main 
actor of the 

system 

id Identifiers it 
in the 

database 

get_analysis 
_info 

Receive classification 
and additional 
information about the 
ground 

  name Soldier's full 
name 

get_distance Display the distance 
from the sensor to the 
ground 

    get_mine_type Display mine type 
    get_graph Display distance and 

anomaly changes as a 
curve 

    input_data Enter required data for 
further classification. 

    establish 
_connection 

Establish a connection 
with a remote server 

 
The Application Class represents the corresponding actor within the system. It encompasses 

attributes such as an identifier, name, and code for its storage in the database. The application 
implements various methods, including conducting data analysis, classifying mines, calculating the 



distance from the sensor to the surface, retrieving input data, storing data, and updating software on 
the local device. A more detailed description of the methods and attributes can be found in Table 6. 

Table 5 
Description of the Interface Class Objects 

Object Classes Class Attributes Class Methods 

Class 
Name 

Class  
Purpose 

Attribute 
Name 

Attribute 
Content 

Method Name Action Content 

Interface API 
between  
Soldier  

and  
Application 

  display_analysis 
_info 

Display all 
information after 
successful 
classification 

   get_information Receive input data 
from soldiers. 

    display_mine_type Display mine type 
    display_graph Display distance and 

anomaly changes as a 
curve 

    display_distance Display the distance 
from the sensor to the 
ground. 

Table 6 
Description of the Application Class Objects 

Object Classes Class Attributes Class Methods 

Class 
Name 

Class  
Purpose 

Attribute 
Name 

Attribute 
Content 

Method  
Name 

Action Content 

Application Responsible  
for access to  

neural  
network  

model and  
manipulation  

of data 

id Identifies  
objects  
in the  

database 

analyse_ 
ground 

Perform analysis of 
the ground, start the 
classification process 

 name Application  
name 

classify_ 
mine 

Perform mine 
classification based on 
input data 

  code Unique 
application code 

within the 
system 

calculate_ 
distance 

Calculate the distance 
between the sensor 
and the ground 

   get_data Receive input data 
   save_data Save data to the 

database. 
    update_ 

software 
Update software in 
the local sensor 

 
The Dataset class represents a data collection essential for training the neural network model. Its 

primary purpose is to facilitate data manipulation. As such, the class does not possess any attributes; 
however, it includes the following functions: save object, delete object, and retrieve object. A more 
detailed description of the methods and attributes can be found in Table 7. The Data class represents 
information about the mines with which the neural network model directly interacts. While the class 
does not include any methods, it encompasses the following attributes: identifier, voltage, distance, 
soil type, and mine type. A more detailed description of the methods and attributes can be found in 



Table 8. The Programmer class is responsible for representing the corresponding actor in the system. 
This class includes the following attributes: identifier and name. Additionally, it contains the 
following methods: retrieve application data, update the neural network model, and update the 
software. A more detailed description of the methods and attributes can be found in Table 9. 

Table 7 
Description of the Dataset Class Objects 

Object Classes Class Attributes Class Methods 

Class  
Name 

Class  
Purpose  

Attribute 
Name 

Attribute 
Content 

Method  
Name 

Action Content 

Dataset Responsible  
for manipulation  
of data needed 

for neural  
network model 

  save_ 
object 

Save the object to the 
database. 

   delete_ 
object 

Delete the object from 
the database. 

   get_ 
object 

Get an object from the 
database. 

Table 8 
Frequency of Special Characters 

Object Classes Class Attributes Class Methods 

Class  
Name 

Class  
Purpose 

Attribute 
Name 

Attribute Content Method 
Name 

Action 
Content 

Dataset Responsible  
for  

manipulation  
of data  

needed for  
neural  

network  
model 

id Identifies objects in the 
database 

  

 ground_ 
type 

Represents one of the ground 
types 

  

 voltage Display magnetic anomaly   
 heigh Displays the distance 

between a ground and a 
sensor 

  

 mine_ 
type 

Represents correct mine type 
for an object 

  

Table 9 
Description of the Programmer Class Objects 

Object Classes Class Attributes Class Methods 

Class  
Name 

Class  
Purpose 

Attribute 
Name 

Attribute 
Content 

Method 
Name 

Action Content 

Program-
mer 

Responsible  
for  

updating 
neural  

network  
and  

application 

id Identifies objects 
in the database 

receive_data Get data from the 
database and get 
code from the remote 
system 

 name Represents the 
name of the 
programmer 

update_ 
neural_ 
network 

Update neural 
network model after 
additional training 

  update_ 
application 

Update application 

 



3.4. Modelling system processes 

The modelling of system processes will be conducted using activity and sequence diagrams. These 
diagrams will illustrate the primary successful scenario of how the user interacts with the software 
product. The successful scenario represented in the activity diagram (Figure 9) comprises the 
following sequence of steps: 

 

Figure 9: Activity Diagram 

1. Activating the Sensor 
2. Awaiting User Input 
3. If the application remains active, soil analysis is conducted. Otherwise, the application 

terminates, and the user exits. 
4. Concurrently, the system displays a graph illustrating variations in the magnetic field and 

the distance to obstacles. 
5. Mine Classification 
6. If a mine is detected, the data is stored in the application, and the program returns to step 2. 

If no mine is present, the program continues to operate from step 2. 

The successful scenario illustrated in the sequence diagram (Figure 10) encompasses the following 
sequence of steps: 

1.  Conducting Soil Analysis 
2.  Displaying the Magnetic Field Variation Graph 



3.  Calculating the Distance to Obstacles 
4.  Classifying the Mine 
5.  Presenting the Classification Results 
6.  Storing Classification Data 
7.  Displaying the Soil Analysis Results 

 

Figure 10: Sequence Diagram 

 

Figure 11: Component Diagram 

The component diagram (Figure 11) illustrates two primary components: the software and the 
cloud service. The software encompasses elements such as the soil analysis service and the neural 



network for mine classification. Access to the service is facilitated through a user interface and 
sensor integration, while interaction with the neural network occurs via an API. The cloud service 
operates independently of the software and is designed for remote data storage. Access to the service 
is conducted through console commands. 

The operational objectives of the system have been meticulously articulated, encompassing the 
identification of principal users and a comprehensive delineation of functional goals. The 
requirements have been systematically formulated and modelled using a use case diagram. Object 
modelling has been executed via class diagrams, which offer an in-depth exposition of the class 
structures. Furthermore, the modelling of system processes has been successfully carried out, with a 
particular emphasis on the primary successful use case scenario, employing both activity and 
sequence diagrams. 

This section describes the purpose of the system's operation, the primary users, and the 
operation's objectives in detail. The requirements were formulated and modelled using a usage 
diagram. Object modelling was done using a class diagram and described in detail using class 
diagrams. Successfully modelled system processes, namely the main successful use case, using 
activity and sequence diagrams. 

4. Development of the project solution 

4.1. Problem formulation and justification 

The primary objective of this research is to devise a comprehensive conceptual framework for a 
software system aimed at the passive detection and classification of landmines. The system's core 
functionality categorises landmines by applying a deep artificial neural network, which delineates 
classifications into five distinct categories.  

The focus of this investigation is the classification process itself. The subject matter encompasses 
the methodologies and tools utilised in developing a landmine classification system, particularly 
within combat operations or demining efforts conducted by civil defence agencies. Specifically, this 
study explores the classification process by implementing a deep artificial neural network featuring 
configurations of one and two hidden layers and convolutional neural networks. Before the 
classification process, it is essential to address the challenge of generating additional values within 
the dataset, given that the current sample size is limited to 45 (representing the magnetic anomaly 
values at depths ranging from 26 to 34 centimetres for the "Dry and Humus" soil type associated with 
each of the five mine classifications). However, neural networks require training datasets that 
encompass several thousand instances. To tackle this subproblem effectively, the proposed approach 
employs a normal distribution function to facilitate data augmentation. 

4.2. 3.2. Model construction for problem resolution 

To illustrate the advantages of a deep neural network architecture, an alternative neural network 
with a single hidden layer has also been developed [33-35]. This model consists of an input layer 
comprising three nodes, followed by a first hidden layer containing seven nodes that utilise the ReLU 
activation function. The output layer consists of five nodes that employ the Softmax activation 
function. The Adam optimiser has been used with categorical cross-entropy as the loss function, 
while accuracy is the principal performance metric (Figure 12). The output of this neural network is 
quantitatively expressed by the relationship delineated in equation (1). 

𝑦 = 𝑓௦௧௫(∑ 𝑤𝑓௨

ୀଵ (∑ 𝑤𝑥

ଷ
ୀଵ )),   𝑖 ∈ {1; 5}തതതതതത, (1) 

where 𝑦 – represents the element of the output vector of probabilities corresponding to the 
association of the object with each class of mines, while 𝑓௦௧௫ – denotes the Softmax activation 
function, 𝑤  – refers to an element of the weight matrix between the first and second hidden layers 
and 𝑤 – represents an element of the weight matrix connecting the input layer to the first hidden 



layer. Additionally, 𝑥 – signifies an aspect of the input feature vector associated with the mine [33-
35]. 

 

Figure 12: Architecture of the Neural Network Featuring a Single Hidden Layer 

 

Figure 13: Architecture of the Neural Network with Two Hidden Layers 

The neural network architecture with two hidden layers features an input layer size of 3, with 
the first layer comprising seven neurons and employing the ReLU activation function. The second 
hidden layer possesses identical characteristics to the first, while the output layer consists of 5 
neurons utilising the Softmax activation function. The Adam optimiser is employed, with categorical 
cross-entropy as the loss function, and accuracy is utilised as the performance metric (Figure 13). 
The output of this neural network will be described by the equation (2). 

𝑦 = 𝑓௦௧௫ ൬∑ 𝑤

ୀଵ 𝑓௨ ቀ∑ 𝑤𝑓௨


ୀଵ ൫∑ 𝑤𝑥

ଷ
ୀଵ ൯ቁ൰, 𝑖 ∈ {1; 5}തതതതതത,    (2) 

where 𝑦 – represents an element of the output probability vector, indicating the relationship of 
the object to each class of mines; 𝑓௦௧௫ – denotes the Softmax activation function; 𝑓௨ – refers to 
the ReLU activation function; 𝑤  – is an element of the weight matrix connecting the second hidden 
layer to the output layer; 𝑤 – represents an element of the weight matrix between the first and 
second hidden layers;  𝑤 – is an aspect of the weight matrix linking the input layer to the first 



hidden layer; 𝑥 – signifies an aspect of the input vector representing the characteristics of the mine 
[33-35]. 

4.3. Selection and justification of problem-solving methods 

In alignment with the established objectives, ensuring high accuracy in mine detection is imperative. 
The primary challenge to be addressed is classification. In machine learning, classification pertains 
to training a model to categorise or classify input data into predefined classes or categories. It 
involves learning the decision boundary or mapping function that correlates the input features to 
the corresponding output labels. The goal is to accurately predict the class of unseen instances based 
on the patterns and relationships derived from the training data [36]. Several classification models 
are discussed below. 

 Logistic Regression is a simple and widely utilised classifier that models the probability of 
membership in a specific class based on input features. It estimates coefficients for each 
feature and applies a logistic function for prediction. Logistic Regression is typically 
employed for binary classification tasks or scenarios where the outcome variable is 
categorical. 

 Bayes Classifier is grounded in Bayes' theorem, operating under the assumption of 
independence among features. It computes the posterior probability for each class and selects 
the class with the highest probability. The Bayes classifier is often applied in text 
classification, spam filtering, and other high-dimensional data tasks. 

 Decision Tree models construct a tree-like structure by recursively partitioning data based 
on feature values. Each internal node represents a feature test, while each leaf node 
corresponds to a class label. Decision trees are beneficial for classification and regression 
tasks and are recognised for their interpretability and ability to handle numerical and 
categorical data. 

 The Random Forest method integrates multiple decision trees. Each tree is trained on a 
random subset of the data, and the final prediction is determined by majority voting or 
averaging the predictions from individual trees. Random forests are robust and efficient for 
classification and Regression, often employed in tasks with complex datasets. 

 The Support Vector Machine (SVM) Classifier identifies the optimal hyperplane that 
separates classes by maximising the margin between them. It maps data into a higher-
dimensional space to find a linear or nonlinear decision boundary. SVMs are commonly 
utilised for binary classification tasks but can be extended to multiclass problems. They are 
effective in high-dimensional spaces and can handle linear and nonlinear relationships. 

 Neural Network models are structurally and functionally akin to biological neurons. 
Comprising interconnected layers of artificial neurons, neural networks learn from data 
through forward and backward signal propagation. They excel in tasks involving large 
datasets, complex patterns, and nonlinear relationships, finding widespread applications in 
image classification, natural language processing, and various other fields [37]. 

At this juncture, the objective of providing a graphical user interface will not be implemented, as 
it entails the development of a user sensor capable of detecting anomalies in the Earth's magnetic 
field. Functions stipulated by other objectives may be realised within the back-end portion of the 
system using cloud services.  

4.4. Development of problem-solving algorithms 

The generation based on the normal distribution entails the application of the standard distribution 
formula [38] and the generation of pseudorandom values [39]. 



𝑝(𝑉) =
ଵ

ඥଶగఙమ
𝑒

ି
(ೇషഋ)మ

మమ , 
(3) 

𝑉
∗ = 𝑟𝑎𝑛𝑑(𝑉 , 𝜎з), (4) 

where 𝑉 – represents the magnetic field anomaly value at a depth 𝐻  and soil type 𝑆; 𝑉
∗ – denotes 

the new magnetic field anomaly value at a depth 𝐻 and soil type 𝑆; 𝑟𝑎𝑛𝑑(𝑉 , 𝜎з) is a function that 
generates pseudorandom values based on the normal distribution function, where µ – is the 
arithmetic mean and σ is the standard deviation [39]. 

Consequently, the new values will be generated closer to those in the training dataset, 
approximating the arithmetic mean and considering the standard deviation of the Earth's magnetic 
field anomaly. The standard deviation is computed as follows: 

𝜎з = 𝑎𝑣𝑔(𝜎), 𝑖 ∈ {1; 15}തതതതതതതത, (5) 

where 𝜎з – represents the standard deviation of the Earth's magnetic field anomaly; 𝜎 – denotes 
the standard deviation of the magnetic field anomaly at a depth 𝐻 . 

The index і – takes values from 1 to 15, as the study [6] indicated that this range corresponds to 
the distances at which the intensity of the magnetic anomaly of the mine is not detected. 

The next phase involves data preparation. The following steps have been established for data 
preparation: 

1. Normalise magnetic field anomaly data based on the mean value and standard deviation [40]. 

𝑉′ =
ି𝑉ഥ

ఙೡ
, (6) 

where 𝑉′ denotes the normalised value of the anomaly; 𝑉 represents the initial value of the 
anomaly; 𝑉ത  signifies the mean value of the anomaly; 𝜎௩ indicates the standard deviation of the 
anomaly. 

2. Additionally, encoding is applied to the soil type values, as these data are recorded as 
categorical variables. 

The primary challenge to address is the classification of mines using a deep neural network. A 
classifier functions to establish a correspondence for each pair of object characteristics and their 
respective classes. In this study, the characteristics of the object (the mine) are represented by a 
vector comprising three values <V, H, S>, corresponding to the magnetic field anomaly value of the 
mine and the Earth in volts, depth in centimetres, and soil type, respectively. The classes of objects 
constitute a set of five values C = {0, 1, 2, 3, 4}, representing the types of mines: "no mine," "anti-tank 
mine," "anti-personnel mine," "booby trap," and "M14." The classification task is framed as the 
identification of a classifier that ensures the minimum norms in Euclidean space: 

min ‖𝑓 − 𝑓‖, (7) 

where: 𝑓 denotes the target classifier; 𝑓 represents the deep neural network [41].  
The mapping operator is known solely for objects in a finite training sample:  

Xm = {(x1, y1), …, ( xm, ym )}, (8) 

where Xm is the set of elements in the training sample with a size of m, the objective is to construct 
an algorithm capable of determining the membership of any object х  X to the class у  Y [41-42].  

5. Experiments 

5.1. Selection and justification of development tools 

The central objective of the system is the classification task, with the primary focus of development 
being the design and implementation of an accurate neural network model. Neural networks are 



typically developed using programming languages or specialised libraries. Below is a summary of 
the most widely employed programming languages in the realm of machine learning: 

 Python is a widely utilised language for machine learning and neural network applications. 
It offers a robust ecosystem of libraries and frameworks such as TensorFlow, Keras, and 
PyTorch, which provide high-level abstractions and optimised implementations for neural 
networks. Python's simplicity and readability make it an ideal choice for novice and 
experienced developers, enabling rapid prototyping and seamless learning. The extensive and 
active Python community of data scientists and machine learning practitioners provides 
many resources, tutorials, and sample codes. Despite its numerous advantages, Python can 
perform slower than lower-level languages like C++, particularly in computationally 
intensive operations involving large-scale neural networks or tasks requiring maximal 
efficiency [43]. 

 R is traditionally employed for statistical computing and data analysis. Still, it also features 
several machine learning libraries, including TensorFlow, Keras, and MXNet, which facilitate 
the creation and training of neural networks. R's vast array of data analysis libraries makes 
it well-suited for statistical modelling and exploratory data analysis. Its data visualisation 
capabilities, exemplified by packages such as ggplot2, are highly effective for visualising 
neural network results. However, R's interpreted nature can lead to slower execution times 
when compared to languages like Python or C++, which may affect the performance of large-
scale neural networks and other computationally intensive tasks. Moreover, R's automatic 
memory management could result in inefficiencies when handling memory-intensive 
processes [44]. 

 MATLAB is a programming language widely recognised in scientific and engineering 
domains. It offers toolkits like the Neural Network Toolbox and Deep Learning Toolbox, 
which provide a comprehensive suite of functions and algorithms for designing and training 
neural networks. MATLAB's interactive environment enables rapid prototyping, 
visualisation, and experimentation, facilitating development. However, MATLAB is 
commercial software that requires a paid license, rendering it less accessible compared to 
open-source alternatives such as Python. Additionally, its proprietary nature may limit 
flexibility and customizability relative to open-source languages [45]. 

 C++ is a high-performance programming language frequently used for systems programming 
and computationally demanding tasks. Libraries such as TensorFlow, Caffe, and Torch 
provide C++ APIs that enable the construction and training of neural networks. C++ offers 
superior performance to interpreted languages like Python, making it suitable for resource-
intensive computations or large-scale neural networks. Its explicit memory management 
gives developers granular control over memory allocation and deallocation. However, C++ 
has a steeper learning curve and may be more challenging than higher-level languages like 
Python. The development process in C++ can be more time-consuming owing to its low-level 
nature and the necessity for manual memory management [46]. 

To achieve the additional goals of the system, it is necessary to develop the back-end component. 
The back-end is created using frameworks from various programming languages. Below is a 
description of the most commonly used programming languages for back-end development: 

 Python boasts a robust ecosystem of libraries and frameworks, making it well-suited for web 
development, data analysis, and scientific computing. Python is often chosen for its ease of 
use, rapid growth, and strong community support. It is widely used for server-side web 
development, creating APIs, data processing, and scripting. 

 JavaScript is a versatile scripting language primarily used for front-end web development. 
However, with the advent of Node.js, JavaScript can now also be employed as a server-side 
language. Node.js enables JavaScript development on the server side, making it an excellent 



choice for building scalable, high-performance web applications. JavaScript (Node.js) is 
frequently used to create real-time applications, render server-side, and handle many 
simultaneous connections. 

 Java is a robust object-oriented programming language known for its platform independence 
and scalability. It offers a wide range of libraries and frameworks for developing enterprise-
level applications. Its extensive toolset, performance, and strong tool support make Java 
popular for large-scale server-side systems. Java is commonly used for enterprise application 
development, distributed systems, and server-side components. 

 Ruby is a dynamic object-oriented programming language with an elegant and readable 
syntax. It emphasises simplicity and developer productivity and is known for its focus on 
developer satisfaction. Ruby features a mature web framework called Ruby on Rails, which 
promotes rapid application development and follows the convention-over-configuration 
principle. Ruby is often used for web development, prototyping, and building scalable web 
applications through the Ruby on Rails framework. 

 PHP is a server-side scripting language designed specifically for web development. It is 
widely used for building dynamic websites and web applications. PHP has a large ecosystem 
of frameworks, such as Laravel and Symfony, which provide powerful tools and libraries for 
web development. PHP is commonly used for website development, content management 
systems (CMS), and e-commerce platforms. 

5.2. Description of the developed project tools 

The development of project tools includes creating the back-end component, a neural network 
model, and their deployment on a cloud service. During development, a neural network, an object 
generator, a graphical representation of the neural network's performance, the back-end component, 
and the necessary file for container deployment were created. 

The software for the neural network consists of tools for dataset generation, data preprocessing, 
and the neural network model itself. As previously mentioned, number generation was performed 
using pseudorandom number generation methods available in Python libraries. Data preprocessing 
was handled by Panda's library, which is designed to work with large datasets. The steps carried out 
by this script were outlined earlier. The neural network models were developed using the 
TensorFlow library. The final product will use only the model with two hidden layers. 

The back-end follows the basic structure of the Django framework, adhering to the Model-View-
Template (MVT) architecture. All required functions were developed in the views file, while database 
tables were defined in the models file. The graphical interface is integrated using the Django Rest 
Framework. To implement the required functionality, the neural network model was added to the 
back-end files. As a result, when a user submits a classification request, the model will be loaded and 
used to classify the data.  

In this section, the development tasks are formulated and substantiated. A mathematical model 
of direct propagation neural networks with one and two hidden layers was created, and their 
architecture was implemented. As a result of the analysis of development tools, the following basic 
functionality was chosen: 

 The neural network will be implemented using Python, the programming language in 
particular, the TensorFlow library. 

 The back-end part of the system will be implemented using the Python programming 
language and the Django framework. 

 System deployment will be done using Docker software. 



6. Results and discussion 

6.1. System testing 

The neural network's performance was rigorously assessed using key metrics, including Accuracy 
and AUC, alongside a series of visualisations that effectively capture the system's training and testing 
outcomes. The results of the neural network classification are illustrated through the following 
diagrams (Figure 14-17): 

 

Figure 14: Confusion Matrix, where a – Neural network with one hidden layer, b – Neural network 
with two hidden layers 



 

Figure 15: ROC Curves for Each Type of Mine, where a – Neural network with one hidden layer, b 
– Neural network with two hidden layers. 

1. Confusion Matrix Heatmap visualises the confusion matrix of the classification results, 
where the X-axis corresponds to the predicted classes, and the Y-axis represents the actual 
classes (Figure 14). For clarity in presenting large values, scientific notation (e.g., "e+02") is 
employed, indicating that the given number should be multiplied by 10². The heatmap reveals 
a high classification accuracy, with most classes correctly classified. More than 180 samples 
per class were accurately predicted, while the total number of misclassified samples remains 
below 10, underscoring the model's robust performance [47]. 



 

Figure 16: Precision-Recall Curve, where a – Neural network with one hidden layer, b – Neural 
network with two hidden layers. 

2. The Receiver Operating Characteristic (ROC) curve provides a detailed assessment of 
the classification quality across each class. The X-axis tracks the growth in actual positive 
classifications, while the Y-axis measures the increase in false positive classifications (Figure 
15) [48]. This visualisation enables a precise evaluation of the model's discriminatory power 
for individual classes, highlighting its effectiveness in distinguishing between them. 

3. Precision-Recall curves offer additional insight into the model's classification performance 
and incremental improvements. The variation in recall is represented on the X-axis, while 
the Y-axis displays the corresponding changes in Precision (Figure 16). Additionally, the F-
score, a harmonic mean of Precision (P) and Recall (R) [49], is depicted, serving as a 
comprehensive measure of the model's overall performance. The F-score is calculated as 
follows:  



𝐹 =
ଶோ

ାோ
. (9) 

4. The graph includes iso-F1 curves, representing lines where the values of precision and recall 
yield a corresponding F1 score [50]. These curves provide an intuitive understanding of the 
balance between precision and recall and how this affects the F1 criterion. 

5. Accuracy and Loss Curves illustrate the accuracy metric and loss function after each 
training epoch. The values of accuracy and loss are shown on the Y-axis, while the X-axis 
represents the progression of training epochs (Figure 17) [51]. 

 

Figure 17: Accuracy-Loss Curves, where a – Neural network with one hidden layer, b – Neural 
network with two hidden layers. 

The ROC curves for the two-hidden-layer model exhibit superior performance compared to a 
similar neural network with a single hidden layer. The area under the curves (AUC) in Figure 15 is 



larger across all mine classes. An AUC value exceeding 0.99 was achieved, demonstrating exceptional 
classification performance for each mine class. It indicates that the neural network model reliably 
distinguishes between different types of mines with remarkable precision. 

 

Figure 18: The relationship between accuracy and loss metrics relative to the number of neurons in 
the first (a) and second (b) hidden layers. 

Table 10 
Results of Neural Networks by Accuracy Metric Relative to Optimizers 

Optimisers 1-layer NN 2-layer NN 
Adam 0.9790 0.9923 

RMSprop 0.9790 0.9856 
SGD 0.9695 0.9812 



Table 11 
Results of Neural Networks by Accuracy and AUC Score Metrics 

Metrics 1-layer NN 2-layer NN 
Accuracy 0.9790 0.9923 

AUC score 0.9870 0.9953 

 

Figure 19: Correlation between accuracy and loss metrics as influenced by the activation function 
in the first (a) and second (b) hidden layers, each comprising seven neurons 

The heatmap demonstrates that the number of misclassified classes is significantly reduced, with 
over 180 correctly classified samples for each class and fewer than ten misclassifications overall. 
Training a neural network with two hidden layers accelerates learning, as shown in Figure 16. 
Consequently, the model is capable of achieving higher accuracy at a faster rate compared to a neural 
network with only one hidden layer. 

The F1-score is consistently high, exceeding 0.8 (Figure 16), which indicates a low number of false 
negatives and false positives, thus reflecting the model's accuracy in classification. 



 

Figure 20: Correlation between accuracy and loss metrics on the activation function in the output 
layer 

The loss values for the neural network are impressively low, falling below 0.1, in contrast to 
similar studies where loss values peaked at 0.1. It suggests that the neural network training process 
is highly efficient, resulting in better overall performance and convergence. 

Experiments were conducted on neural networks with one and two hidden layers. The networks' 
effectiveness was evaluated using the metrics of Accuracy and AUC score. The optimisers Adam, 
RMSprop, and SGD were selected for optimal performance. The assessment of these optimisers was 
carried out using the Accuracy metric. The results are presented in Tables 10 and 11. To enhance the 
performance of the neural network, a comprehensive investigation into its symmetry was 
undertaken. Symmetry within the neural network architecture is defined by an equal distribution of 
neurons across all layers [52] and the uniformity of activation functions [53] concerning the 
established symmetry plane. In this study, the plane of symmetry was delineated between the first 
and second hidden layers. 

The following experimental procedures were implemented: 

1. Variation of Neuron Count: Systematically altering the number of neurons in the first and 
second hidden layers, ranging from 3 to 49. 

2. Modification of Activation Functions: Adjusting the activation functions employed in the 
first and second hidden layers. 

3. Assessment of Output Layer Performance: Evaluating the performance outcomes of the 
model upon varying the activation function within the output layer. 

Figure 18 elucidates the results, wherein the orange line denotes the accuracy metric, while the 
blue line represents the loss function. The Y-axis encapsulates the metrics of accuracy and loss, 
whereas the X-axis indicates the neuron count in both the first and second hidden layers. 

The findings indicate that asymmetry between the first and second hidden layers exerts negligible 
influence on the model's accuracy (≤ 1%); however, a significant escalation of up to 75% in the loss 
function occurs when symmetry is compromised. Notably, the choice of activation functions within 
the output layer of the neural network yields profound implications for performance. Specifically, 
substituting the ReLU function in the output layer with alternatives such as softmax, softplus, 
sigmoid, or exponential functions results in a remarkable increase in accuracy, rising from 21% to an 
impressive 98%. In stark contrast, the loss function attains its apex (exceeding 6) when utilising 



activation functions such as ReLU, SELU, ELU, and tanh. In contrast, it exhibits minimal values when 
employing softplus, softmax, sigmoid, and exponential functions. 

The observed metrics for accuracy and loss can be elucidated through gradient vanishing and 
explosion. In the case of the ReLU function, as depicted in Figure 19, both vanishing and exploding 
gradients are absent, given that the derivative of the ReLU function remains constant for positive 
input values. Conversely, all other activation functions demonstrate vulnerability to the issues of 
gradient vanishing and explosion, attributed to their variable derivatives within their respective 
domains. Figure 20 further exemplifies this inverse relationship. 

6.2. System deployment 

The system's initial deployment will be orchestrated using Docker software, which will also 
encompass the database within the container. The following steps elucidate the process of creating 
and launching the Docker container: 

 The creation of the Dockerfile step entails the formulation of a specialised file titled 
"Dockerfile" located in the application's root directory. This file articulates a comprehensive 
sequence of instructions for initialising the application and the database within the container. 
Specifically, it designates the official Python 3.9 image as the base image, establishes the root 
directory as /app, copies the requirements.txt file into the container, installs the requisite 
dependencies, transfers the application code to the container, opens port 8000, and initiates 
the server. 

 The creation of the requirements.txt File process involves generating a dedicated file that 
enumerates all essential packages and libraries, along with their respective versions, which 
are imperative for the successful execution of the application within the container. 

 The Docker Image command from the application's root directory is executed in the terminal. 
 Launching the Docker Container e container must be instantiated using a specific command. 

Upon successful initiation, the container will be visible in the Docker registry, with the back-
end and database fully operational [52]. 

The procedures for testing and deploying the system have been meticulously documented. Each 
component of the system was subjected to various testing methodologies, with the neural network's 
performance represented through corresponding metrics and visualisations. 

The system deployment was conducted locally utilising Docker software, incorporating both the 
database and back-end components. For future development endeavours, it is advisable to consider 
procuring hardware from cloud service providers. 

7. Conclusions 

This research has presented a sophisticated system for the passive detection and classification of 
mines utilising deep neural networks. Two models were developed, featuring one and two hidden 
layers, which achieved accuracies of 97.9% and 99.2%, respectively. Although the neural network 
with a single hidden layer exhibited slightly lower accuracy than its counterpart with two hidden 
layers, it was less computationally intensive during the training phase. Remarkably, the classification 
accuracy attained in this study was 99.2%, surpassing the performance of a similar heuristic 
algorithm, k-NN, which employed a fuzzy metric by a margin of 1%.  

In comparison to the findings presented in reference [6], several notable advancements were 
achieved, including superior accuracy metrics: 

1. Heatmap Analysis results illustrated in the heatmap demonstrated a significantly reduced 
number of misclassified instances, with correct classifications exceeding 180 for each 
category. At the same time, the total misclassifications were limited to fewer than 10. 



2. The learning process of a neural network with two hidden layers is faster, as shown in Figures 
16-18. Thus, the training and accuracy of a model with two hidden layers is faster than that 
of a neural network with one hidden layer due to the optimised morphology of the neural 
network with two hidden layers. 

3. ROC Curve Performance values were notably higher than those reported in the analogous 
study involving a single hidden layer. The graphs in Figure 15 exhibited larger areas under 
the curves across all mine classes, indicating enhanced discriminative capability. 

4. An AUC of more than 0.99 was achieved, showing high efficiency in classifying each mine 
class. The neural network model clearly distinguishes one type of mine from another, taking 
into account the soil structure. 

5. The F1 metric takes a value greater than 0.8, which means a low number of classified false 
negatives and false positives. 

6. The loss rates for the neural network reach a value of less than 0.1, compared to the rates 
from another study where they peaked at 0.1, which means practical neural network training. 

The described approach is not perfect and could be improved. To improve the performance of passive 
mine detection based on data from magnetic field sensors and their classification using neural 
networks, the following steps must be taken: 

 Increase the dataset based on actual data, considering different types of soil structure. 
 Develop optimised models of other neural network architectures. 
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