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Abstract
Entity Alignment (EA) aims to identify equivalent entities across different knowledge graphs. Existing methods
mainly focus on EA for small to medium-sized knowledge graphs and are ineffective for large-scale knowledge
graphs. This paper proposes a method called ScaleEA (Scalable Entity Alignment Method) for large-scale EA
tasks, which can minimize the number of model parameters and training time while ensuring EA accuracy.
ScaleEA combines the advantages of pre-trained language models and graph neural network. First, pre-trained
language models obtain entity names and property encodings. Then, graph neural network aggregate relation and
attribute information of each entity. Finally, candidate entity sets are retrieved and fused separately within each
channel. Experiments on DBP1M show that compared with existing models, ScaleEA has significant advantages
in both time and alignment accuracy.
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1. Introduction

Knowledge Graph (KG) storing entities, relations and attributes in graph, has been widely used in
applications for recommendation system [1], natural language processing [2], and question answering
[3]. Current KGs are heterogeneous and cannot be merged together easily. If multiple KGs from different
sources can be combined, a more complete and detailed KG will help accomplish applications. Entity
Alignment (EA) is a fundamental and critical step in solving KG heterogeneity problem. Its goal is
to identify entities with the same referential meaning in different knowledge graphs. These aligned
entities will be used for subsequent graph fusion. The main process of EA is: (1) collect seed set of
aligned entities; (2) build an EA model and train it under the supervision of seed alignments; (3) use the
trained model to discover potential aligned entities.

Existing EA solutions mainly focus on: (1) KG structure (2) entity property information. KG stores
relations between entities and their neighbors. The assumption of structure alignment is that two
aligned entities are likely to have aligned neighbors [4], and the neighbors closer to entities are more
likely to transmit EA information. Besides, aligned entities also share similar property information,
such as entity names.

However, many of these methods suffer from significant scalability issues. While models achieve
high accuracy in small KGs, they cannot be scaled to fit real-world KGs, which have million entities far
more than artificially constructed KGs. The larger KG lead to greater memory consumption, including
both entity embedding and model parameters, and higher training costs. The mainstream approach is
to divide large KG into smaller ones, while inevitably loses structure and property information.

This article proposes an efficient approach: build a scalable model using property information to
assist with alignment, and conduct as little training as possible overall. The specific approach is as
follows. First, fine-tune cross-lingual pre-trained BERT model on a small dataset, using entity names of
seed alignments as input. Second, directly apply the fine-tuned model to larger KGs, obtaining initial
entity embedding from entity name, and obtain relation, attribute, and value embedding from their
names. Third, add relation and attribute channels to aggregate information from both neighboring
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subgraphs. The name, relation, and attribute channels are used individually for target retrieval, and
then we fuse candidate entity set to obtain complete candidate sets.

Overall, the innovative points of this article are as follows:
(1) Fine-tune the pre-trained language model BERT to directly generate entity embedding, the training

parameters only from model.
(2) Directly apply the fine-tuned model to a large dataset, fully utilizing the similarity in the dis-

tribution of knowledge graph. Without any training, the required time is only for computing entity
embedding.

(3) Use graph neural network to directly aggregate relation and attribute information from neigh-
bouring subgraphs, which compensates for property information heterogeneity.

2. Related Work

2.1. Embedding Based Entity Alignment

Early EA methods relied on handcrafted features, crowdsourcing, and OWL semantic methods [5, 6, 7, 8].
Due to the reliance on manual rules, they are not suitable for highly heterogeneous linguistic scenarios.
With the development of deep learning, today EA methods focus on using graph structure, which
further can be divided into two categories, translation-based EA and GNN-based EA. Translation-based
EA originated from TransE [9], with other representative studies including MTransE [10], AlignE [11],
and SEA [12]. Some of them focus on exploring long-term relational dependencies of entities, such as
IPTransE [13], RSN4EA [14], and IMEA [15]. With GNN achieving better results in graph representation,
recent research pays more attention to GNN-based EA [16, 17, 18, 19, 19, 20].

In addition, many methods have revealed that KG’s property information can improve the accuracy
of EA by supplementing structure information, including names [18, 21, 22, 23, 4, 24, 25], descriptions
[4, 24, 26], images [27], and attributes [25, 12, 28]. Since each entity has own name and it does not need
to be pre-processed, most methods tend to use name.

2.2. Entity Alignment for Large-scale KGs

Although embedding based EA methods achieved high accuracy in finding potential aligned entities of
small-scale datasets, they cannot be well scaled to large-scale KGs. Faced with large-scale KGs, most of
them lead to insufficient GPU memory and very long time. Recent research decompose the large-scale
EA task into independent subtasks [29, 30, 31, 32], and each subtask includes small subgraphs generated
from original KGs. For each subtask, existing EA models can be naturally combined to predict unknown
mappings based on seed alignments.

There are four representative graph division alignment methods.
LargeEA [29] first uses METIS to divide KGs into independent subgraphs. After dividing source KG,
edge weights of target KG are modified based on seed entities and METIS is used again to partition target
KG. LIME [30] uses a bidirectional partition method to preserve KG structure and further increases the
coverage of seed mappings in each subtask. While compared with LargeEA, it doubles the partitioning
time. DivEA [31] also divides source KG, then it expands mapping target subgraphs by modeling
unmatched entities to decrease information loss. LargeGNN [32] merges the seed alignments from two
KGs to form a unified KG and then partition it, ensuring all pre-aligned entities are located in the same
subgraph blocks. It designs centrality-based subgraph generation and cross subgraph negative sampling
algorithms to recall landmark entities. In conclusion, graph division methods solve the memory problem
and speed up the EA task, however, it inevitably lowers precision because of incomplete graph context.

3. ScaleEA Method

The core of the proposed ScaleEA (Scalable Entity Alignment Method) method is to fine-tune pre-trained
language model on small data, and calculate the initial vector embedding of entity names, relations,



attributes, and values. Then, entity embedding are generated separately for the three respective channels
of name, relation, and attribute, and candidate entity sets are retrieved separately within each channel.
Finally, candidate sets from three channels are sorted and fused together to obtain the target aligned
entities.

3.1. Problem Definition and ScaleEA Framework

3.1.1. Knowledge Graph

A Knowledge Graph (KG) can be represented as 𝐺 = (𝐸,𝑅,𝐴, 𝑉, 𝑇 ), where 𝐸 is the set of entities, 𝑅
the set of relations between entities, 𝐴 the set of attributes, 𝑉 the set of property values of attributes,
and 𝑇 the set of triples in the graph, which can be categorized into relation triples 𝑇𝑟 and attribute
triples 𝑇𝑎. Relation triples represent the connection between two entities through a directed relation,
such as (Beijing, the capital of, China), indicating that Beijing is the capital of China. Attribute triples
represent the attributes of an entity, where the property value can be a string or a number, such as
(Kobe Bryant, birthDate, "1978-08-23"), indicating that Kobe Bryant’s birth date is August 23rd, 1978.

3.1.2. Entity Alignment

Given a source KG 𝐺𝑠 and a target KG 𝐺𝑡, entity alignment is to find equivalent entity sets 𝜙 between
the two KGs, 𝜙 = {(𝑒𝑠, 𝑒𝑡)|𝑒𝑠 ≡ 𝑒𝑡, 𝑒𝑠 ∈ 𝐺𝑠, 𝑒𝑡 ∈ 𝐺𝑡}, where 𝜙 represents the aligned entities.
During the experiments, we divide the data into training and testing sets, with the training set usually
accounting for 30% of the data.

3.1.3. ScaleEA Framework

The framework of ScaleEA consists of three modules, including the entity information encoding module,
similarity calculation module, and channel ensemble module, as shown in Fig.1.

(1) Entity information encoding module: We fine-tune BERT on a small-scale multilingual dataset.
After freezing the model parameters, input text representations of entity names, relations, attributes,
and values to obtain corresponding embedding. Use three channels to obtain embedding, which include
relation channel (relation, neighboring entity), attribute channel (attribute, value), and entity name
channel.

(2) Similarity calculation module: Within each channel, the target entity is retrieved based on the
similarity of the embedding between the two KGs.

(3) Channel ensemble module: The candidate entity pairs from the entity, relation, and attribute
channels are fused to obtain the final aligned entities.

3.2. Property Encoding Based on Pretrained Models

This part introduces the generation method and specific details of entity property encoding. The overall
structure is based on BERT, which generates corresponding embedding for entities, relations, attributes,
and values based on their text, and fine-tunes BERT according to the aligned seed entities. BERT
has strong understanding ability for semantic information and can be applied to various tasks after
fine-tuning and EA is regarded as a classification task. Given a set of seed entities 𝜙, training data 𝐷 is
constructed as,

𝐷 = {(𝑒, 𝑒′, 𝑒−, 𝑒′−)|𝑒 ≡ 𝑒′, (𝑒, 𝑒−) ∈ 𝐺𝑠, (𝑒
′, 𝑒′−) ∈ 𝐺𝑡} (1)

where (𝑒, 𝑒′) ∈ 𝜙, 𝑒− and 𝑒′− are randomly sampled negative entities within the 𝐺𝑠, 𝐺𝑡. For the input
of the model, both the entity name or description information can be used. In practical experiments,
although BERT has better processing ability for longer texts and they contain richer semantics, for
shorter processing time, the entity name will be prioritized.



Figure 1: Framework of ScaleEA

Figure 2: Fine-tuning with pre-trained cross-lingual BERT. A batch of text is inputted each time, and the
corresponding output at the CLS position is obtained as the initial embedding of the input.

The overall process is shown in Fig.2. A pre-trained cross-lingual BERT is used to input the entity
name and obtain the entity embedding from [CLS] vector. The [CLS] vector in the BERT hidden
layer represents the semantic information of the entire sentence. In order to reduce the dimension
and improve task performance, an additional trainable MLP layer is added to reduce the embedding
dimensions from 768 to 300. The final representation of the entity embedding is as follows,

𝑒̂ = 𝑀𝐿𝑃 (𝐵𝑒𝑟𝑡(𝑒)[𝐶𝐿𝑆]) (2)

For the source entity embedding 𝑒̂, the probability of aligning with an aligned entity 𝑒′̂ is given by:

𝑝(𝑒̂, 𝑒′̂) =
𝑠𝑖𝑚(𝑒̂, 𝑒′̂)

𝑠𝑖𝑚(𝑒̂, 𝑒′̂) + 𝑠𝑖𝑚(𝑒 −̂ , 𝑒′̂) + 𝑠𝑖𝑚(𝑒̂, 𝑒′ −̂ )
(3)

where 𝑠𝑖𝑚(·, ·) is the cosine similarity between entity embedding. The probability of aligned entities



found 𝑝𝑒 is calculated from entity pairs (𝑒̂, 𝑒′̂), (𝑒 −̂ , 𝑒′̂) and (𝑒̂, 𝑒′ −̂ ), which refers to softmax. The
ground-truth distribution of entity pairs is 𝑞𝑒, where aligned entity pairs is 1, and not unaligned entity
pairs is 0. The cross-entropy function is used to calculate the loss 𝑙1 between the ground truth 𝑞𝑒
distribution and the predicted distribution 𝑝𝑒 by the model,

𝑙1 =
∑︁

𝑒∈𝜙𝑡𝑟𝑎𝑖𝑛

𝐶𝐸(𝑞𝑒, 𝑝𝑒) (4)

where 𝑙1 is used for backpropagation and fine-tune the BERT and MLP layers.
The model is trained on a small dataset and is used to generate embedding for entity property

information, which is the basis for subsequent multi-channel information fusion. The training of the
model can be end-to-end, or the parameters can be trained first and then frozen. Due to the large-scale
of the task, the latter is chosen in specific practice to save time. In addition, the trained model will be
directly used in the large dataset to calculate the corresponding initial embedding.

The initial embedding of entity relation and attribute information do not consider the graph structure
and do not require vector random initialization followed by training. Instead, the BERT fine-tuned in
the previous section is directly inputted with the relation name, neighbor entity name, attribute name,
and value to calculate the embedding for each item. The overall process is shown in Figure 3. The
information is represented as the concatenation of the relation and neighboring entity (𝑟̂, 𝑒̂), and the
attribute information is represented as the concatenation of the attribute and value (𝑎̂, 𝑣).

Figure 3: Initialize embedding of relation and attribute information. Each is represented as the concatenation of
pairs.

3.3. Entity, Relation, and Attribute Channels Encoding

This chapter introduces attribute encoding based on graph neural network. In the previous section, pure
semantic calculation was used, which resulted in the loss of a large amount of structural information.
Graph neural network can be used to compensate for this deficiency. By aggregating entity relation and
attribute information, the relation and attribute encoding of the entity are calculated and generated.
With the original entity encoding, a triple-channel encoding is formed for each entity, fully integrating
its semantic and structural information. The overall process is shown in Fig.3.

From the perspective of the entity channel, the entity embedding 𝑒̂ in Section 3.2 is used, and the
entity channel encoding 𝐼𝑛𝑓𝑜𝐸𝑒 = 𝑒̂ contains the semantic information of the entity name. In the
relation channel, the information of neighbor triples (𝑒, 𝑟1, 𝑛𝑒1), · · · , (𝑒, 𝑟𝑚, 𝑛𝑒𝑚) of the entity 𝑒 is
used, and the aggregate function 𝜎(·) is used to aggregate the information of triples. The entity encoding
in the relation channel is as follows:

𝐼𝑛𝑓𝑜𝐸𝑟 = 𝜎1([𝑟1;𝑛𝑒1], · · · , [𝑟𝑚;𝑛𝑒𝑚]) (5)

where [𝑟𝑖;𝑛𝑒𝑖] is the embedding concatenated in Section 3.2. In attribute channel, the method is
similar to the relation channel, and the information of attribute triples (𝑒, 𝑎1, 𝑣1), · · · , (𝑒, 𝑎𝑚, 𝑣𝑚) is



aggregated:
𝐼𝑛𝑓𝑜𝐸𝑎 = 𝜎2([𝑎1; 𝑣1], · · · , [𝑎𝑛; 𝑣𝑛]) (6)

where aggregation function 𝜎1 and 𝜎2 are supposed to be a function that can filter information.

3.3.1. Importance Aggregator

Instead of averaging the embedding, weights are added to represent the importance of attributes and
relations. Since there are many entity relations and attributes, and the attribute values are obviously
heterogeneous, it is necessary to select important relation and attribute features. Not all relations and
attributes can represent the distinctive features of the entity. For example, many cities share the same
time zone, so the importance of attributes such as time zone offset should be relatively low. Referring
to the method of relation inference in PARIS [33], the importance of relation 𝑟𝑖 and attribute 𝑎𝑖 is
represented as:

𝑓𝑢𝑛𝑐(𝑟𝑖) =
|{𝑛𝑒|(𝑒, 𝑟𝑖, 𝑛𝑒) ∈ 𝑇𝑟}|

|{(𝑒, 𝑛𝑒)|(𝑒, 𝑟𝑖, 𝑛𝑒) ∈ 𝑇𝑟}|

𝑓𝑢𝑛𝑐(𝑎𝑖) =
|{𝑣|(𝑒, 𝑎𝑖, 𝑣) ∈ 𝑇𝑎}|

|{(𝑒, 𝑣)|(𝑒, 𝑎𝑖, 𝑣) ∈ 𝑇𝑎}|

(7)

when 𝑓𝑢𝑛(·) = 1, the neighbors and attribute values corresponding to different relations and attributes
must be different, which means that this relation or attribute can represent the unique property of the
entity.

When calculating the channel encoding by importance weighted summation, it is also necessary to
normalize the importance 𝑓𝑢𝑛(·) of all neighboring relations and attributes of the entity 𝑒𝑖:

𝑓𝑢𝑛𝑐′(𝑟𝑗) =
𝑒𝑥𝑝(𝑓𝑢𝑛𝑐(𝑟𝑗))∑︀

𝑟𝑘∈𝑁(𝑒𝑖)
𝑒𝑥𝑝(𝑓𝑢𝑛𝑐(𝑟𝑘))

𝑓𝑢𝑛𝑐′(𝑎𝑗) =
𝑒𝑥𝑝(𝑓𝑢𝑛𝑐(𝑎𝑗))∑︀

𝑎𝑘∈𝑁(𝑒𝑖)
𝑒𝑥𝑝(𝑓𝑢𝑛𝑐(𝑎𝑘))

(8)

where 𝑁(𝑒𝑖) represents all neighboring relations or attributes of the entity 𝑒𝑖.

3.4. Entity Retrieval and Results Fusion in the Isolation Channels

Based on the previous process, we obtained entity embedding from entity, relation, and attribute
channels respectively. The challenge in this section is how to fuse the information in the three channels
without interfering with each other. We use the idea of channel isolation, which is to perform entity
retrieval separately in the three channels, forming their respective candidate entity sets. We do not
perform fusion training of embedding, but focus effectively fusing candidate entities, because relations,
attributes, and values are heterogeneous, and the concatenation or training makes no sense and will
harm the performance.

Facing the retrieval of large-scale KGs, this article uses the Locality Sensitive Hashing (LSH) algorithm
to perform approximate nearest neighbor search in high-dimensional space. This algorithm has good
accuracy and scalability. In the three channels, retrieval is performed separately, and the similarity
threshold 𝛾 is set filter out low similarity entities to form target entity set 𝑆𝑐ℎ𝑎𝑛𝑛𝑒𝑙:

𝑆𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = {𝑒′|𝑑𝑖𝑠𝑡(𝑒, 𝑒′) < 𝛾} (9)

where 𝑑𝑖𝑠𝑡(·) is calculated by 𝐿𝑆𝐻 , and we form 𝑆𝑛𝑎𝑚𝑒, 𝑆𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 and 𝑆𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 respectively.
To effectively fuse candidate entity sets, it is necessary to correctly sort them. The experimental

results show that the accuracy of one-channel sorting is 𝑛𝑎𝑚𝑒 > 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 > 𝑐ℎ𝑎𝑛𝑛𝑒𝑙, so the candidate
sets are sorted one-dimensionally according to this order. When the matching of valid target entities
cannot be achieved because of the mismatching names, the relation and attribute channels can provide
structural information as compensation, and the noise does not interfere with each other.



4. Experiment

This chapter presents a series of experiments to verify the effectiveness of ScaleEA, including experi-
mental setting, results analysis, ablation experiment, and scalability test. The experimental settings
introduce the datasets, evaluation metrics, details, and benchmarks, providing necessary background for
the subsequent analysis. The result analysis focuses on the performance of ScaleEA on large, medium,
and small KGs, indicating it has advantages in memory and time efficiency. The ablation experiments
explore the impact of ScaleEA modules. The scalability test evaluates the performance of the model
under different dataset sizes, revealing that the required time increases almost linearly with dataset size
while accuracy maintains at a good level.

4.1. Experiment Setting

4.1.1. Dataset

The experiments use cross-lingual datasets generated from DBpedia, which are widely used in EA task.
In respect of KG languages, there are EN-FR (English with French) and EN-DE (English with German).
In respect of scales, there are 15K, 100K, and 1M, which represent the approximate number of entities
in one KG. IDS15K and IDS100K are benchmark datasets (V1) from OpenEA [34]. DBP1M is formed by
LargeGNN [32], which is specifically designed for large-scale EA tasks by removing all entities with
no neighbours and leaving half of entities unable to find their aligned counterparts. The number of
entities, relations, attributes, and values in the dataset are shown in Table 1. The meaning of variables
are as follows: entity, number of entities in corresponding KG; rel, number of relations; attr, number of
attributes; val, number of attribute values. No attribute and value information of large-scale dataset are
given since they won’t be used. Following LargeGNN [32], the dataset is divided into train, test, and
validation set at a 30%, 60%, and 10% ratio.

Table 1
Details about IDS15K, IDS100K, DBP1M datasets.

Datasets Entity Rel Attr Val

IDS15K EN-FR
EN 15,000 267 308 45,784
FR 15,000 210 404 39,817

IDS15K EN-DE
EN 15,000 215 286 49,956
DE 15,000 131 194 57,663

IDS100K EN-FR
EN 100,000 400 466 253,146
FR 100,000 300 519 228,356

IDS100K EN-DE
EN 100,000 381 451 271,949
DE 100,000 196 252 326,166

DBP1M EN-FR
EN 1,211,270 595 - -
FR 1,176,869 400 - -

DBP1M EN-DE
EN 1,160,306 596 - -
DE 849,646 247 - -

4.1.2. Metrics

We use Hits@N, MRR, and running time as our metrics. Hits@N also known as N-hit rate, indicating
the proportion of aligned entities in the top N matching results. The higher number equals better
performance in covering aligned entities in the top N query results. MRR, which stands for Mean
Reciprocal Rank, indicating the average of the reciprocal rank of aligned entities in the query results.
Specifically, if the rank of aligned entity is 𝑘, then the MRR is 1/𝑘. If no matching entity is found,
then the MRR is 0. Running time refers to the time required for the entire experiment. In large-scale
experiments, time is especially significant.



4.1.3. Implementation Details

The specific experimental details of ScaleEA are as follows. In the model fine-tuning phase, the dimension
of the vector embedding is fixed at 300, and the AdamW optimizer is used to train for 15 epochs. As
there are a large number of noisy property values in large-scale KG, for efficiency, the attribute channel
is only added to the small-scale dataset. Only entity name and relation channels are used to align
large-scale KGs. In entity retrieval phase, a distance threshold 𝛾 = 0.15 is used to filter low-similarity
entities. All experiments are conducted on one NVIDIA GeForce RTX 3090 GPU.

4.1.4. Baselines

As most embedding-based methods cannot run on large-scale datasets, we only compare our approach
with large-scale EA methods. All these methods divide graphs into small blocks, then do block alignment.
(1) LargeEA [29] partitions the source and target KGs using METIS and constructs entity alignment
blocks. (2) LIME [30] follows the center idea of LargeEA, but further uses a bidirectional partitioning
method, which can preserve the KG structure and increases the recall of seed mappings in each subtask.
(3) DivEA [31] build context graphs for subtasks to save more important information, and increase the
recall of potential aligned entities. (4) LargeGNN [32] merges the two KGs and then partition unified
KG. To better preserve landmark entities, it designs a subgraph generation algorithm using centrality
and cross-subgraph negative sampling. Later analysis reveal that name channel counts in EA task,
while it not been used in original LIME, DivEA, LargeGNN. A simple but effective name information
combination method is left for future work.

4.2. Results Analysis

Table2 shows results of ScaleEA method on the DBP-datasets. Compared with existing models, our
method achieves best performance in terms of accuracy and time, which outperforms the second-best
baseline model LargeEA. The main reason why ScaleEA achieves good performance on such a large
dataset is because of literal information. Although the improvement of hit@N is obvious, we also find
that the increase of hit@5 is not as high as hit@1. The reason behind it comes from the rough channel
fusion, as we only sort the candidate sets by a strict order: name, relation, attribute. If the name channel
gives wrong candidates, they can’t be filtered out effectively.

In terms of time, the required time for our method is also the shortest, as we don’t need any training
except fine-tuning. The other methods combine GNN training methods with graph division, training all
sub-graphs to construct a robust EA model. For a fair comparison, we use the same training method
RREA in different methods, and the results show training time is much longer than the division. For our
method ScaleEA, since the overall training is minimal, the time is mainly spent on computing entity
embedding. Although it’s short, it is difficult to be further compressed.

4.2.1. Ablation Study

We conduct ablation experiments testing performance of ScaleEA individual channels. Since only the
small dataset use all channels, the experimental results on the 15K dataset are presented here. The
situations of other datasets are very similar, with some slight numerical changes. Compared with the
complete ScaleEA, the ablation experimental groups are: (1) Full ScaleEA; (2) ScaleEA without name
channel; (3) ScaleEA without relation channel; (4) ScaleEA without attribute channel. The results of the
ablation experiments are shown in figure4.

There are four main observations from the ablation experiments: (1) Entity name channel has a
significant impact on accuracy. (2) Addition of the relation and attribute channels effectively improves
the experimental results. As the fusion method for channels is to directly merge the candidate entity
sets in order, when entity names are heterogeneous and cannot locate similar target entities, the relation
and attribute information can compensate for it and effectively find target entities. (3) The attribute
channel performs poorly and does not contribute much to the overall results. There are two reasons for



Table 2
Comparison of ScaleEA and other methods on different datasets.

Methods
DBP1M EN-FR

Hit@1 Hit@5 MRR Time(h) Mem(GB)

LargeEA 0.759 0.816 0.784 2.75 >24
LIME 0.171 0.224 0.218 0.78 33.1
DivEA 0.233 0.319 0.278 4.33 22.51

LargeGNN 0.178 0.314 0.450 0.77 16.67
ScaleEA 0.795 0.822 0.807 1.63 20.54

Methods
DBP1M EN-DE

Hit@1 Hit@5 MRR Time(h) Mem(GB)

LargeEA 0.784 0.832 0.805 2.36 >24
LIME 0.157 0.212 0.204 0.78 16.67
DivEA 0.307 0.383 0.345 4.12 21.39

LargeGNN 0.225 0.355 0.289 0.56 16.67
ScaleEA 0.818 0.847 0.831 1.35 19.36

Methods
IDS15K EN-FR

Hit@1 Hit@5 MRR Time(s)

LargeEA 0.735 0.875 0.796 239
LIME 0.607 0.891 0.704 354
DivEA 0.581 0.765 0.663 450

LargeGNN 0.710 0.880 0.784 86
ScaleEA 0.894 0.914 0.917 174

Methods
IDS15K EN-DE

Hit@1 Hit@5 MRR Time(s)

LargeEA 0.892 0.934 0.910 215
LIME 0.732 0.893 0.802 387
DivEA 0.734 0.862 0.790 535

LargeGNN 0.760 0.892 0.842 110
ScaleEA 0.897 0.922 0.926 201

Methods
IDS100K EN-FR

Hit@1 Hit@5 MRR Time(s)

LargeEA 0.839 0.875 0.860 979
LIME 0.412 0.574 0.525 2256
DivEA 0.430 0.584 0.505 4578

LargeGNN 0.395 0.611 0.496 1141
ScaleEA 0.841 0.865 0.852 506

Methods
IDS100K EN-DE

Hit@1 Hit@5 MRR Time(s)

LargeEA 0.856 0.891 0.870 980
LIME 0.518 0.672 0.586 2412
DivEA 0.522 0.651 0.584 4718

LargeGNN 0.531 0.699 0.610 1435
ScaleEA 0.853 0.883 0.866 507

this: (1) Candidate sets are directly sorted in order and attribute channel is ranked last, so its results are
only added when neither the entity nor the relation channels match any entities. (2) Heterogeneous and
noisy attributes and values may harm final results. How to effectively filtering and utilizing attribute
information is challenging in EA, and it’s left for future work. (4) The complete ScaleEA significantly
outperforms all ablation models.

4.2.2. Scalability Test

In general, ScaleEA has good scalability, as shown in Figure5. In terms of time, the overall time required
by the model increases linearly with the rise of the dataset size, and the time required for the 1M is
about ten times that of the 100K. Specially, The time for the 15K includes fine-tuning model, while
the time for medium and large-scale is only related to the number of entities, relations, attributes, and
values. In terms of accuracy, as the dataset size increases, the noises rise up, leading to a decrease
in accuracy. While Hit@1 from 15K to 1M decreases by a maximum of 0.099, accuracy remains at
a relatively high level. In terms of datasets, the required time and alignment accuracy for different
datasets(EN-FR, EN-DE) are similar, Compared with competitors, ScaleEA is less affected by the dataset
lingual property.



Figure 4: Ablation study

Figure 5: The scability test of ScaleEA.

5. Conclusion

This article proposes ScaleEA, a model for large-scale entity alignment tasks. Rather than partitioning
large knowledge graph, ScaleEA fine-tune BERT and does not do additional training, ensuring the
fewest training parameters and time. ScaleEA has significant advantages in terms of time and memory.
The superior performance of ScaleEA reveals four points: (1) Use pre-trained language models to extract
entity name embedding and match them with target entity has superior performance. (2) Fine-tune



on small datasets and directly apply the well-tuned model to large-scale datasets can achieve good
results without training, and it also reduce memory burden. (3) Relation and attribute channels can
effectively mitigate the heterogeneous interference of entity names. (4) Isolating candidate sets in each
channel and directly sorting and merging sets can fully utilize structural information without causing
interference.

In the future, we will explore better way to aggregate relation and attribute information by incorpo-
rating prior knowledge, mining potential structural information, and reducing noise interference from
heterogeneous information. In each stage, we will explore more to shorten the computation time.
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