
Publishing OWL ontologies with Presto

Alexander DeLeon1 and Michel Dumontier1,2

1 School of Computer Science
2 Department of Biology

Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S5B6 Canada
adlbatti@scs.carleton.ca, michel dumontier@carleton.ca

Abstract. Publishing RDF/OWL ontologies on the Semantic Web typ-
ically starts by placing the document in a web accessible location and
ends with redirects of ontological components (classes, properties, indi-
viduals) to that the document. Unfortunately, this is seldom sufficient for
expressive OWL ontologies in which reasoning is essential to determine
the full extent of the entity in question. Moreover, the ability to dy-
namically query expressive ontologies yields new applications over static
publishing including the possibility that these queries may be equivalent
to new ontological entities. Here, we describe the design of a new tool for
publishing OWL ontologies in a dynamic manner such that the ontology
and all of its entities are web resolvable and queryable, hence opening
new avenues for knowledge management on the Semantic Web.

1 Introduction

A core objective of the Semantic Web is to add machine understandable de-
scriptions to the current Web, in part, by publishing ontologies that describe
and relate entities using formal, logic-based representations. An essential aspect
of the Semantic Web is to ensure that the terminology defined in ontologies are
web-accessible such that information about the ontological entity may be dis-
covered and links with related entities explored. The Linked Data architecture
[1] suggests that HTTP URIs may be used as resource names, whether they be
electronic documents or conceptual representations (i.e. the class of Cat or the
first author). Should HTTP URIs be web resolvable then web client may discover
additional knowledge by following links between these web-accessible resources.

The W3C Semantic Web Deployment Working Group recently proposed best
practices in the publishing of RDF vocabulary on the web [2] in which the resolu-
tion of named entities (classes, properties, individuals) is achieved by redirection
to a single document in which axiomatic statements are made about it. This ap-
proach may be exceedingly cumbersome should the entity be defined in a very
large document, which is generally the case in ontologies for the life sciences.
Crucially, the proposed solution may not be appropriate for OWL ontologies as
the knowledge about an entity depends on the cumulative sum of knowledge
obtained from the import of OWL documents into the knowledge base. Thus,
the description of some entity may differ from one knowledge base to another.

Dynamic generation of ontology documentation may be provided using the
OWLDoc server3 whose interactive user interface with reasoner-enabled query
capabilities reveal the sophistication of OWL ontologies. While OWLDoc server
generates project-specific HTML documentation with permanent links for shar-
ing, it does not currently provide RDF/OWL descriptions for use on the Seman-
tic Web.

In this paper, we describe Presto (Published RESTful Ontology), a tool for
publishing and querying OWL ontologies on the Semantic Web. Presto allows any
party to publish their OWL knowledge base, including any imported documents.
For a given ontology, Presto provides the following:

1. A self-referential namespace for all ontological documents and entities, so as
to follow linked knowledge as a static ontological snapshot.

2. A RESTful service for DL and SPARQL queries that are identified by per-
manent HTTP URIs.

3. Content-negotiation capabilities to retrieve dynamically generated HTML or
RDF/XML.

Finally, we demonstrate Presto’s value in i) maintaining ontological interoper-
ability, ii) building new ontologies with terminology defined from queries of other
ontologies and iii) ontology version control.

2 Overview

Figure 1 illustrates the general architecture of Presto, a Java based applica-
tion whose central data model relies on the OWL API (version 2.1.1) [3]. The
general operation is as follows. Publishers invoke Presto with an OWL docu-
ment and a target publishable URI that should resolve to the machine where
Presto is running. The Presto Manager is a mediator component that provides
RESTful services by interacting with several system components including a
DL-Reasoner, a lucene-based entity indexer [4], Manchester Syntax parser from
Protege4 and HTML rendering from OWLDoc.5 The Restlet Framework6 is used
to create HTTP handlers and representations for the URIs of the ontology and
its entities. For instance, if the request Accept header includes the mime-type
application/rdf+xml the response is rendered using RDF/XML otherwise an
HMTL document generated with OWLDoc is returned to the client. The HTTP
handler of the ontology URI has a special behavior which is that it could act
as a query endpoint. When a request is made to the ontology URI using the
query parameter, the server executes the query on the ontology, and returns the
results as OWL, XML or HTML depending on the Accept header and the query
language used. This querying service is futher described in section 4.

3 http://www.co-ode.org/downloads/owldoc-server/
4 http://protege.stanford.edu
5 http://www.co-ode.org/downloads/owldoc/
6 http://www.restlet.org/

Fig. 1. Presto at a glance. Components with dotted-lines are envisioned as future work

3 Resolvable namespace for ontologies

The OWL 1.1 specification[5] establishes that the logical ontology URI need
not be identical to its physical location (i.e. a resolvable HTTP URI). The lack
of agreement causes problems for Semantic Web applications since they should
check that the document at the physical location matches the logical URI speci-
fied. Hence, it is important that ontologies published on the Semantic Web have
identical logical and physical names.

Presto gathers and publishes ontologies and their contents to a user-specified
target namespace, which should be web-accessible. If the namespace of the doc-
ument does not match the namespace of the ontology, it rewrites the document
and entity URIs. To ensure interoperability, it optionally adds owl:PriorVersion,
owl:equivalentClass, owl:equivalentProperty, and owl:sameAs axioms to
maintain semantic equivalent relationships with the document, class, property
and individual URIs, respectively. When a HTTP request is made to the URI
of the ontology, the rewritten ontology is returned in its entire form. When the
request is made to an entity URI, an OWL document is returned containing
only those axioms (asserted and inferred) that directly describe the requested
entity (i.e. the entity is the subject of the axiom or is the object and the axiom
is symmetric, for instance owl:disjointWith). This document also imports the
URIs of the ontologies where these axioms where drew from. In the future these
imports will likely be replaced with a single import to an ontology module[6]
extracted from these ontologies and the signature of the requested entity.

The format used in the HTTP response can be RDF/XML or HTML depend-
ing on the Accept header of the request. This allows human users to navigate

ontologies following HTML links in a web browser, while software agents can
request machine understandable RDF/OWL.

3.1 Renaming entities

Presto replaces the URI of the input ontology, as well as, the URIs of all enti-
ties refered in the ontology. The URIs replacement is done using the following
algorithm:

Let u be the resolvable URI where the ontology will be deployed.
Replace the ontology name URI by u.
For each entity URI e in the ontology, do the following:
If e contains a fragment (“hashed names”), replace the hash (#) by a

slash (/).
Let n (“entity name”) be the substring of e that starts from a character

that immediately follows a slash and contains the minimum number of
slashes necessary to guarantee uniqueness between all “entity names”.

Replace e by u/n.

Using the method described above, the host part of the original URI may be
included in the new URI created by Presto. This is needed to avoid collitions
between names. For example, if a given ontology contains the following two URIs:
http://foo.org/Car and http://bar.org/Car, and this ontology is deploy under
the name: http://example.org/myOntology, the resulting entity names would be:
http://example.org/myOntology/foo.org/Car and
http://example.org/myOntology/bar.org/Car respectively .

3.2 Reasoning enabled

Presto can be enabled to use an OWL-DL reasoner. By doing this, Presto is able
to provide inferred axioms (those resulting from classification and realization of
the ontology) with entity descriptions. The representation of an ontology entity
obtained from an HTTP request to the entity URI will contain the axioms that
were explicitly asserted by the ontology author complemented with those inferred
from the ontology by the reasoner. Presto currently uses either Pellet 1.5 or
Fact++ 1.1.9 depending on the user’s preference.

Clients interested in consuming the ontology without intending to do any
reasoning themselves can benefit from the inferences provided by Presto. These
clients can obtain a larger amount of information from the ontology without the
computational cost of reasoning. For instance, applications that process RDF in-
formation without interpretation of OWL semantics can be one of such clients.
Another example would be browsers or interfaces that aid humans in the explo-
ration of the ontology.

It is unknown to us what would be the impact of using an ontology together
with its inferences in an application that intends to do additional DL-reasoning.

Intuitively it may appear that having these inferences would simplify future rea-
soning tasks. However, in practice, we suspect that most of current DL-reasoners
will be negatively affected by receiving these inferences as inputs. The reason for
our assumption is that the reasoner is unaware of the presents of these inference
when executing its proving algorithm. For this reason we intend to extend Presto
to allow clients to request the removal of inferences when requesting the repre-
sentation of an ontology or one its entities. This feature will be supported by
means of a HTTP parameters (e.g http://example.org/ontology?noinferences).

4 Query service

Presto is implemented as a RESTful service [?]. Representational State Transfer
(REST) is centered around two basic principles: i) Resources as unique URLs
and ii) Operations as HTTP methods (i.e. GET, POST). Depending on the
HTTP Accept header of the Request, every URI in the resolvable namespace
can be resolved to an HTML or RDF/OWL document. These URIs can be fur-
ther parameterized. For instance, queries can be achieved by sending a HTTP
GET request to the ontology URI with the mandatory query parameter whose
value is string of the SPARQL or Manchester OWL DL query [7] along with the
optional language parameter queryLang, whose value is either ’manchester’ (de-
fault) or ’sparql’. To ask what vehicles have a gas engine? using the DL syntax
for an ontology published at http://www.example.org/vehicles, one sends a GET
request to the the following URL:

http://www.example.org/vehicles?query=Vehicle that hasPart some GasEngine 7

Similarly, the URL to ask the same question using SPARQL is the following:

http://www.example.org/vehicles?query=DESCRIBE ?x WHERE {
?x rdf:type <http://www.example.org/vehicles/Vehicle> .

?x <http://www.example.org/vehicles/hasPart>

<http://www.example.org/vehicles/GasEngine> } 7

The format in which results are returned from a query varies depending on the
query language. When using the DL syntax, results are presented as an OWL
document. This document contains the query expression conceptualized in a new
owl:Class entity. This OWL class receives its name from the URI used to con-
struct the query (i.e. the URI of the ontology + parameters). The remainder of
the document contains those entities that are related to the query expression
such as equivalent classes, subclasses and individuals that are classified into the
class expression. The response document also includes an owl:imports axiom
referring to the ontology containing the terminology. SPARQL queries are for-
matted to the “SPARQL Query Results XML Format” as proposed by the W3C
recommendation [8].
7 URL encoding has been omitted for readablity.

5 Discussion

Presto provides a convenient and intuitive mechanism for making an OWL ontol-
ogy and its entities available as web-resolvable resources. In comparison with the
method proposed by the W3C Semantic Web Deployment Working Group in [2],
user may find Presto easier to use given the following reasons: (i) Presto does not
require the installation and configuration of a conventional web server. (ii) There
is no need for providing specific configuration of the web server for each ontol-
ogy published. (iii) The URI rewriting feature of Presto allows to easily publish
ontological content that were not original designed with HTTP resolvable URIs.
(iv) Presto leverage the capabilities of OWLDoc server to dynamically generate
HTML representations of ontology entities. In addition to this advantages, the
are various use cases were the features of Presto can be found useful. We describe
two of these use cases: building new ontologies with terminology defined from
queries of other ontologies and ontology version control.

5.1 Identifiable Query Results

A DL query posted to an ontology published by Presto is identifiable by the URL
used to construct the query. This URI identifies an OWL class which is equivalent
to the class expression used to query the ontology. Moreover, this URI is stateless
and therefore permanent. Because of its persistent URI, the results of a query
can be imported into a new ontology. By doing this, the new ontology imports
those individuals that are instances of the query class expression, as well as, those
classes that are related to the query (i.e parent classes, subclasses and equivalent
classes). The ontology that imports the query results can provide a name to the
query class expression. To achieve this, an OWL class must be declared in the im-
porting ontology and it must be made equivalent to the URI of the query. For ex-
ample, let http://www.example.org/vehicles be a URI of published ontology. An
HTTP GET to the query URI http://www.example.org/vehicles?query=Vehicle
and hasPart some ManualTransmission returns the following:

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY query "http://www.example.org/vehicles/?query=" >

]>

<rdf:RDF

xmlns="http://www.example.org/vehicles/"

xmlns:query="http://www.example.org/vehicles/?query="

xml:base="&query;Vehicle%20and%20hasPart%20some%20ManualTransmission">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://www.example.org/vehicles" />

</owl:Ontology>

<!-- Query class expression -->

<owl:Class

rdf:about="&query;Vehicle%20and%20hasPart%20some%20ManualTransmission" >

<owl:intersectionOf rdf:parseType="Collection" >

<rdf:Description rdf:about="Vehicle" />

<owl:Restriction>

<owl:onProperty rdf:resource="hasPart" />

<owl:someValuesFrom rdf:resource="ManualTransmission" />

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<!-- Individuals -->

<owl:Thing rdf:about="123-456" >

<rdf:type

rdf:resource="&query;Vehicle%20and%20hasPart%20some%20ManualTransmission" />

</owl:Thing>

</rdf:RDF>

The result of this query contains an OWL class with URI
http://www.example.org/vehicles/?query=Vehicle%20and%20hasPart%20some%20ManualTransmission

which correspond to the query expression. The resulting document also includes
an OWL individual which is inferred to be an instance of the query. Note that
this individual is asserted to have the type of the query class. One can define an
ontology that uses the above results as follows:

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY query "http://www.example.org/vehicles/?query=" >

]>

<rdf:RDF

xmlns="http://domain.org/myontology/"

xmlns:query="http://www.example.org/vehicles/?query="

xml:base="http://domain.org/myontology/">

<owl:Ontology rdf:about="">

<owl:imports

rdf:resource="&query;Vehicle%20and%20hasPart%20some%20ManualTransmission" />

</owl:Ontology

<owl:Class rdf:about="ManualVehicle" >

<owl:equivalentClass

rdf:about="&query;Vehicle%20and%20hasPart%20some%20ManualTransmission" />

</owl:Class>

</rdf:RDF>

The OWL ontology includes the query results by importing the URI
http://www.example.org/vehicles/?query=Vehicle%20and%20hasPart%20some%20ManualTransmission.
Additionally, the ontology defines the class ManualVehicle which is equivalent

to the query class expression identified by the URI
http://www.example.org/vehicles/?query=Vehicle%20and%20hasPart%20some%20ManualTransmission.
The advantage of this approach is that the reasoning tasks for classification and
realization of the expression Vehicle and hasPart ManualTransmission is done
before the import occurs. Essentially, this is distributing part of the reasoning
work across the layers of imports.

5.2 Version Control

Presto can facilitate ontology version control and management. Each ontology
is published on a namespace that includes the version number
(e.g. http://www.example.org/my-ontology-1.0.owl) while the current version is
published with an unversioned namespace (e.g. http://www.example.org/my-
ontology). When a new ontology version is published, it replaces the previous
version as the most current one. Using this pattern one can maintain version
history and also provide prior versions in perpetuity for those web applications
that depend on the stability afforded by a specific set of versioned documents.
In contrast, applications interested in using the latest version need only link to
the unversioned URI. Hence, one can leverage Presto’s automatic URI rewriting
feature and publishing capabilities to allow immediate and effortless deployment
of new ontology versions.

6 Future Directions

The project aims to pursue three main goals in the near future. The first goal
is to implement a procedure dynamically extract an ontology module that can
capture the meaning of a given entity. A procedure which gives a practical ap-
proximation to the minimal module is described in [6] . Modules will be used as
imports to entity descriptions such that clients can use the module to interpret
the entity and reason about it. The second goal is to develop an augmented
query answering model such that clients can provide additional knowledge when
querying published ontologies. In practice, the query will be invoked by a HTTP
POST to an ontology resource. The content of this POST will contain an OWL
document which states the additional knowledge to be considered in the reso-
lution of the client’s query. The approach might also be valuable in composing
and testing domain-specific hypotheses based on a set of user-specified premises
for which the answer does not contain the empty set. The last goal aims to im-
plement a persistent data model to replace the in-memory model for ontologies.
This feature is considered a requirement for the system to scale when the size
of the ontologies and/or the number of published ontologies are large. Using a
similar approach to the one previously described in [4], we aim to optimize the
task of answering DL queries over instances by translating them to SPARQL
over an RDF triple store containing inferences.

References

[1] T. Berners-Lee. (2006, July) Linked data - design issues. [Online]. Available:
http://www.w3.org/DesignIssues/LinkedData.html

[2] W3C. (2008, January) Best practice recipes for publishing rdf vocabularies.
[Online]. Available: http://www.w3.org/TR/swbp-vocab-pub/

[3] M. Horridge, S. Bechhofer, and O. Noppens. Igniting the owl 1.1 touch paper:
The owl api. [Online]. Available: http://owlapi.sourceforge.net/publications.html

[4] A. DeLeon-Battista, N. Villanueva-Rosales, M. Palenychka, and M. Du-
montier, “Smart: A web-based, ontology-driven, semantic web query an-
swering application,” Proceedings of the Semantic Web Challenge 2007.
[Online]. Available: http://ftp.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-295/paper17.pdf

[5] B. Motik, P. F. Patel-Schneider, and I. Horrocks, “Owl 1.1 web ontology language:
Structural specification and functional-style syntax,” W3C Working Draft, 8 Jan-
uary 2008.

[6] B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler, “Just the right amount:
Extracting modules from ontologies,” in Proceedings of WWW-2007: the 16th In-
ternational World Wide Web Conference, Banff, Alberta, Canada, May 8–12, 2007,
2007.

[7] M. Horridge, N. Drummond, J. Goodwin, A. Rector, R. Stevens, and H. H. Wang,
“The manchester owl syntax.”

[8] W3C. (2008, January) Sparql query results xml format. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-XMLres/

