
Recommending based on rating frequencies:
Accurate enough?

Fatih Gedikli and Dietmar Jannach

Technische Universität Dortmund,
44227 Dortmund, Germany

{firstname.lastname}@tu-dortmund.de

Abstract. Since the development of the comparably simple neighbor-
hood-based methods in the 1990s, a plethora of techniques has been
developed to improve various aspects of collaborative filtering recom-
mender systems such as predictive accuracy, scalability to large problem
instances or the capability to deal with sparse data sets. Many of the
recent algorithms rely on sophisticated methods which are based, for
instance, on matrix factorization techniques or advanced probabilistic
models or require computationally intensive model-building phases. In
this work we evaluate the accuracy of a new and extremely simple pre-
diction method that uses the user’s and the item’s most frequent rating
value to make a rating prediction. The evaluation on two standard test
data sets shows that the accuracy of the algorithm is on a par with the
standard collaborative filtering algorithms on dense data sets and out-
performs them on sparse rating databases. Besides that, the algorithm’s
implementation is trivial, has a high prediction coverage, requires no
complex offline pre-processing or model-building phase and can generate
predictions in a constant time.

1 Introduction

Collaborative filtering is one of the most successful technologies for recommender
systems [AT05]. Pure collaborative filtering recommender systems only rely on
a given user-item rating matrix to make rating predictions for items that the ac-
tive user has not seen yet. Early neighborhood-based recommendation schemes
simply used the k nearest neighbors (kNN) as predictors for unseen items. Later
on, a broad range of more advanced and sophisticated methods have been ap-
plied to better exploit the given rating information and to improve the recom-
mendation process in one or the other dimension. Examples for such methods
include matrix factorization, various probabilistic models, clustering techniques,
graph-based approaches as well as machine learning techniques, based on, e.g.,
association rule mining, see also [AT05].

Typically, the more elaborate approaches outperform the commonly-used
kNN baseline method in terms of accuracy in particular for sparse data sets or
in terms of scalability as they rely on offline pre-processing or model-building
phases. In [LM05], Lemire and Maclachlan formulate additional desirable fea-
tures of a recommendation scheme such as that they are easy to implement, can



be updated on the fly, are efficient at query time and are “reasonably” accurate.
Their evaluation shows that the proposed Slope One family of item-based recom-
mender algorithms, which is based on the computation of “popularity differen-
tials between items for users”, leads despite its simplicity to relatively accurate
predictions (measured in terms of Mean Absolute Error). Due to its simplicity,
different implementations of the algorithm in various programming languages
and frameworks are available today.

In this paper, we propose an even simpler recommendation scheme, RF-Rec,
which is only based on the absolute frequencies of the different rating values per
user and per item. The method is therefore trivial to implement, can generate
predictions in constant time, does not require a computationally intensive offline
model-building phase, and at the same time leads to competitive prediction
coverage and accuracy results in particular for sparse data sets.

In the rest of the paper, we will first describe the RF-Rec recommendation
scheme in more detail and present results of an experimental evaluation on two
commonly-used data sets.

2 Recommending based on rating frequencies

Let us illustrate the RF-Rec recommendation scheme with a simplified and rel-
atively sparse rating database shown in Figure 1. The goal in our example is to
predict Alice’s rating for item I3.

I1 I2 I3 I4 I5 Average

Alice 1 1 ? 5 4 2.75

U1 2 5 5 5 4.25

U2 1 1 1.00

U3 5 1 1 2 2.25

Average 1.50 3.00 2.33 3.00 3.67

Fig. 1. Example user-item rating matrix.

When adopting a user-based kNN scheme, probably no prediction can be
made because only one relatively similar user U1 exists which could be taken
as a predictor for Alice. If we allow also such small neighborhood sizes, the
prediction for Alice will usually consist of taking the neighbor’s rating for I3
and using it for the prediction by making a weighted addition to Alice’s average
rating. Similarly, in an item-based kNN approach, Alice’s rating value for item
I4, whose rating vector is similar to the one of I3 will be taken as a predictor.
In both cases, the prediction for Alice for item I3 will be rather high.

In our approach, however, the predictions are based on absolute rating fre-
quencies. The prediction function for a given user u and an item i in the RF-

Rec recommendation scheme is defined as follows:



pred(u, i) = argmax
r∈possibleRatings

((
freqUser(u, r) + 1 + 1avg−user(u, r)

) ∗
(
freqItem(i, r) + 1 + 1avg−item(i, r)

))

where freqUser(u, r) is the frequency of ratings with value r of the target
user u and freqItem(i, r) is the frequency of ratings with value r of the target
item i. 1avg−user(u, r) and 1avg−item(i, r) are indicator functions which return 1
if the given rating corresponds to the rounded average rating of the target user
or target item accordingly and 0 otherwise.

In the example, where the frequency of ratings of Alice are [1:2, 2:0, 3:0, 4:1,
5:1] and the rating frequencies of item I3 are [1:2, 2:0, 3:0, 4:0, 5:1] we would do
the following calculations:

Rating value 1: (2+1+0)*(2+1+0) = 9
Rating value 2: (0+1+0)*(0+1+1) = 2
...
Rating value 5: (1+1+0)*(1+1+0) = 4

Since the formula result for rating 1 is the highest, we would predict that Alice
would give a “1” to item I3, which is strongly different from the ratings that we
would predict with the other methods.

The rationale of the prediction scheme is as follows. First, instead of taking
rating averages into account for the calculations (as done in kNN-based ap-
proaches and also in Slope One) we rely on rating frequencies. Intuitively, this
can be advantageous in case of extreme ratings, i.e., since Alice only gave very
low and very high ratings and at the same time item I3 also only received ex-
treme ratings. Incorporating user or item averages would move the predictions
away from these extremes. When using the Slope One scheme, 2.38 would be
the predicted rating for Alice, which is slightly below her average. Note that in
[HKR00], the authors Herlocker et al. have also observed that high variance in
the rating data can lead to decreased recommendation accuracy.

The “1” in the middle of our formula is used to avoid that in situations, in
which a user has never given a rating (or an item never received a particular
rating), the whole term is multiplied with zero. The indicator function in our
scheme shall help in situations, in which several ratings have the same frequency
counts. If this is the case and in addition one of these ratings corresponds to the
average rating, we add some small extra weight to it, thus very slightly preferring
the average rating.

Regarding prediction coverage, that is, the question for what percentage of
items a recommender can generate predictions, note that in contrast to kNN
approaches that often use similarity and neighborhood size thresholds, our rec-
ommendation scheme can make predictions if at least one rating for the target
item or one rating by the user is available.



In order to measure the predictive accuracy of the method, we therefore
evaluated our approach on two popular data sets using a common experimental
procedure and accuracy metric. The results are described in the following section.

3 Experimental Evaluation

Algorithms, data sets and metrics. As data sets for the evaluation, we
used the 100k-MovieLens rating database (100,000 ratings by 943 users on 1,682
items) and a snapshot of the Yahoo!Movies data set (211,231 ratings by 7,642
users on 11,915 items)1. The MovieLens data set only contains users who have
rated at least 20 items; the minimum number of rated items per user in the
Yahoo! data set is 10.

The density level of the data sets were varied by using subsamples of different
sizes. The smallest subsample contained 10% of the original data. In this sub-
sample, the average number of ratings per user was around 10 for the MovieLens
data set and 3 for the Yahoo!Movies data set. Further measurements were taken
in steps of 10% up to the 90% data set, which corresponds to the usual 90%
train/test ratio for Mean Absolute Error (MAE) measurements.

We compared the following algorithms: user-based kNN (using default vot-
ing, Pearson similarity and the neighborhoodsize of 30 as suggested as optimal
value in literature), item-based kNN (Mahout’s item-based kNN-method imple-
mentation with Pearson similarity)2, Slope One [LM05], Bias from Mean, Per
User Average, the recent recursive prediction algorithm (RPA) [ZP07] (using
larger, empirically determined neighborhood sizes of 100) and RF-Rec.

Results. Figure 2 (a) shows the MAE values for different training set sizes
for the MovieLens data set. Up to the 50% level, RF-Rec has consistently bet-
ter accuracy than all other techniques. Above that level, the accuracy of RF-

Rec (0.742) is comparable to Slope One (0.743) and RPA (0.734). Note that
RF-Rec due to its nature leads to 100% prediction coverage also for very sparse
data sets. In contrast, the coverage of the user-based kNN method, for example,
slowly increases from 60% to 95% when increasing training set ratio from 10% to
90%, see Figure 3. In the experiments, we further varied the neighborhood size
ns of the user-based kNN method. Increasing ns to 300 lead to the observation
that the accuracy improved and was comparable to the one of RPA for training
set sizes higher than 50%.

Figure 2 (b) shows the results for the Yahoo! data set. We can observe similar
accuracy values also for this data set. In particular, the improvement of our RF-

Rec algorithm is even stronger on that data set. A possible explanation for
this observation could be the different sparsity levels of the two data sets, i.e.,
assuming that RF-Rec works particularly well for sparse settings, it is intuitive
that even better results can be achieved on the sparser Yahoo! data set (0.9976
sparsity) than on the MovieLens data set (0.9369 sparsity).

1 http://www.grouplens.org/node/73, http://webscope.sandbox.yahoo.com
2 http://lucene.apache.org/mahout



0,73

0,75

0,77

0,79

0,81

0,83

0,85

0,87

0,89

0,91

0,93

0,95

0,97

0,99

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
A

E

(a) Training set ra!o (MovieLens)

0,70

0,72

0,74

0,76

0,78

0,80

0,82

0,84

0,86

0,88

0,90

0,92

0,94

0,96

0,98

1,00

1,02

1,04

1,06

1,08

1,10

1,12

1,14

1,16

1,18

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
A

E

(b) Training set ra!o (Yahoo!Movies)

Per User Average Bias From Mean (Non Personalized) Item-based Pearson

User-based Pearson[neighborhood:30] RPA[neighborhood:100:100] Slope One

RF-Rec

Fig. 2. MAE values for different training set sizes: MovieLens (a), Yahoo!Movies (b).

Training set ratio RF-Rec Slope One User-based kNN Item-based kNN

10% 100% 97% 60% 44%
20% 100% 98% 58% 94%
30% 100% 99% 70% 98%
.. .. .. .. ..

90% 100% 99% 95% 99%

Fig. 3. Prediction coverage of recommendation approaches (MovieLens).

Overall, these accuracy findings indicate that RF-Rec has a constantly good
performance which is quite independent of the training set ratio. RF-Rec is
despite its simplicity suitable to generate predictions with an accuracy which is
comparable to existing approaches and is even better for sparse data sets, which
can often be found in practice.

Computational complexity. In the RF-Rec scheme, the “model-building”
phase obviously consists of calculating the frequencies of the individual rating
values per user and per item, which can be accomplished in a single scan of
the matrix; the frequency statistics can be easily updated when new ratings
are available. Given u users, i items and v possible rating values, the memory
requirements for the model are constant: (u ∗ v) + (i ∗ v). Also the calculation
of predictions can be done with the formula from Section 2 in constant time.
In absolute numbers, “model-building” requires less than 10 seconds even when
hundreds of millions of ratings exist; predictions can be calculated in a few mil-
liseconds on a standard desktop computer. We compared our method with Ma-
hout’s item-based kNN-method implementation on the 1 million MovieLens data
set: model-building takes 500ms in our approach as opposed to 6 minutes with



Mahout. Generating a prediction takes only 3ms in our framework (and 100ms
with Mahout), which is a very important factor in high-traffic recommenders in
which up to 1,000 parallel requests have to be served [JH09].

4 Summary

In this work we proposed a new, frequency-based recommendation scheme that
leads to good predictive accuracy and is at the same time highly scalable and
very easy to implement. Our future work includes the evaluation of the approach
on the Netflix data in order to compare it to the results of more recent methods;
in addition, we will also compare the predictive accuracy of the different methods
based on precision and recall.

Overall, our evaluation demonstrated that comparably good results can be
achieved with simple methods and that the accuracy values that can be achieved
with the help of “classical” methods such as item-based kNN and even the more
recent RPA method are actually very small, which could make the payoff of
using more sophisticated methods in some settings questionable.

We hope that light-weight approaches like our RF-Recmethod help to further
promote the use of recommender systems in practice; by making the software
used in our experiments publicly available3, we hope to contribute to the compa-
rability of different algorithms since our study revealed that relevant algorithmic
details and parameters are often not reported in sufficient detail.

References

[AT05] Gediminas Adomavicius and Alexander Tuzhilin, Toward the next generation
of recommender systems: A survey of the state-of-the-art and possible exten-
sions, IEEE Trans. on Knowl. and Data Eng. 17 (2005), no. 6, 734–749.

[HKR00] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl, Explaining col-
laborative filtering recommendations, Proc. ACM Conference on Computer
Supported Cooperative Work (New York, NY, USA), 2000, pp. 241–250.

[JH09] Dietmar Jannach and Kolja Hegelich, A case study on the effectiveness of
recommendations in the mobile internet, Proceedings of the 2009 ACM Con-
ference on Recommender Systems (New York, NY, USA), 2009, pp. 41–50.

[LM05] Daniel Lemire and Anna Maclachlan, Slope one predictors for online rating-
based collaborative filtering, Proceedings of the 5th SIAM International Con-
ference on Data Mining (Newport Beach, CA), 2005, pp. 471–480.

[ZP07] Jiyong Zhang and Pearl Pu, A recursive prediction algorithm for collaborative
filtering recommender systems, Proceedings of the 2007 ACM Conference on
Recommender Systems (Minneapolis, MN, USA), 2007, pp. 57–64.

3 http://ls13-www.cs.uni-dortmund.de/rec suite.zip


