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Abstract. The AgreementMaker system for ontology matching includes an
extensible architecture that facilitates the integration and performance tun-
ing of a variety of matching methods, an evaluation mechanism, which can
make use of a reference matching or rely solely on “inherent” quality measures,
and a multi-purpose user interface, which drives both the matching methods
and the evaluation strategies. In this paper, we focus on two main features
of AgreementMaker. The former is an optimized method that performs the
selection of mappings given the similarities between entities computed by any
matching algorithm, a threshold value, and the desired cardinalities of the
mappings. Experiments show that our method is more efficient than the typ-
ically adopted combinatorial method. The latter is the evaluation framework,
which includes three “inherent” quality measures that can be used both to
evaluate matching methods when a reference matching is not available and
to combine multiple matching results by defining the weighting scheme of a
fully automatic combination method.

1 Introduction

The quest for correctness, completeness, and efficiency in the process of finding corre-
spondences (or mappings) between semantically related entities of different real-world
ontologies is a difficult and challenging task for several reasons. For example, an algo-
rithm may be effective for a given scenario, but not for others. Even within the same
scenario, the use of different parameters can change the outcome significantly. There-
fore, state-of-the-art ontology matching systems [8] tend to adopt different strategies
within the same infrastructure even though the intelligent combination of multiple
matching results is still an open problem.

Our collaboration with domain experts in the geospatial domain [3] has revealed
that they value automatic matching methods, especially for ontologies with thousands
of concepts. However, they want to be able to evaluate the matching process, thus
requiring to be directly involved in the loop. Such considerations have motivated
the most recent features of the AgreementMaker system1 for ontology matching [1,
2]. These features include a comprehensive user interface supporting both advanced
visualization techniques and a control panel that drives all the matching methods
and evaluation strategies (Figure 1) and an extensible architecture to incorporate
new methods easily and to tune their performance. In this paper we concentrate on
an optimization technique to produce the final set of mappings efficiently and on
? Research supported by NSF Awards ITR IIS-0326284, IIS-0513553, and IIS-0812258.
1 www.AgreementMaker.org.



Fig. 1. User interface displaying side-by-side the source and target ontologies (top) and the
control panel for the evaluation and comparison of matching methods (bottom).

the system’s capability to evaluate, compare, and combine different strategies and
matching results.

We describe next the main components of the paper. In Section 2, we cover related
work. In Section 3, we describe several of the matching methods, or matchers, and
their organization in layers. The ontologies being matched are called source and
target ontologies. Matchers perform similarity computation in which each concept of
the source ontology is compared with all the concepts of the target ontology, thus
producing two similarity matrices (one for classes and one for properties), which
contain a value for each pair of concepts.

In Section 4, we describe the process of mappings selection in which a similarity
matrix is scanned to select the best mappings according to a given threshold and to
the cardinality of the correspondences. For the mappings selection, we distinguish
the following four cases: 1-1, n-m, n-∗ (analogous to ∗-m), ∗-∗, where 1, n, and m
indicate specific input parameters and ∗ indicate that there is no constraint on the
number of relations. For example, 1-1 means that each concept in the source ontology
will be matched with at most one concept in the target ontology, n-m means that
each concept in the source ontology will be matched with at most m concepts in the
target ontology, whereas each concept in the target ontology will be matched with at
most n concepts in the source ontology. In the case n-∗, for example, each concept in
the source ontology can be matched to any number of concepts in the target ontology.
We note that in this case the chosen similarity threshold will in fact determine the
number of concepts in the target ontology. In order to maximize the overall similarity
of the selected mappings in a 1-1 or n-m matching, an optimization problem (namely
the Assignment Problem) has to be solved. We provide an efficient solution to this
problem by reducing it to the maximum weight matching in a bipartite graph and
by adopting the Shortest Augmenting Path algorithm (SAP) [11]. Our experiments,



which we describe in Section 6, have shown that this solution is considerably more
efficient both space- and time-wise than the typically used Hungarian Method [12].

In Section 5, we describe the evaluation framework, which can make use of a ref-
erence matching or rely solely on “inherent” quality measures. In particular, we have
adopted in our system two quality measures proposed by others [10], namely order
and distance preservation, which analyze the structural properties of the produced
matching to help determine its quality, and our own quality measure, called local
confidence, which measures the reliability of the similarity measures assigned by a
matching method. In addition, users can adopt any of these quality measures to define
the weighting scheme of a fully automatic method that combines multiple matchings.
The experiments, reported in Section 6, have shown that the local confidence quality
measure can be quite effective in such a task.

2 Related Work

There are several notable systems related to ours [7, 8]. In this section, we will look
at related systems with a special focus on the topics of combination of matching
methods, mappings selection, and quality measures.

RiMOM [15] implements more than eight different matchers. It adopts a strat-
egy selection method based on the definition of three ontology feature factors: label
similarity, structure similarity, and label meaning. These factors are estimated based
on the two ontologies to be matched. The matching strategies to be used are those
that are suited to the highest factors. For example, if the two ontologies have high
label similarity factor, then RiMOM will mostly rely on linguistic based strategies;
while if the two ontologies have a high structure similarity factor, it will employ
similarity-propagation based strategies on them. However, we note that the associa-
tion between factors and strategies is predefined. Multiple results are combined using
the weighted average of their similarity values, where the weights are predefined ex-
perimentally. While AgreementMaker does not provide a strategy selection method, it
also provides a combination strategy based on the linear interpolation of the similar-
ity values. However, in contrast with the RiMOM system, the weights can be either
user assigned or evaluated through automatically-determined quality measures. This
framework is extensible, because if a new method is integrated into the system, it can
be directly used and combined with other methods. In terms of the final selection of
mappings, RiMOM uses a similarity threshold value, while AgreementMaker uses in
addition cardinality values.

Falcon-AO [9] uses four elementary matchers. Similarly to RiMOM, the asso-
ciation between detected similarities and matchers to be combined are predefined.
However, matching results can only be combined two at a time (thus differing from
both RiMOM and AgreementMaker). While RiMOM does not provide any evaluation
strategy, Falcon-AO allows users to evaluate the precision, recall, and F-measure of
a matching method given a reference matching. As for the mappings selection phase,
Falcon-AO (like RiMOM) does not consider cardinality parameters.

SAMBO and SAMBOdtf [13] have five basic matchers, which are combined using
the weighted average of similarities, where the weights are predefined. As for the
mappings selection phase, SAMBOdtf adopts a strategy that is based on double
threshold: pairs above the threshold are are retained as suggestions, those in between
the lower and the upper threshold are filtered using structural information, and the
rest is discarded.



None of the above systems proposes quality measures. One approach in this direc-
tion reduces mapping incoherence of the computed mappings to concept unsatisfia-
bility in the ontology that results from merging matched ontologies [14]. The quality
evaluation is then computed by measuring the effort necessary to remove all causes
of incoherence from the matching.

Mapping incoherence is also used in the ILIADS system [16], which performs
ontology matching and merging. They start by matching concepts, which are logical
mappings that are used to create a unique integrated ontology. Logical reasoning over
the constraints in the ontologies creates a consistent integrated ontology.

Other work proposes new measures that extend precision and recall to objects that
are semantically defined, such as those in ontologies and alignments [5]. Such quality
measures could be integrated into AgreementMaker, in addition to the “classically”
defined concepts of precision and recall already supported.

3 Matching Methods

Our architecture allows for serial and parallel composition where, respectively, the
output of one or more methods can be used as input to another one, or several
methods can be used on the same input and then combined. A set of mappings may
therefore be the result of a sequence of steps, called layers, to obtain a final matching
or alignment (i.e., a set of mappings).

First layer matchers compare concept features (e.g., label, comments, annota-
tions, and instances) and use a variety of methods including syntactic and lexical
comparison algorithms as well as the use of a lexicon like WordNet in the Base Simi-
larity Matcher (BSM) [4]. In the Parametric String-based Matcher (PSM) (see Figure
2), users can choose between a set of string comparison metrics (i.e., edit-distance,
Jaro-Winkler, and a substring-based measure devised by us), define the normaliza-
tion process (e.g., stemming, stop-word removing, and link stripping), and weigh the
relevance of each considered concept feature. The similarity between two concepts is
computed as the weighted average of the similarities between their single features.

In several methods, the common information between two concepts is kept into
separate features and compared within each feature: labels are compared with la-
bels and concept descriptions are compared with concept descriptions, for example.
For this reason, we adopt a Vector-based Multi-word Matcher (VMM) that treats
concepts as virtual documents containing the information pertaining to them. This
information includes their descriptions, the information about their neighbors, and
extensional information (e.g., class instances). These containers of terms are trans-
formed into TF-IDF vectors and the similarity is computed using the cosine similarity
metric, which is a common technique used to compare documents (see Figure 3).

Second layer matchers use structural properties of the ontologies. Our own meth-
ods include the Descendant’s Similarity Inheritance (DSI) and the Sibling’s Similarity
Contribution (SSC) [4]. As their name indicates, they take respectively into account
the information about concepts of which a given concept is a descendant or sibling.

Finally, third layer matchers combine the results of two or more matchers so as
to obtain a unique final matching in two steps. In the first step, a similarity matrix
is built for each pair of concepts, using our Linear Weighted Combination (LWC)
matcher, which processes the weighted average for the different similarity results
(see Figure 4). Weights can be assigned manually or automatically, the latter kind
being determined using our evaluation methods (presented in Section 5). The second



Fig. 2. Parametric String-based Matcher (PSM).

Fig. 3. Vector-based Multi-word Matcher (VMM).

step uses that similarity matrix and takes into account a similarity value and the
desired cardinality to generate the final set of mappings, which maximizes the overall
similarity while satisfying the selection constraints.

4 Mappings Selection

Four cases are considered in the selection process (see Section 1), depending on the
desired cardinality: 1-1, n-m, n-∗ (analogous to ∗-m), and ∗-∗. The solution to n-
∗ can be found by scanning each row in the similarity matrix (or each column in
the case ∗-m) and by selecting the n most similar correspondences with similarity
values higher than the threshold (see Figure 5). For the ∗-∗ case, only the threshold
constraint has to be satisfied.

The 1-1 matching case, which is often required in real-world scenarios, is a chal-
lenging problem. In order to maximize the overall similarity in such scenarios, an
optimization problem (namely the Assignment Problem) has to be solved. Usually,
combinatorial algorithms (e.g., the Hungarian Method [12]) are used to find the op-
timal solution, but they are costly in terms of space usage and execution time and
are for this reason impractical to match ontologies with thousands of concepts.

We provide an efficient alternative solution to this problem by reducing it to
the maximum weight matching in the bipartite graph G = (S ∪ T, E ), where S



Fig. 4. Linear Weighted Combination (LWC) matcher.

Fig. 5. Example of 2-∗ matching with threshold 0.7 illustrating the similarity level (which
yields the similarity matrix) and the selection level (which yields the alignment).

contains the source ontology concepts, T contains the target ontology concepts, and
E contains an edge oriented from S to T for each correspondence with a similarity
value higher than the threshold, weighted with the threshold value itself. We recall
that a maximum weight matching M is a subset of the edges in E such that for
each vertex in G at most one adjacent edge is contained in M and the sum of the
weights (i.e., the similarity values) of the selected edges is maximized. Thanks to this
transformation, we can adopt the Shortest Augmenting Path algorithm (SAP) [11]
to find the optimal solution in polynomial time.

Finally, in the n-m selection case, we reuse our algorithm for the 1-1 matching
case several times sequentially. We keep track of the number of mappings found for
each vertex, and at the end of each iteration, we remove from the bipartite graph
all the vertices together with their adjacent edges that have reached the maximal
cardinality. The algorithm terminates when the graph is empty. We do not know of
any other ontology matching system that has investigated the selection process with
this level of detail.



similarity level selection level

local
Quality of each row (or column) of
the similarity table

Quality of a mapping

global Quality of the entire similarity table Quality of the whole set of mappings
Table 1. Categorization of measures of quality of a matching method.

5 Evaluation

The most effective evaluation technique compares the mappings found by the system
between the two ontologies with a reference matching or “gold standard,” which is
a complete set of correct mappings as built by domain experts, in order to measure
precision, recall, and F-measure. The AgreementMaker system supports this evalua-
tion technique. In addition, a reference matching can also be used to tune algorithms
by using a feedback mechanism provided by a succession of runs.

However, a gold standard is usually not available. Therefore, “inherent” quality
measures need to be considered. These measures can be defined at two levels as
associated with the two main modules of a matcher: similarity or selection level. As
illustrated in Figure 5, we can consider local quality as associated with a single row
(or a single column) of the similarity matrix at the similarity level (or mapping at
the selection level) or global quality as associated with all the correspondences in the
similarity matrix at the similarity level (or with all the mappings in a matching at
the selection level). This categorization of quality measures is summarized in Table 1.
We have incorporated in our system two global-selection quality measures proposed
by others [10] and one local-similarity quality measure that we have devised.

The intuition behind the two global-selection quality measures, namely (1) or-
der and (2) distance preservation, is that given a set of mappings we can measure
the structural properties of the produced matching to help determine its quality. In
particular, according to (1), a matching should not change the order of concepts as
defined by the is-a or part-of relations, and, according to (2), it should preserve the
distance between concepts as much as possible. These metrics are good measures of
the quality of a set of mappings if the ontologies are structurally similar.

In contrast with the two global-selection measures, the local-similarity quality
measure is independent of the properties of the ontologies. Indeed, it tries to measure
the reliability of the similarity measures assigned by a matching method, which is
an intrinsic property of the matching method and therefore scenario independent. In
particular, for each source (or target) concept we want to measure the confidence of
the matcher as related to the selected mappings for that concept. Similarity-based
matching techniques are based on the idea that if two concepts are very similar,
they probably deserve to be matched. Therefore, our measure should be directly
proportional to the similarity values of selected mappings. At the same time, we
want to detect and penalize those matchers that tend to assign high similarity values
too generously. For instance, if the correct solution is a 1-1 matching we expect each
concept to be very similar (i.e., have high similarity value) to one concept at most,
and very different (i.e., have low similarity value) to all others. Moreover, we want the
similarity assignments to be stable in respect to the threshold value, so that changing
the threshold slightly should not affect the final alignment considerably.

Therefore, given a matcher M and a concept c, we can define the local confidence
of M with respect to c, LCM (c), as follows:

– let T be the set of all target concepts;



Fig. 6. Local confidence quality measure example.

– let mM(c) ⊆ T be the set of concepts c′ ∈ T that have been mapped to c by M ;
– let simM(c, c′) be the similarity value between c and c′ assigned by M ;
– then LCM (c) is defined as the difference between the average of selected map-

pings’ similarities for c and the average of the remaining correspondences’ simi-
larities:

LCM(c) =

∑
c′ ∈mM(c)

simM(c, c′)

| mM (c) |
−

∑
c′ ∈ (T−mM(c))

simM(c, c′)

| T − mM (c) |
.

With the reasonable assumption that M maps the most similar concepts, then

1 ≥

∑
c′ ∈mM(c)

simM(c, c′)

|mM (c)| ≥

∑
c′ ∈ (T−mM(c))

simM(c, c′)

|T−mM (c)|
≥ 0 , therefore

LCM(c) ∈ [0, 1]

A simple application of this quality measure is shown in Figure 6.

6 Experimental Results

In this section, we first report on the efficiency tests of the mappings selection algo-
rithm. Then we compare the first layer matchers proposed in this paper (i.e., PSM
and VMM) with the matching methods we used in the OAEI 2007 competition (i.e.,
BSM followed by DSI) [6]. Finally, we report on the results of the evaluation of the
LWC matcher. We benefited from the capabilities of the AgreementMaker itself to
perform the evaluations.

Mappings selection The most relevant module in this component is the 1-1 match-
ing algorithm, which is also used to solve the n-m matching case. We compare the
algorithm that we have adapted and implemented, the Maximum Weight Bipartite
Matching, MWBM, with the Hungarian method [12] used by other matching sys-
tems.2 In the first experiment, we ran both algorithms on random similarity matri-
ces of different sizes (i.e., from a 500 × 500 matrix to a 5000 × 5000 matrix) with a
threshold value of 0.5. As shown in Figure 7, the Hungarian method is much slower
and uses a larger amount of memory.

In the second experiment, we investigated the effects of the threshold value on
the performance of the algorithms. This time, we ran both methods on the same
2 The implementation is available at konstantinosnedas.com/dev/soft/munkres.htm.



Fig. 7. Performance comparison between the Maximum Weight Bipartite Matching and the
Hungarian method on different input sizes with a memory limitation of 1GB.

Fig. 8. Performance comparison between the Maximum Weight Bipartite Matching and the
Hungarian method on different threshold values.

1000 × 1000 matrix using different threshold values (varying from 10% to 90%).
As shown in Figure 8, the Hungarian method is not affected by the differences in
the threshold values while the performance of MWBM improves when the threshold
increases. That is, combinatorial matching methods, such as the Hungarian method,
process the whole similarity matrix including those values that do not satisfy the
threshold constraint. Instead, our algorithm transforms the similarity matrix into
a weighted bipartite graph whose size is directly affected by the threshold value.
Indeed, those correspondences that do not satisfy the threshold constraint are not
translated into edges of the bipartite graph.

First layer matchers We ran the first two experiments on the alignment of eight
pairs of ontologies. In particular, each set contains a source ontology, a target ontol-
ogy, and the reference matching (expected matching) between them. The following
ontology pairs were provided by I3CON 2004:3

– weapons set (WEP) contains two classifications of various weapon types;
– people and pets set (PP), contains two ontologies describing people and pets;
– networks set (NET) contains two classifications of computer networks;
– Russia set (RUS) contains general information about Russia.

3 www.atl.external.lmco.com/projects/ontology/i3con.html



Fig. 9. Comparison of first layer matchers (best run is considered).

The other four sets of ontologies are part of the OAEI benchmark.4 The domain of
these ontologies is bibliographic references. We consider those test cases in which the
reference ontology #101 has to be aligned with the following real-world ontologies:
– #301 is the BibTex bibliographic ontology from MIT;
– #302 is the BibTex bibliographic ontology from UMBC;
– #303 is the Karlsruhe bibliographic ontology used in the OntoWeb portal;
– #304 is the INRIA bibliographic ontology.

In the first experiment, we ran the first layer matchers on all sets of ontologies
using multiple threshold values for all of them. In Figure 9, for each method and
for each ontology set, we report on the best F-measure of all runs. PSM is usually
more effective than the others except for test cases #302 and #303, where it is
slightly worse. However, the overall F-measure is definitely the highest. We further
investigated the result of this experiment and noticed that BSM followed by DSI is
quite accurate (high precision) but is able to find mappings only when the concepts
are quite similar (otherwise displays low recall on dissimilar ontologies). Instead, PSM
usually finds more mappings, even though some of them may be wrong occasionally.
That is why it is less effective than BSM on the #303 set which contains mainly
trivial mappings. VMM is sometimes better than the combination BSM+DSI, but
it is usually worse than PSM. The problem is that these ontologies do not provide
enough information to allow for this matcher to be very effective; however, it finds
some non-trivial mappings not discovered by the other methods.

In summary, PSM is quite effective and stable, BSM is important for his high
accuracy and VMM is able to find non-trivial mappings. Given the different qualities
demonstrated by these matchers, we thought of combining them, thus motivating our
next experiment.

LWC matcher We ran the first layer matchers (BSM, PSM, and VMM) and com-
bined their results with the LWC matcher using four different linear operations:
average of similarities, LWC-avg, maximum similarity, LWC-max, minimum similar-
ity, LWC-min, and quality-based weighted average of similarities, LWC-weight avg.
4 oaei.ontologymatching.org/2009/benchmarks/



Fig. 10. Comparison of combination techniques.

In the quality-based strategy, we adopted the local confidence quality to measure
the relevance of the mappings generated by each matcher. In particular, the LWC
method computes a combined similarity matrix that is obtained as the weighted av-
erage of the similarity matrices produced by the three matchers (see Figure 4). In this
experiment, the weights are assigned by evaluating each matcher with the local con-
fidence quality measure. Being a local similarity level quality measure (see Table 1),
it defines a different value for each row of a similarity matrix, which is directly used
to compute the weighted average for that row in the combination of the similarity
matrices.

For each ontology set, we report in Figure 10 the best performance of the match-
ers to be combined, henceforth called input matchers, and the performance of the
different versions of the LWC matcher. In most cases, almost all the mappings found
by a single matcher are included in the set generated by another one, therefore any
combination of these matchers cannot provide a significant improvement. A combined
result equivalent to the best matcher in the input is already a good result. However,
in all test cases, at least one of the combined results is equivalent to or better than
the best result of the input matchers.

Considering the complexity of combining multiple matchings, which is still an
open research problem, the most important result of this experiment is that the
weighted average based on the local confidence quality is the most effective technique.
Moreover, we note that the weights are chosen automatically.

7 Conclusions

In this paper, we make a contribution to the automatic evaluation of matchings by
defining a quality measure that does not take into account the prior knowledge of
a reference matching. We use this quality measure to define the weighting scheme
of a fully automatic combination method. We also propose an efficient solution for
the mappings selection task, whose performance is also positively affected by the
threshold value. We plan to provide an API to make this functionality available to
other matching systems.



In the future, we will take advantage of our extensible architecture and add new
matching methods, for example, to our instance based methods. We plan to study
new quality measures to enhance the current evaluation capabilities and our quality-
based combination technique. Another direction for future research includes using
partial reference matchings to perform the alignment of full ontologies.
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