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Abstract
The Multilingual Image-Text Classification (MITC) task is a specific instance of the Image-Text Classification (ITC)
task, where each item to be classified consists of a visual representation and a textual description written in one
of several possible languages. In this paper we propose MM-gFun, an extension of the gFun learning architecture
originally developed for cross-lingual text classification. We extend its original text-only implementation to
handle perceptual modalities.
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1. Introduction

Transfer learning involves using a labeled training set Tr𝐿𝒮 from a source domain 𝒮 to make predictions
for unlabeled data in a target domain 𝒯, which is related but different from 𝒮. The goal is to leverage
information from the source domain to improve performance in the target domain. Transfer learning
can be categorized either as homogeneous (when the feature spaces are the same, also known as domain
adaptation in NLP) or heterogeneous (when the feature spaces are different and non-overlapping).
According to the broad framework of Heterogeneous Transfer Learning (HTL), heterogeneous different
languages and different perceptual modalities can be regarded as non-overlapping feature spaces
describing the same object, with each one complementing the other.
A specific task dealing with both perceptual inputs such as images and multilingual texts is Mul-

tilingual Image-Text Classification (MITC). In Image-Text Classification (ITC), an item consisting of
both a textual description and a visual representation (e.g., an image) must be assigned a binary vector
of length |𝒞 |, where each element indicates whether the corresponding class is a correct label for the
given item. Furthermore, in the MITC scenario, items come with textual descriptions written in one out
of a finite set of languages. MITC tasks can be solved by independently relying on each modality (e.g.
only textual or only visual), however it is reasonable to assume this choice to be sub-optimal: in each
scenario, useful information is discarded by ignoring the other modality. Moreover, textual descriptions
available in different languages may contain crucial information not encoded in other ones.
In this work, we approach the task of MITC through the lens of HTL, where the features spaces

involved are those of the textual and the visual inputs. The textual modality is further subdivided into
non-overlapping feature spaces, each characterized by a specific language. Under this formulation
we develop MM-gFun, an extension of gFun integrating multilingual data with the heterogeneous
modality of textual data.
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2. Extending gFun to the Visual Domain

Generalized Funnelling (gFun) [1] is an architecture for HTL especially developed for Cross-Lingual
Text Classification (CLTC) tasks, in which the model is trained to assign labels to documents written in
one of a finite set of languages according to a shared classification scheme. The model is a two-tier
architecture in which the first layer projects documents written in different languages to the same
shared space where a metaclassifier (i.e., the second layer) subsequently takes care of the classification
step. In this way, the metaclassifier can be trained on the whole collection of training documents,
without being forced to operate on a language-specific subset of the data. Specifically, the first-tier
is equipped with a set of View Generating Functions (VGFs) each designed to mine different types of
information encoded in heterogeneous views of the same object.
VGFs are language-dependent functions that map (monolingual) documents into language-

independent vectorial representations (i.e., views) aligned across languages. Since each view is aligned
across languages, they can be aggregated into a single representation that is also aligned across lan-
guages, and which can be thus fed to the meta-classifier. In gFun, for each language a set of VGFs is
instantiated to leverage different types of information that can be brought to bear on the training process.
In [1], unimodal VGFs are based on posterior probabilities, MUSE embeddings, WCE embeddings, and
multilingual BERT.
While the original gFun was developed for a unimodal setting (i.e., involving only textual data), in

this article we extend it to be deployed in a multimodal setting involving images as well as text written
in different languages. This is achieved by augmenting the set of VGFs originally proposed with a
Visual VGFs. This module is designed to explicitly mine the correlations between the images and the
target classes, which remained out of reach to the other VGFs.

The training of MM-gFun is a two-phase training. In the first phase, all the VGFs of the first-tier are
tuned to produce the posterior probabilities representations of images and texts. In the second-phase,
output representations of the first-tier are aggregated according to a pre-defined policy and subsequently
used to train the meta-classifier. By leveraging the shared (modality-agnostic) space of the posterior
probabilities, the meta-classifier can be trained on the entire collection of items, be they images or text,
and independently of the textual description language.

To encode the image-class correlations, we derive image representations from a Vision Transformer
(ViT). o deal with the continuous input of images, the ViT divides the image into fixed-size patches. The
patches are then flattened into vectors and linearly projected to a higher-dimensional space, serving as
input visual tokens for the transformer. Similarly to transformer model for texts, positional embeddings
are added to the visual tokens to account for the relative positions of patches.

3. Experiments

Dataset We base our experiments on GLAMI-1M [2], a publicly available multilingual image-text
classification dataset. 1 and the largest multilingual image-text classification dataset providing stan-
dardized class labels. , which makes it suitable for MITC tasks. It is a collection of fashion products,
gathered from an online catalog of fashion goods and accessories. Each item is represented by an image
and a textual description. Textual descriptions are written in one of 13 different languages. Each item is
labelled with a category created from the GLAMI category tree, resulting in a codeframe of 191 classes.
Images are provided with a standard resolution of 228 by 298 pixels. The class distribution exhibits a
long tail, with a few frequent classes and many infrequent ones. Similarly, the language distribution is
skewed towards a few dominant languages. The dataset is already partitioned into a training set of
1,000,000 items and a test set of 116,004 items.

From the original GLAMI-1M, we extract a smaller version with a controlled distribution of languages,
both for the training and in test sets. For each language, we sample 15,000 documents in order to
represent higher-resourced (or “source”, in the context of HTL) languages (ℒ𝑠𝑟𝑐 = {Bulgarian (bg), Czech

1https://github.com/glami/glami-1m
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(cz), Hungarian (hu), Lithuanian (lt), Slovak (sk), Turkish (tr)}), and we sample 5,000 documents in order
to represent lower-resourced languages (ℒ𝑡𝑟𝑔 = {Estonian (ee), Spanish (es), Greek (gr), Croatian (hr),
Latvian (lv), Romanian (ro), Slovenian (sl)}). Note that for for Greek, Spanish, Romanian, and Latvian
languages there are fewer training examples (respectively: 3405, 2434, 3533, and 4184); in these cases we
simply take them all. The final reduced dataset consists of 100,000 training items and 58,553 test items.
The class distribution in the reduced version closely resembles the one of the original dataset after the
sampling. This reduced version facilitates a controlled analysis of the ability to transfer knowledge
from higher-resourced to lower-resourced languages.

Training Details We initialize the textual VGFs of MM-gFun from pre-trained models mDeBERTa-v3.
The textual input is processed via the relative SentencePiece tokenizer, with a maximum sequence
length of 32 tokens to ease the comparison with results obtained in [2]. For the visual VGF, we initialize
the component from CLIP visual encoder. Visual images are center cropped to square features of 224
pixels. All the learners in the first-tier and the metaclassifier are optimized to minimize the cross entropy
loss, with AdamW and cosine annealing learning rate scheduler. We set the learning rate to 0.0001 in
all our experiments, and train all of the models for a maximum of 25 epochs, with a early-stopping set
to 5 epochs without any increase on the accuracy on the validation set.

Results We report the results that we have obtained using the original GLAMI-1M dataset in its
entirety as well as those obtained in the reduced setting, where we balance the number of documents
across the different languages. In order to allow for a direct comparison with [2], we employ accuracy
as our evaluation measure, as well as accuracy at top 5. Table 1 reports the results we have obtained on
the test set (denoted by the “Full-” prefix). Results are grouped according to the input modalities that
the methods can process. In the first group, we report unimodal models for the visual modality; in the
second one, unimodal models for the (multilingual) textual modality; in the third one, we group all of
the multimodal models.

Table 1
The results for EmbraceNet and ResNeXt are taken from [2]. The best results for the full dataset are highlighted
in bold, while the best results for the few-shot setting are highlighted in gray.

Model Text Image Full-𝐴𝑐𝑐@1 Full-𝐴𝑐𝑐@5 Few-𝐴𝑐𝑐𝜇 Few-𝐴𝑐𝑐𝑀
ResNeXt-50 7 3 63.10 93.50 58.95 57.94
CLIP-ViT 7 3 71.25 95.79 N/A N/A
XLM-roBERTa 3 7 83.44 97.87 72.35 71.50
mDeBERTa 3 7 83.17 97.83 72.40 71.70
AltCLIP [3] 3 3 70.55 95.53 48.61 47.68
CLIP-M [4] 3 3 68.77 95.75 47.71 47.35
LLaVA-NeXT [5] 3 3 N/A N/A 46.55 72.13

EmbraceNet [6]
3 7 59.30 84.00 N/A N/A
7 3 68.50 94.80 N/A N/A
3 3 69.70 94.00 N/A N/A

mm-gFUN
3 7 83.42 97.61 71.43 72.26
7 3 51.12 83.65 47.25 48.35
3 3 83.68 97.73 75.05 74.26

The results indicate that multilingual textual information encodes a stronger signal for the classification
task. Indeed, multilingual models achieve strong performance, with top-1 and top-5 accuracy around
83%, significantly outperforming vision-only models, which achieve top-1 of 63 and 71%, respectively.
Multimodal baselines such as AltCLIP, m-CLIP, and EmbraceNet show similar performance, but they do
not measure up in terms of accuracy when compared with the text-based multilingual models. The
proposed method MM-gFun achieves the best results in terms of top-1 accuracy when leveraging
both textual and visual inputs. This, along with the fact that MM-gFun improves upon its individual
components (CLIP-ViT and mDeBERTa), demonstrates the ability of the method of leveraging both



modalities. Consistently with our results on the full dataset, we observe that multilingual models
outperform visual ones also in the few-shot setting (denoted by the “Few-” prefix), in terms of micro- and
macro-averaged accuracy across languages. However, in this data-scarce scenario, all our multimodal
baselines fall short in terms of performance when compared to MM-gFun and CLIP-ViT, by also
exhibiting a significant drop in accuracy with respect to the data-rich scenario with respect to the other
approaches. Here, MM-gFun achieves good results, improving over the unimodal textual-component
by no less than 2.5 points and by 16 points with respect to the visual component.

4. Conclusion

In this paper, we have presented MM-gFun, an architecture for Heterogeneous Transfer Learning
(HTL) in the task of multilingual image-text classification. This architecture is an extension of the
unimodal multilingual gFun. By augmenting the set of Visual Grounding Functions (VGFs) with a
specific module to represent input images, we demonstrated improved performance on multilingual
image-text classification tasks. Our approach achieves superior performance compared to MM-gFun’s
internal components when trained independently. We validated our hypothesis through experiments on
GLAMI-1M, a multilingual and multimodal dataset of fashion product images with textual descriptions
in 13 different languages.
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