
 E2 - 1 

Dietmar Schütz 
Siemens AG, Corporate Technology 

CT T DE IT1 
System Architecture & Platforms 

Otto-Hahn-Ring 6 
81739 München 

Germany 
eMail:  dietmar.schuetz@siemens.com  

Phone: +49 (89) 636-57380 
Fax: +49 (89) 636-45450 

VARIABILITY REVERSE ENGINEERING 
Version 1.0, (Final Version for Printed Proceedings), EuroPLoP2009 

In the realm of Product Line Engineering (PLE), Variability Management is 
one of the key issues. The success of the whole product line approach relies 
on the correctness of the variability models. Unfortunately, before transiting 
to PLE, knowledge on the variability is not addressed explicitly, but 
embedded in many development artefacts. This pattern provides an 
approach to extract that hidden knowledge, and transform it into the 
required problem side commonality/variability model. 

Product Line Engineering (PLE), Platform Development, 
Product Business, Solution Business 

An established development organisation with several successful similar 
projects has identified the potential for a Product Line (PL) approach. It has 
defined a business strategy and market scope to be covered, and developed a 
coarse roadmap and internal business case for developing reusable assets. 

Consider your company operates in solution business in the web 
applications domain, developing customer specific (software) applications. 
These applications typically share a common set of features and solutions. 
For every customer/application, a separate project is created, responsible to 
satisfy customer needs within the given budget.  
In order to reduce their own development effort, the projects have applied a 
copy/paste approach on the code (and project) base, using the most similar 
project from the past as starting point for their own work. 

Summary 

Context 

Example 

Copyright retain by author(s). Permission granted to Hillside Europe for inclusion in the CEUR archive of 
conference proceedings and for Hillside Europe website. 



 E2 - 2 

This ad-hoc reuse has sped up initial development of other applications, but 
reveals weaknesses in an increasing number of maintenance scenarios. 
Every bug that is found has a high probability to affect other projects too, 
but is difficult to be located and fixed in the different branches. 
Now, your management wants to establish a “platform” (better: product line 
engineering) approach in order to benefit from reusing common parts during 
software development and the entire software lifecycle. In the context of the 
“Commonality-Variability-Analysis” (C/V-analysis) tasks during domain 
analysis, the projects from the past are revisited in order to extract a useful 
set of commonalities that shape the basis for planned reuse in the future. In 
addition, the variant parts should be identified for a proper platform 
scoping, defining the complete set of core assets that should be provided 
upfront. 

A lot of knowledge regarding commonality and variability that has been 
accumulated in the past, but is not explicitly documented. How can the 
undocumented knowledge be made accessible for future work, and 
contribute to a viable commonality/variability-model? 

The following forces influence the solution: 
• Different kind of artefacts.  

The exiting base of information from previous projects spans various 
types of artefacts (documents, specifications, tools, code). All of 
them might be a source for commonality and variability. 

• No explicit highlighting of variability.  
From the perspective of a single project, variability does not exist, 
since the customer wants a specific system. Therefore, each project 
supports its own needs, but does not care about the differences to 
others. The copy/paste approach has helped to have a quick start, but 
couldn’t keep the different projects to follow their own, isolated 
path, resulting in an overly wide code base. 

• Constraints and dependencies.  
Typically, a variability model does not only contain the possible 
variation points and variants, but also the dependencies between 
them, such as conflicting variants. 

Extend the forward oriented variability modelling (feature based C/V-
analysis) with backward oriented techniques (reverse engineering). To this 
end, analyse promising types of artefacts that have been created by previous 
development projects in order to extract candidates for problem side 
variability. Assess these candidates for there relevance to identify solution 
side variations points and variants. Map those back to (customer-visible) 
features in order to problem side variability model. With that model in 
place, assess the variability on both sides to derive technical constraints and 
dependencies as necessary part of the variability model. 

Problem 

Solution 



 E2 - 3 

The intended outcome of the C/V analysis is a commonality/variability-
model. It contains features that are common to all products, and those where 
the products differentiate from others, characterized by variation points (e.g. 
colour) and specific variants (e.g. blue, green).  
In order to distinguish this C/V model from the developmental solutions, 
this model is typically denominated as the problem side C/V model. It is 
counterparted by the solution side C/V model, which relates to components, 
modules, or code fragments of the realization structure and implementation. 
Both parts of the C/V-model are connected by a mapping structure that 
links the variations points from both sides together, hence allowing deriving 
a concrete implementation based on a given set of features. 

Input sources for the analysis are all kinds of artefacts that have been 
created and/or modified in relation with the definition and development of 
concrete products. Since similar kinds of artefacts exist for the different 
products, they build a comparison base for the analysis. 

Applying VARIABILITY REVERSE ENGINEERING incorporates at least the 
sequence of six steps described below. 

Decide on input sources.  
Based on the knowledge which are the key artefacts that your business and 
development operates on, establish a set of artefact types that probably will 
provide much to variability. 

The starting point are definitely the artefacts available on the problem side: 
 Marketing material containing product descriptions.  

These might even contain explicit variability information by means 
of (comparative) feature lists. 

 User Manuals 

On the solution side, typical promising artefact types are the “high level” 
specifications of the system: 

 Requirements specifications 
 Architecture specifications 
 System test cases 

Some others artefacts contain the variability information more directly, but 
maybe on a too fine level: 

 Code 
(maybe even explicitly exposing variability, e.g. by means of 
conditional compilation directives) 

 Configuration files (.ini-files, and similar) 
Last but not least, the development environment provides structural 
information too,  

 Configuration management structure (branches) 
 Build/development (management) structures 

Structure 

Realization 

1 



 E2 - 4 

Compare to derive differences.  
For most kinds of artefacts, variants reveal themselves as differences 
between two documents.  
The results are best if you do not compare two random documents to each 
other, but use the copied master and those derived from it, to limit the set of 
differences/changes to just one level. To this end, it might be useful to do 
some “project archaeology” and dig out these “based on” relationships. 
Unfortunately, they are not necessarily identical throughout the whole set of 
artefacts. 

Comparing two files using text/line oriented tools like diff is nice for 
code, but there is also need for a semantic diff /compare. Sometimes this is 
provided by development tools. Otherwise, it might be helpful to export the 
artefacts to an xml representation and compare these files incorporating the 
hierarchical structure. But this approach needs careful observation, since for 
example the order of nodes in containers (not ordered lists) might lead to 
misinterpretation the results. 

Identify candidates.  
Walk through the different kinds of artefacts and the comparison findings, 
in order to identify common and variant parts. Different artefact types 
require different assessment techniques, related to their typical content and 
change scenarios that might have been applied during “copy/paste/modify” 
cycles. 

Marketing documents:  
Scan for keywords like “option”, “additional”, “alternative”, since they are 
explicitly indicating variability. The features listed there can (after 
verification) directly added to the problem side C/V model, and used as 
input for considering variability. If there are comparative specs for the 
different products, they already contain most of the variability information. 

Requirement documents:  
Due to the “contractual” character of requirement documents, often 
polishing of wording is necessary. In order to not mistake these as variation 
candidates, it is helpful to look into related solution side artefacts 
(architecture and design documents, hopefully linked to the requirements) to 
assess the variability potential of the discovered changes. 

Configuration management system:  
This source of information might provide explicit variability candidates, e.g. 
by means of branches. Another useful source is the code and its changes 
over time. The changes (when taken from configuration management) often 
indicate the reason for change by check-in comments. 

Select solution side variability.  
After having all the differences and changes available, it is necessary to 
filter out the irrelevant elements. While this might be obvious for smaller 
code changes, all bigger differences must be reflected according to their 

2 

3 

4 



 E2 - 5 

relevance to stakeholders (customer, product manager, key developer) 
regarding variation scenarios. The remaining elements are arranged into a 
solution side variability model, typically oriented along the structure of the 
system and development organisation, which contains the common parts 
too. 

Map back to problem side variability.  
We need to separate customer relevant requirements and variability from 
corresponding design related elements. For design related issues, try to 
analyze the rationale behind it –it could be an undocumented requirement or 
a constraint 

 use established RE analysis techniques to extract the reason behind 

 try to reverse the refinement step by abstraction/generalization 

Use high level features identified in the solution domain as a guide for 
further reverse engineering activities and as completeness check 

Finally merge all identified requirements, variability and constraints with 
requirements on solution side and consolidate the models. 

Complete white spots.  
When looking at your problem side, you might recognize that the system 
you see does not match the perspective of the customer. Use scoping 
techniques to define the boundaries of your product line, and complete 
missing elements within your desired scope. 

VARIABILITY REVERSE ENGINEERING provides the benefits depicted below: 

• Efficiency  
By focussing on artefacts types with high potential first (explicit 
variability, on problem side), the process of extracting variability  the 
generates the most important results with minimal effort early (80:20-
rule). 

• The variability model reflects knowledge from past projects  
Even if not obvious upfront, the implicit variability knowledge from the 
past projects is incorporated into the commonality/variability-model, 
making it much more realistic than a strictly top down approach. 

• Derivation support  
The artefact types that have provided useful content to the backward 
analysis are also promising candidates for forward oriented tasks: they 
should be supported by the platform for the efficient derivation of 
concrete projects/products. 

5 

6 

Consequences 



 E2 - 6 

On the other hand, the pattern carries the following liabilities: 
• Reverse Engineering can be laborious and expensive  

Especially the tasks of deriving and assessing the candidates for 
variability can eat up tremendous resources, due to their sheer number. 

• Risk of overdoing  
The past does not necessarily reflect the future. Hence focusing to much 
on the derived information can be misleading. 

• Risk of missing dependency information  
Possible dependencies between variants (e.g. conflicts) are typically not 
expressed in the development artefacts, and hence cannot be derived 
from them. Hence, the variability model needs to be proof-read, 
consistency-checked and possibly extended afterwards. 

In product business, there are even more sources: information gained from 
competitors can be subject to the variability reverse engineering too: 
products catalogues, (comparative) feature lists, reverse-engineered 
products. Although they do not necessarily fit to your solution side 
variability model (and therefore should be kept separately in the beginning), 
they valuably contribute to the problem side. 

Thanks to my shepherd Hans Wegener, for his patience and guidance in 
busy times. To my colleagues Horst Sauer, Anne Hoffmann, and Christa 
Schwanninger, for providing their thoughts and never getting out of 
discussion. And last but not least I thank the participant of the writers 
workshop at EuroPLoP 2009, namely Alain-Georges Vouffo-Feudjio, 
Christa Schwanninger, Claudius Link, Ed Fernandez, Klaus Marquardt, 
Markus Völter, Michael Kircher, and Rene Bredlau. 

[SPLE2006] 
Pohl, Böckle, van der Linden, Software Product Line Engineering, 
Springer, 2005 

Variants 

Credits 

References 

 


