
Modeling Deployment of Enterprise Applications

Susanne Patig1

1 University of Bern, IWI, Engehaldenstrasse 8, CH-3012 Bern
susanne.patig@iwi.unibe.ch

Abstract: Deployment comprises installing, activating and updating applications.
The applications to be deployed usually require certain conditions that can refer to
hardware capabilities, other software (dependencies), physical artifacts or
configuration. Deployment planning aims at satisfying these prerequisites without
violating the hardware’s capabilities. This paper presents the domain-specific
language ADeL (Application Deployment Language) that was designed to describe
and validate deployment plans. The ADeL metamodel was implemented within the
Eclipse Modeling Framework (EMF) and contains a set of OCL constraints
(implemented with the tool Topcased) to enable the automatic validation of
deployment plans.

1 Introduction

As a result of mergers, acquisitions and evolving business needs, the applications and the
IT infrastructure (hardware, system software and network) of a company change.
Typical Enterprise architecture (EA) approaches do not trace in detail the applications to
the used IT infrastructure [2]. Such tracing information, however, is needed for IT
consolidation, dependency analysis and the management of application portfolios [2].

This paper tries to close the gap between applications and IT infrastructure by dealing
with deployment planning in data centers. Deployment comprises all activities that make
some released software ready for use, namely installation, activation and updating [5].
During deployment planning, applications must be assigned to a given IT infrastructure
in such a way that the assignment is valid. The approach presented here is capable of
modeling such assignments and checking their validity.

Section 2 summarized the requirements of deployment planning in data centers;
Section 3 sketches the relevant existing approaches. In Section 4, a new domain-specific
language called ADeL (Application Deployment Language) is proposed and applied to a
real-world case. The last section contains critical reflections and an outlook.

2 Requirements of Application Deployment

The requirements of planning the deployment of complex applications in data centers are
derived from two real-world cases, namely the installation of SAP SCM in the SAP
UCC in Magdeburg and the installation of the content management system openCMS

(http://www.opencms.org/) in the VLBA Lab Magdeburg1. During requirements
elicitation, particular system’s instances as well as documents related to installation were
analyzed, and people involved in the installation process were interviewed. The
complete description of the cases can be found in [16]; for brevity, only the elicited
requirements are listed in the following. In detail, an approach that supports the
deployment of complex applications in data centers must be capable to express:

[Rq1] The available hardware and its technical characteristics (capabilities). The most
important technical characteristics are CPU type (restricting the operating system)
and CPU count as well as the sizes of RAM and HD.

[Rq2] All that is to be deployed and has certain prerequisites, i.e., application
components, system software or installation media. The prerequisites can refer to
hardware capabilities, other software (i.e., dependencies), physical artifacts (e.g.,
executables, configuration files) or configuration activities (defining ports, IP
addresses etc.). The objects to be deployed are called requirement units.

[Rq3] The direct or indirect assignment of requirement units to hardware; indirect
assignments involve intermediate requirement units.

[Rq4] Deployment constraints, e.g., whether or not some software units are allowed to
run on the same server.

[Rq5] Choices in realizing some functionality (e.g., ‘database functionality’) by distinct
software products (e.g., Oracle, DB2, MaxDB).

Interviews with staff involved in the installation of complex applications made it clear
that the expressive power reflected by the requirements [Rq1] to [Rq5] should be
realized by a modeling language [Rq6] that is SImple, Extensible and General; I call this
the SIEG principle. Simplicity [Rq7] means that only a small set of well separated
concepts should be used because the cognitive capacity of humans is limited [3]. Exten-
sibility [Rq8] enables the adaptation of the new approach to specific deployment
situations (by adding metamodel elements) and unanticipated usage scenarios (model-
driven development by adding (meta-) model transformations). As real-world application
landscapes and hardware are heterogeneous, the new approach should be general [Rq9],
i.e., independent of particular hardware, software and software architecture. Finally,
checking modeled deployment plans for their validity [Rq10] prior to installation was
rated as an important benefit of modeling.

The next section analyses whether or not the existing approaches in the field of
deployment satisfy the elicited requirements.

3 Existing Approaches in the Field of Deployment

Software deployment has been largely neglected in academic discussion. Fig. 1 arranges
the existing approaches (i.e., tools, modeling languages and standards) in a portfolio:
The axes reflect the focus of the approaches and the kind of support they offer,
respectively. The sizes of the bubbles illustrate the covering realized by each approach.

1 All names of products are trademarks, service marks or registered trademarks of the respective companies.

Fig. 1. Existing approaches in the field of deployment.

The lower left quadrant of the portfolio contains tools that automate all deployment
activities (ORYA [12], Software dock [8]) or only installation (ADAGE [10]); the
unlabeled bubbles represent proprietary tools. In this paper, these approaches are
neglected as they do not satisfy the modeling requirement [Rq6]. Moreover, ADAGE
and the proprietary tools are not general [Rq9].

The approaches that model deployment focus on business or IT. The business focus is
typical for approaches stemming from the field of EA (ArchiMate [11]) or go even
beyond (MEMO ITML [28]). Both approaches provide constructs to express
applications and system software [Rq2] as well as hardware [Rq1] and the corresponding
assignments [Rq3]. However, as enterprise architecture aims at aligning business and IT,
the resulting models are hardly extensible for purposes beyond description [Rq8],
constraints [Rq4] and choices [Rq5] cannot be represented, and the validity of the
modeled deployment scenarios [Rq10] cannot be checked.

UML deployment diagrams [14], IBM topologies [13], [16] and the Common Inform-
ation model (CIM) [6], which is implemented in configuration management databases
(CMDB), represent the IT view on deployment. These approaches satisfy the require-
ments [Rq1] to [Rq3] related to expressive power (minor restraints refer to the represent-
ation of artifacts) as well as the requirement of extensibility [Rq8]. However, gaps exists
for the other requirements: The UML relies on the OCL [11] to specify any kind of
deployment constraints [Rq4], whereas IBM topologies support a limited set of
constraint types by particular constructs [13]. Deployment choices [Rq5] are not covered
by the existing approaches, except for an indirect modeling with IBM topologies (see
[16]). Measured by the number of constructs, none of the approaches is simple [Rq7].
Because of being standards, UML deployment diagrams and CIM are general [Rq9],
IBM topologies and CMDBs are not. Only IBM topologies include a (restricted) way to
check the validity of deployment plans prior to installation [Rq10].

To sum it up, the main deficiencies of the existing approaches are missing simplicity
[Rq7] as well as lack of support for deployment choices [Rq5], constraints [Rq4] and
checking the validity of deployment models [Rq10]. The domain-specific language
ADeL proposed in the next section was designed to overcome these deficiencies.

4 ADeL – The Application Deployment Language
4.1 ADeL Metamodel

The ADeL metamodel consists of the abstract syntax depicted in Fig. 2 as well as a set of
OCL invariants.

The core ADeL metamodel elements are units; each unit can be linked
(isLinked) to an arbitrary number of other units. As an abstract super class, a unit
defines the common properties of both RUnits (requirement units, see [Rq2] in Section
2) and hardware: the name, an identifier id (if units cannot be recognized from their
names), the type of CPU (CPU_type), the total number of CPU cores (CPU_count),
the sizes of hard disk (HD) and random access memory (RAM). All properties except for
the name are optional.

Fig. 2. Abstract syntax of the ADeL metamodel.

Units of the subtype hardware represent physical capabilities [R1] to host some
RUnit(s). Basically, the prerequisites for RUnits can refer to hardware, software,
physical artifacts or configuration (see [Rq2] Section 2). Hardware prerequisites are
expressed by the properties listed above and paths to hardware [Rq3], whereas software
prerequisites (dependencies) correspond to links (isLinked) between RUnits.

The predefined properties of units express standard deployment needs. Unforeseen
prerequisites or capabilities can be modeled by attributes [Rq8]. A unit may be
associated with an arbitrary number of attributes.
RUnits have the additional properties type and optional. The property type

indicates whether a RUnit is elementary (GType = E), which is the default, or groups
other RUnits. Groups of RUnits are either conjunctive (GType = A), disjunctive
(GType = O) or exclusive (GType = X), i.e., all/at least one/one and only one of the
grouped RUnits is to be deployed. Often such groups are conceptual, i.e., they
structure ADeL models or prepare deployment choices [Rq5]. The property optional
describes whether or not some RUnit must be deployed at all.

Physical artifacts are needed for deployment execution, IT operations or result from
configuration activities (e.g., configuration files, start profiles). They can be represented
by the metamodel element artifact. A unit can be linked to any number of
artifacts. The location of an artifact must always be given (property path),
whereas the property name as well as associations to attributes are optional.

The OCL invariants of the ADeL metamodel are independent of deployment, namely:
(1) Exactly one root node of the type RUnit must exit. (2) Identical hardware units
agree in the values of their capabilities (CPU type and count as well as the sizes of RAM
and HD).

The ADeL metamodel was implemented within the Eclipse Modeling Framework
EMF 2.4.2 [4] and Eclipse 3.4 Ganymed. The current concrete ADeL syntax corresponds
to the graph provided by the EMF.Edit framework [4]; see Fig. 4 in Section 4.3.

4.2 Deployment Constraints

An instance of the ADeL metamodel, i.e., an ADeL model, corresponds to a deployment
plan that successively assigns the RUnit of the root node (which is to be deployed) to
hardware (leaf nodes). Only valid deployment plans can be effectuated. To be valid, a
deployment plan (ADeL model) must satisfy all the RUnits’ prerequisites (deployment
constraints) without interfering with the hardware’s capabilities (hardware constraints).
Both groups of constraints are specified as OCL invariants [11] and explained in the
following. Due to space limitations, the OCL statements are not given here, but can be
requested from the author of this paper.

Deployment and hardware constraints rely on deployment paths, which exploit the
association isLinked between units: A deployment path always starts at a RUnit
and terminates at a unit of the types hardware or RUnit, respectively. In the first
case, the start node is said to be deployed and undeployed otherwise.

Deployment constraints comprise the invariants [deployed] and [choice]. The
invariant [deployed] requires that all RUnits that are not optional must be either
linked to another unit (the child, which can be hardware) or belong to a non-elementary
RUnit. The deployment of non-optional, non-elementary RUnits is guarded by the
invariant [choice]: If the group type (GType) of a non-elementary RUnit is A/O/X,
then for all/at least one/exactly one non-optional member(s) of the group a deployment
path ending at a hardware unit must exist.

Hardware constraints, which are specified by the invariants [HD], [RAM],
[CPU_count] and [CPU_type], guarantee that the aggregations of prerequisites
along all deployment paths that target at the same hardware unit observe the hardware’s
capabilities. Consequently, these invariants must be specified in the context of
hardware, and navigation occurs along the reverse deployment path, i.e., from the
leafs of an ADeL model to its root. Reverting the deployment path is achieved by
iterating over all instances of the type RUnit and selecting parent RUnits that are
linked with the corresponding (child) RUnit; see, e.g., the invariant [HD]:

All invariants of hardware constraints rely on help functions for specific aggregations
along the deployment path, i.e., (1) to sum up the required HD size (help function
aggrHD(), (2) to find the maximum required RAM size or CPU count or (3) to check
the equality of the required CPU type.

These predefined OCL invariants are implemented with the tool Topcased
(http:// www.topcased.org) and must be evaluated for each ADeL model (see Fig. 3).
Topcased can also be used to implement additional, deployment-specific OCL
constraints.

Fig. 3. Evaluation of the ADeL OCL constraints for the ADeL model of Fig. 4.

4.3 Application Example

Fig. 4 depicts the ADeL model for the deployment of SAP SCM (a real-world case
investigated in [16]). SAP SCM, the root node, consists of several RUnits (the
‘SAPKernel’, a database instance ‘DBSID’, the LiveCache ‘LID’ and the optional
optimizer ‘OptID’). The RUnit ‘Install’ expresses installation prerequisites (installation
media, JRE). The ‘SAPKernel’ is a conjunctive RUnit (GType = A) since both the
global instance ‘SAPSID’ and the central instance ‘DBSID’ as well as the C++ Runtime
environment must be installed. The software products that realize the RUnits ‘DBSID’,
‘LID’ and ‘OptID’ must be chosen from a set [Rq5]; thus, these RUnits are exclusive
groups.

The deployment of a RUnit is visible from the deployment path to a hardware unit.
For example, the RUnit ‘DBSID’ is realized by the RUnit ‘Oracle 10.2’ (operating
system ‘HP-UX 11.23’) and installed on the hardware unit ‘HP Integrity rx8620’.

The additional attribute ‘SWAP’ related to the RUnit ‘SAPKernel’ expresses that
additional 20 Gigabyte (GB) of SWAP space are needed. (All sizes are specified in GB
in this paper). Moreover, the RUnit ‘SAPSID’ is associated with an artifact that
specifies the location (path) of the directory /sapmnt.

Attribute SWAP

Artifact Mounting Point

RUnit DBSID

Hardware HP Integrity rx8620

RUnit OptID

Fig. 4. Concrete syntax of the ADeL metamodel for the example of SAP SCM (extract).

5 Criticism and Future Research

Probably the main objection to the ADeL approach is over simplification, as the abstract
syntax is a graph of linked units. However, recent research on enterprise architecture has
shown that linked units are the basis to generate any kind of EA visualization and to
exchange EA models between tools [9]. Moreover, an extensive type vocabulary
becomes burdensome when using the OCL: Deviating types of units must be casted;

recursive navigation along deployment paths is not possible if the link types are distinct.
For that reason ADeL does not differentiate between link types.

Though the OCL is a natural choice to express constraints [Rq4] in the field of model-
driven development, its appropriateness for the purpose can be doubted: First, as ex-
plained above, it affects the ADeL abstract syntax. Secondly, the ADeL hardware
constraints require reverse navigation along deployment paths. This can only be
achieved by the predefined operation allInstances(), which increases the worst case
complexity of OCL evaluation [1]. The latter argument can be mitigated by the fact that
the number of instances of each type within ADeL models is small, even in real-world
deployment scenarios. Nevertheless, a goal of my future research consists in replacing
the OCL invariants by another formalism that is capable of handling constraints, e.g.,
constraint solving techniques. Other topics for future research are the implementation of
a more sophisticated editor as well as the definition of transformations to generate
installation guidelines and system configurations from ADeL models.

References

[1] Altenhofen, M., Hettel, T., Kusterer, S.: OCL support in an industrial environment. In: Proc.
Workshops and Symposia at MoDELS 2006, pp. 169-178. Springer (2007)

[2] Aier, S., Riege, C., Winter, R.: Unternehmensarchitektur-Literaturüberblick und Stand der
Praxis. WIRTSCHAFTSINFORMATIK 40, 292-304 (2008)

[3] Anderson, J.R.: Cognitive Psychology and its Implications. 5th ed., Worth, New York (2000)
[4] Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling

Framework: A Developer’s Guide. Boston et al., Addison-Wesley (2004)
[5] Carzaniga , A. et al.: A Characterization Framework for Software Deployment Technologies.

Techn. Report CU-CS-857-98, Dept. of Computer Science, University of Colorado, (1998).
[6] DMTF: Common Information Model (CIM) Standards. CIM Schema: Version 2.24.0

http://www.dmtf.org/standards/cim/cim_schema_v2240/
[7] Frank, U. et al.: ITML: A domain-specific modeling language for supporting business-driven

IT Management. DSM Forum 2009 http://www.dsmforum.org/events/DSM09/Papers/Heise.pdf
[8] Hall, R.S., Heimbigner, D., Wolf A.L.: A Cooperative Approach to Support Software

Deployment Using the Software Dock. In: Proc. 21st Int. Conf. on Software Engineering
(ICSE 1999), ACM Press (1999)

[9] Kruse, S. et al.: Decoupling Models and Visualisations for Practical EA Tooling. In: Proc. of
the 4th Workshop on Trends in EA Research (TEAR 2009). Springer (2010)

[10] Lacour, S., Pérez, C., Priol, T.: Generic Application Description Model: Toward Automatic
Deployment of Applications on Computational Grids. Rapport de Recherche No 5733,
INRIA, Rennes (2005)

[11] Lankhorst, M. et al.: Enterprise Architecture at Work: Modeling, Communication, Analysis.
Berlin et al.: Springer (2005)

[12] Lestideau, V., Belkhatir, N.: Providing highly automated and generic means for software
deployment process. In: Proc. of the 9th European Workshop Software Process Technology
(EWSPT 2003). Springer (2003)

[13] Makin, N.: Deployment modeling in Rational Software Architect Version 7.5, Part I & II.
http://www.ibm.com/developer¬works/rational/library/08/{1202|1230}_makin/

[14] Object Management Group (OMG): Unified Modeling Language: Superstructure, Version
2.2, formal/2009-02-02, http://www.omg.org/ (2009)

[11] OMG: UML 2.0 OCL Specification, formal/2006-05-01, http://www.omg.org/ (2006)
[16] Patig, S., Herden, S., Zwanziger, A.: Modeling Deployment of Enterprise Applications -

Cases and Conclusions. Preprint No. 224, University of Bern, IWI (2009)

