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Abstract This paper deals with the problem of software effort estimation
through the use of a new machine learning technique for producing reliable
confidence measures in predictions. More specifically, we propose the use
of Conformal Predictors (CPs), a novel type of prediction algorithms, as a
means for providing effort estimations for software projects in the form of
predictive intervals according to a specified confidence level. Our approach
is based on the well-known Ridge Regression technique, but instead of the
simple effort estimates produced by the original method, it produces predic-
tive intervals that satisfy a given confidence level. The results obtained using
the proposed algorithm on the COCOMO, Desharnais and ISBSG datasets
suggest a quite successful performance obtaining reliable predictive intervals
which are narrow enough to be useful in practice.

1 Introduction

Accurate software cost estimation has always been a challenging subject im-
pelling intensive research from the software engineering community for many
years now [11]. Especially over the last 50 years researchers have been work-
ing to improve the estimation accuracy of the methods proposed and provide
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a competitive edge for software companies and managers. An accurate esti-
mate, especially from the early stages of the software project life-cycle, could
provide more efficient management over the whole software project resources
and processes. Such estimates, even for well-planned projects, are hard to
make and thus it may prove helpful to handle the uncertainty of the esti-
mates through an effort prediction interval. Nevertheless, the difficulty to
produce intervals for effort estimation reflecting a new project remains due
to the high level of complexity and uniqueness of the software process. Es-
timating robust confidence intervals of the required software costs, as well
as selecting and assessing the most suitable cost drivers for describing the
escalating behavior of effort, both remain difficult issues to tackle and are
constantly at the forefront right from the initiation of a project and until the
system is delivered.

In this work, we aspire to tackle the uncertainty of the software process
and the volatility of leading cost factors in the development environment
by producing confidence intervals for software effort. Most cost models and
techniques proposed in literature provide a single estimate for effort and usu-
ally have poor generalization ability [8]. Our approach attempts to promote
reliable confidence intervals to reach better solutions in such approximation
problems so as to alleviate the deficiencies of the techniques proposed so far
and to address the problem in a possibly more effective and practical manner.

The present paper proposes the use of a novel machine learning technique,
called Conformal Prediction (CP) [24], which can be used to produce predic-
tive intervals, or regions, that satisfy a required level of confidence. Conformal
Predictors (CPs) are based on conventional machine learning algorithms and
transform the output of these algorithms from point to confidence interval
predictions. The most important property of CPs is that they are well cali-
brated, meaning that in the long run the predictive intervals they produce for
some confidence level 1− δ will not contain the true label of an example with
a relative frequency of at most δ [16]. Furthermore, this is achieved without
assuming anything more than that the data are distributed independently by
the same probability distribution (i.i.d.), which is the typical assumption of
most of the machine learning methods. In this paper we use the Ridge Re-
gression Conformal Predictor (RRCP), which, as its name suggests, is based
on the well known Ridge Regression (RR) algorithm. We applied RRCP to
three empirical cost datasets, namely the COCOMO, the Desharnais and the
ISBSG, each including a set of different cost factors measured over a series
of completed software projects in the past.

The rest of this paper is organised as follows: Section 2 presents a brief lit-
erature overview of data driven cost estimation and outlines similar machine
learning attempts reported in literature. Section 3 presents the background
theory behind RR and CP, while section 4 provides a description of the exper-
iments and associated results produced using the aforementioned datasets.
Finally, section 5 summarises the findings of the paper and suggests future
research steps.
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2 Brief Literature Overview

Recently, many machine learning approaches have been investigated in the
field of software effort estimation, such as neural networks [20], neuro-fuzzy
approaches [9], support vector regression [17], genetic algorithms [1] and rule
induction algorithms [14] with quite satisfactory results. Machine learning
techniques use empirical data from past projects to build a model that can
then be employed to predict the effort of a new project. Although such data-
driven cost estimation methods employed in empirical software engineering
studies report quite encouraging results, all these techniques suffer from lack
of uncertainty value consideration. Most existing methods for software effort
estimation only provide a single value as their estimation for the effort of
a given project, without any associated information about how “good” this
estimation may be. Yet, the provision of an interval which will include the
effort of a project at a given level of confidence would have been much more
informative [8]. For this reason, recent studies such as [2, 8, 12, 13], employed
different techniques for producing predictive intervals.

A relatively new development in the area of Machine Learning is the in-
troduction of a novel technique, called Conformal Prediction [24], that can
be used for complementing the predictions of traditional algorithms with
provably valid measures of confidence. Therefore, this technique is ideal for
dealing with the problem of confidence interval prediction for software cost
estimation. What we call in this paper CP was first proposed in [6] and then
greatly improved in [23]. In both [6] and [23] the base algorithm used was
support vector machine. Slightly later CP was applied to other algorithms
such as Ridge Regression [15] and k-nearest neighbours for both classifica-
tion [21] and regression [19]. At the same time, in an effort to improve the
computational efficiency of CPs, a modification of the original approach was
developed, called Inductive Conformal Prediction [18]. Since then CP has
been applied successfully to problems such as the early detection of ovarian
cancer [7] and the classification of leukaemia subtypes [3].

3 Ridge Regression Conformal Predictor

We first briefly describe the Conformal Prediction (CP) framework and
then focus on its application to the dual form Ridge Regression (RR) al-
gorithm [22]. RR is an improvement of the classical Least Squares technique
and its one of the most widely used regression algorithms. The main reason
we chose the dual form RR method is that it uses kernel functions to allow the
construction of non-linear regressions without having to carry out expensive
computations in a high dimensional feature space.

We are interested in making a prediction for the label of an example xl,
based on a set of training examples {(x1, y1), . . . , (xl−1, yl−1)}; where each
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xi ∈ IRd is the vector of attributes for example i and yi ∈ IR is the label of
that example. Our only assumption is that all (xi, yi), i = 1, 2, . . . , are i.i.d.
CP considers every possible label ỹ of the new example xl and assigns a value
αi to each pair (xi, yi) of the extended set

{(x1, y1), . . . , (xl, ỹ)} (1)

that indicates how strange, or non-conforming, that pair is for the rest of
the examples in the same set. This value, called the non-conformity score of
the pair (xi, yi), is calculated using a traditional machine learning algorithm,
called the underlying algorithm of the corresponding CP. More specifically,
the non-conformity score of a pair (xi, yi) is the degree of disagreement be-
tween the actual label yi and the prediction ŷi of the underlying algorithm,
after being trained on (1). The function used for measuring this degree of
disagreement is called the non-conformity measure of the CP.

The non-conformity score αl is then compared to the non-conformity scores
of all other examples to find out how unusual (xl, ỹ) is according to the non-
conformity measure used. This is achieved with the function

p((x1, y1), . . . , (xl, ỹ)) =
#{i = 1, . . . , l : αi ≥ αl}

l
, (2)

the output of which is called the p-value of ỹ, also denoted as p(ỹ), since
this is the only unknown value in (1). An important property of (2) is that
∀δ ∈ [0, 1] and for all probability distributions P on Z,

P l{((x1, y1), . . . , (xl, yl)) : p(yl) ≤ δ} ≤ δ; (3)

a proof can be found in [16]. This makes it a valid test of randomness with
respect to the i.i.d. model. According to this property, if p(ỹ) is under some
very low threshold, say 0.05, this means that ỹ is highly unlikely as the
probability of such an event is at most 5% if (1) is i.i.d. Assuming it were
possible to calculate the p-value of every possible label following the above
procedure, then we could exclude all labels with a p-value under some very
low threshold, or significance level, δ and have at most δ chance of being
wrong. Consequently, given a confidence level 1− δ a regression CP outputs
the set

{ỹ : p(ỹ) > δ}, (4)

in other words the set of all labels that have a p-value greater than δ. Of
course it is impossible to explicitly consider every possible label ỹ ∈ IR, so the
RRCP follows a different approach which allows it to compute (4) efficiently.
This approach, proposed in [15], is described in the next few paragraphs.

To approximate a set of examples the well known Ridge Regression pro-
cedure recommends finding the w which minimizes the function
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a‖w‖2 +
l∑

i=1

(yi − w · xi)2, (5)

where a is a positive constant, called the ridge parameter. Notice that RR
includes Least Squares as a special case (by setting a = 0). The RR prediction
ŷt for an example xt is then ŷt = w · xt.

According to [22], the dual form RR formula for predicting the label yt of
a new input vector xt is

Y (K + aI)−1k, (6)

where Y = (y1, . . . , yl) is the vector consisting of the labels of the examples
in the training set, K is the l× l matrix of dot products of the input vectors
x1, . . . , xl of those examples,

Kj,i = K(xj , xi), j = 1, . . . , l, i = 1, . . . , l, (7)

k is the vector of dot products of xt and the input vectors of the training
examples,

ki := K(xi, xt), i = 1, . . . , l, (8)

and K(x, x′) is the kernel function, which returns the dot product of the
vectors x and x′ in some feature space.

The non-conformity measure used by RRCP is

αi = |yi − ŷi|, (9)

where ŷi is the prediction of the RR procedure for xi based on the examples
in (1). Using (6) the vector of all non-conformity scores (α1, . . . , αl) of the
examples in (1) can be written in matrix form as

|Y − Y (K + aI)−1K| = |Y (I − (K + aI)−1K)|. (10)

Furthermore Y = (y1, . . . , yl−1, 0) + (0, . . . , 0, ỹ) and so the vector of non-
conformity scores can be represented as |A + Bỹ| where

A = (y1, . . . , yl−1, 0)(I − (K + aI)−1K) (11)

and
B = (0, . . . , 0, ỹ)(I − (K + aI)−1K). (12)

Notice that now each αi = αi(ỹ) varies piecewise-linearly as we change ỹ.
Therefore the p-value p(ỹ) (defined by (2)) corresponding to ỹ can only change
at the points where αi(ỹ)−αl(ỹ) changes sign for some i = 1, . . . , l− 1. This
means that instead of having to calculate the p-value of every possible ỹ, we
can calculate the set of points ỹ on the real line that have a p-value p(ỹ)
greater than the given significance level δ, leading to a feasible prediction
algorithm. A detailed description of this algorithm is given in [15], while a
more efficient version can be found in [24].

AIAI-2009 Workshops Proceedings [215]



4 Experiments and Results

We applied the Ridge Regression CP algorithm to three popular software
effort estimation datasets the COCOMO 81 (COCOMO) the Desharnais and
the ISBSG. The COCOMO [4] dataset contains information about 63 soft-
ware projects from different applications. Each project is described by 17 cost
attributes. The second dataset, Desharnais [5], includes observations for more
than 80 systems developed by a Canadian Software Development House at
the end of 1980. The third dataset, ISBSG [10] was obtained from the Inter-
national Software Benchmarking Standards Group (ISBSG, Repository Data
Release 9) and contains an analysis of software project costs for a group of
projects. The projects come from a broad cross section of industry and range
in size, effort, platform, language and development technique data. The re-
lease of the dataset used contains 100 characteristics and 3024 project data
grouped in categories. Of those only 16 attributes (cost factors) were consid-
ered in our experiments, in which the dependent variable was the Full-Cycle
Work Effort. In order to select these 16 attributes we performed several steps
to clean, homogenize and codify the dataset. Firstly, we omitted columns
describing attributes that may not be measured early in the development life
cycle (i.e. are not available until the project concludes). Secondly, we removed
those columns that had more than 40% of the total number of records filled
with blank or unknown values. Thirdly, we kept only “qualitative” projects
assessed as A, or B by the ISBSG reviewers and consistently reporting unique
and easy to interpret information. Furthermore, all the numerical columns
were cleaned from null values (row filtering), while we defined new cate-
gories to describe different but logically similar sample values of categorical
columns, thus merging and homogenizing similar pieces of information into
new categories (e.g. Oracle v7, Oracle 8.0 into Oracle). Finally, in order to
be used with RR, every categorical (including multi-valued) attribute was
replaced with n binary attributes, one for each category indicating whether
the attribute belongs to that category or not. The final ISBSG dataset after
this processing contained 467 records.

Before conducting our experiments the numerical attributes of all datasets
were transformed to their natural logarithm values and then normalised to a
minimum value of 0 and a maximum value of 1 so that all attributes lie in
the same range and thus have the same impact. The effort values supplied
to the algorithm were also log transformed, but the outputs produced were
transformed back to the original effort scale before being compared with the
actual values. Therefore all results reported here are on the original scale of
efforts.

Our experiments followed a 10 fold cross-validation process. Each data
set was split randomly into 10 parts of almost equal size and our tests were
repeated 10 times, each time using one of the 10 parts as the testing set and
the remaining 9 as the training set. This procedure was repeated 100 times
for each dataset and the results reported here are over all runs. The kernel
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used for computing the matrix K in (7) and the vector k in (8) was the RBF
kernel, which is defined as

K(xj , xi) = exp(−‖xj − xi‖2
2γ2

). (13)

The parameter γ of the RBF kernel as well as the ridge parameter a in (6) are
typically determined by trial and error. Thus for γ we tried the values 2 to 7
with increments of 0.5 and for a the values {0.5, 0.1, 0.05, 0.01, 0.005, 0.001}.

We first applied the original RR approach to each dataset in order to check
its performance on the data in question. The performance of the method was
evaluated using the Mean Magnitude of Relative Error (MMRE), which
is one of the most widely used metrics for evaluating the accuracy of cost
estimation models. The Magnitude of Relative Error for a test project i was
calculated as

MREi =
∣∣∣∣
yi − ŷi

yi

∣∣∣∣ , (14)

where yi is the actual effort for project i and ŷi is the predicted effort pro-
duced by (6) with xi as the new input vector. The MRE of all projects in each
of the 10 parts of every dataset was calculated using only the projects in the
remaining 9 parts as training examples. This process resulted in one MRE
value for each project, and since it was repeated 100 times, the MMRE for
each dataset was calculated as the mean of all 100N MREs where N is the
number of projects in that dataset. Table 1 reports the best results obtained
together with the γ value and the ridge parameter a that were used. The re-
sults of this table suggest that a considerable accuracy in predicting software
effort values has been achieved by the base method, which is comparable to
what the international literature has to offer using similar techniques up until
today.

After the encouraging results obtained with the original Ridge Regression
method we applied the RRCP to the three datasets. More specifically, RRCP
was applied for the 95%, 90% and 80% confidence levels to every project in
each of the 10 parts of the dataset, using as training set the projects in the
remaining 9 parts. This process resulted in three predictive intervals for every
project, one for each of the three confidence levels. Again the same process
was repreated 100 times and thus resulted in 100N predictive intervals for

Dataset γ a MMRE

COCOMO 5.5 0.001 0.4221
Desharnais 5 0.05 0.3454
ISBSG 3.5 0.1 0.5969

Table 1 The best results of the original Ridge Regression method and the parameters
used.
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Median Percentage
Data Set Median Width Relative Width of Errors (%)

80% 90% 95% 80% 90% 95% 80% 90% 95%
COCOMO 170.8 278.8 383.4 1.3593 2.2075 3.1105 19.11 8.68 3.68
Desharnais 4549 5579 6396 1.2588 1.5462 1.7698 19.03 9.06 4.38
ISBSG 4451 6571 9126 1.6821 2.4639 3.3747 20.01 10.02 5.01

Table 2 The tightness and reliability results of the Ridge Regression CP on the three
data sets.

each confidence measure, where N is the number of projects in the dataset
in question. The parameters used for these experiments are the same as the
ones used for the original RR method, given in table 1.

Table 2 reports the results of the RRCP in terms of the tightness and
reliability of the produced predictive intervals. The first part of the table
reports the median widths of the intervals for each of the three confidence
levels (95%, 90% and 80%). In addition to the width of each predictive in-
terval, we also calculated its Relative Width (RW) as RWi = wi/yi where
wi is the width of the predictive interval produced for the example xi and
yi is its actual effort value. The median values of the relative widths can be
found in the second part of the table. We chose to report the median values
of both the widths and the relative widths instead of the means so as to avoid
the strong impact of a few extremely large or extremely small intervals. In
the third and final part of table 2 we check the reliability of the obtained
predictive intervals. This is performed by reporting the percentage of exam-
ples for which the true effort value is not inside the interval output by the
RRCP. In effect this checks empirically the validity of the predictive intervals
produced. The percentages reported here are either below or almost equal to
the required significance level.

The enhancement of the original method with CP offers a much more
informative scenery for a project manager to decide how to distribute ef-
fort as he/she is provided with lower and upper estimation limits instead of
single effort prediction values, something that enables him/her to plan ac-
cording to worst and best case scenarios. It is worth to note that the median
widths of the predictive intervals reported in Table 2 for the 95% confidence
level correspond to 3.36%, 27.34% and 6.09% of the whole range of efforts of
the COCOMO, Desharnais and ISBSG datasets respectively. This provides a
strong indication that the intervals produced are narrow enough to be useful
in practice.

5 Conclusions

We have proposed the use of the Ridge Regression Conformal Predictor for
obtaining reliable software effort confidence intervals. Confidence intervals
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make an estimate much more informative than point predictions since they
indicate the level of uncertainty of the estimate; the bigger the interval for
a given project the higher the uncertainty of the estimate. This allows for
different treatment of estimates, so that the uncertain estimates are given
further thought or more careful planning. The main advantages of CPs over
other techniques that produce confidence intervals are that (a) the confidence
intervals produced by CPs are provably valid, (b) they do not require any
extra assumptions other than i.i.d. and (c) they produce a different confidence
interval for each individual project, the size of which reflects how difficult the
effort of the project is to estimate.

The RRCP was applied on three empirical cost datasets each including a
set of cost factors measured over a series of completed software projects. The
results obtained by the proposed approach demonstrate that it can produce
predictive intervals that are well-calibrated and narrow enough to be useful
to project managers. Our plans for future work include utilising Conformal
Prediction to produce confidence intervals for specific project cost descrip-
tive variables, such as size, complexity and duration and by using historical
data samples to attempt to associate these variables with effort. Furthermore,
the approach followed in this paper may also be applied in conjunction with
other algorithms reported in literature to perform well in predicting effort,
such as neural networks and genetic algorithms. In this case the Ridge Re-
gression part will be substituted by other predictive models to form the basis
for Conformal Prediction. Finally, genetic algorithms can be utilized for the
selection of the most appropriate subset of cost factors to be used as inputs
to the CP so as to improve even further the results reported here.
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