

Integration with Ontologies
Conference Paper WM2003, April 2003, Luzern

author: Andreas Maier1 (maier@ontoprise.de)
co-authors: J. Aguado2 (jessica@miramon.net)

A. Bernaras2 (amaia@miramon.es)
I. Laresgoiti3 (lares@labein.es)
C. Pedinaci2 (carlos@miramon.net)
N. Peña3 (npena@labein.es)
T. Smithers2 (tim@miramon.net)

Abstract: One of today’s hottest IT topics is integration, as bringing together
information from different sources and structures is not completely solved. The
approach outlined here wants to illustrate how ontologies [Gr93] could help to
support the integration process.
The main benefits for an ontology-based approach are

- the ability to picture all occurring data structures, for ontologies can be
seen as nowadays most advanced knowledge representation model

- the combination of deduction and relational database systems, which
extends the mapping and business logic capabilities

- a higher degree of abstraction, as the model is separated from the data
storage

- its extendibility and reusability

First we will give a motivation for our approach and build the requirement
specification (1.). After describing the foundations (2.) we will introduce our ideas
about new software tools supporting the ontology-based integration (3.) and present
a case study (4.), where the ontology-based integration is going to be realized - both
from the view of the software producer1 and of the teams2 3. Closing remarks to
limitations of our approach and to related publications will complete this work.

1. Motivation for an Ontology-based Approach
Today’s users and IT professionals have high expectations towards software applications:

- they want to access the content they need
- this content must be accurate and free of redundancy
- the application must be intuitive and easy to use
- the application must be reusable and extendable
- the application must be implemented in a short and inexpensive way and within

the current IT legacy environment

To meet these expectations, the content has to be identified from the different sources (i.e.
databases, applications, XML-Files, unstructured text files …), and then to be integrated.
But this means not building only connectors [Kr99] between applications, because

1 ontoprise GmbH
2 Parque Tecnolgico de San Sebastian, Spain
3 LABEIN, Zamudio, Spain

2

syntactical incompatibilities could be reduced by approaches like SQL [KK01] or XML
[An03]; nor it’s only tying up diverse data sources and displaying them on a common
interface (Picture 1 left).

Picture 1: point-to-point-connections vs. a “real” integration solution

The goal of integration is to consolidate distributed information intelligently, free of
redundancy, processed and operated by the right business logic to deliver the appropriate
and condensed answer and offer the end user a simple access to it, without him needing
knowledge about the underlying data structures (Picture 1 right). We believe that with
ontologies there’s now a model at hand to fit for this goal.

1.1. Introducing Example
A typical integration scenario found in large organisations is the management of product
data and contacts (clients, suppliers, employees), which proves to be very difficult. These
information lie widespread in different departures and there in different sources like
ERP/PPS4-systems, CRM5-applications [Sc00] [UB03], databases, email programs,
documents, organizers, etc., - often redundantly.

Picture 2: an “integration” ontology

4 ERP=Enterprise Resource Planning, PPS= Production Planning and Scheduling
5 CRM=Customer Relationship Management

3

An ontology (Picture 2) could now catch up the different concepts that we want to
integrate: clients (i.e. from a CRM-application), orders, products (i.e. from a PPS-
System) and employees (i.e. from an intern “telephone and birthdays” list). A fifth
concept, bill, has not been taken into consideration yet by the existing systems; we will
generate its instances automatically by a rule (2.4).

1.2. Defining the Requirements
In our integration process we then have

- to picture all existing data structures (requirement 1), which can be simple table
structures up to complex hierarchical structured data with deep inheritance,

- to map and merge these schemas (requirement 2),
- to define the logic for the whole new application (requirement 3) (hereby we will

be supported by deductive inference mechanisms) and
- to provide a performant data storage for the information (requirement 4).

Picture 3: ontologies meet the requirements

In our view ontologies are the best representation model to meet these requirements
(Picture 3). In the next chapter (2.) we want to prove this statement.

2. Foundations: Enabling the Ontology-based Integration
The foundations talked about next – knowledge representation, mapping, deductive logic
and databases – are not new for themselves. It’s their interaction what makes it necessary
to shortly describe them. Thereby we will especially go into their impact on the ontology-
based integration.

2.1. Requirement 1: Picture all Data Structures
In [Ma01] we compared several knowledge representation models and discussed the
advantages and weaknesses of them. As a conclusion we found that ontologies are the
most advanced model of all of them, summing up most of the qualities of the others:

- Like Taxonomies [Pe89], ontologies are able to picture hierarchies.

4

- Like Thesauri [Me95], Semantic Nets [Ho86] and Topic Maps6 [PH02],
ontologies contain relations. With them, complex contexts can be modelled and
visualized in nets. Linguistic contexts (i.e. multilingualism or synonym relations),
terminologies and classifications can be described, through which the semantic of
the integration solution is increased [An01].

- Like the EntityRelationship-Model (ER) [BCB91] and unlike the others
mentioned above, ontologies have a data model distinguishing schema
information from facts. This is essential for storing the facts (Requirement 4:
Provide a Data Storage). As relational databases do not provide an object model,
they have some difficulties in picturing taxonomies and must define primary
keys themselves. Every ER-model can be transformed in an ontology and, with
some expense and limitations, vice versa.

- As an object based model, ontologies support inheritance and multiple
inheritance of attributes.

2.2. Logic Models
With the ability to define mapping and deductive rules respectively axioms7, logic brings
in an important impact for the integration. Logic models (i.e. Prolog [Sp96], Datalog
[DL91], F-Logic [KL90] [An02], Description Logic [Ba02]) have to be seen
complementary to ontologies.
Especially F-Logic8 [AL03] acts as a bridge between the model and logic, because it
covers the ontological information as well as the rules. It can also be used to query the
system similarly to SQL.
Logic models help us

- to connect the different data sources by mapping or merging rules
- to easily build a deductive “business logic” upon our integrated information

base9
- to check the consistence of the knowledge base [AS92a].

2.3. Requirement 2: Mapping and Merging
If only integrating databases, an ontology-based mapping would not seem to be necessary
at first. But in comparison to pure database mappings, which could be used instead, the
ontological approach leads to a higher degree of abstraction, connecting not only primary
keys and table rows, but working on a more conceptual level.
Before starting the mapping procedure the structures respectively the schemas have to be
imported into the ontology. For thus, an ontology modelling tool must provide various

6 As the dates of the references (6.) show, Taxonomies, Thesauri, Semantic Nets and the
ER-model are comparatively old models. Topic Maps are the newest of them and may
merge with ontologies.
7 As a special type of axioms, constraints help us to define restrictions within our system.
8 Comparing the mentioned logic models, we see F-Logic as the most capable of them;
Prolog is rather a programming language and contains artefacts, Description Logic misses
instance reasoning and Datalog isn’t expressive enough.
9 Deduction can also be very effective in a stand-alone application, but much more in an
integration scenario. By consolidating applications and their underlying processes often
new contexts are created and require a new business logic on top.

5

schema import filters for different formats (i.e. for all relevant commercial databases).
Such a tool must also support the fundamental mapping types

- concept-to-concept mapping
- attribute-to-attribute mapping
- attribute-to-concept mapping as well as
- conditions and constraints10 on the mapping rules (which is not explained further

here)

2.3.1. Schema Import

Picture 4: Importing diverse schemas

The equivalent to the schema import described next is the schema export (2.5), that we
will need for requirement 3 below. Beneath other schema imports (i.e. for formats like
RDF11 or DAML12), the SQL import plays a very important role. As the commercial
databases13 usually a different syntax of SQL, different imports for each database are
needed14.

10 i.e. unit conversions
11 http://www.w3.org/RDF/
12 http://www.daml.org/
13 i.e.: MSSQL Server (Microsoft), DB2 (IBM), Oracle, mySQL
14 An SQL import has already been realized in OntoEdit, ontoprise’s ontology modelling
tool. For detailed information and screenshots please read the product tutorial at
http://www.ontoprise.de/documents/tutorial_ontoedit.pdf.

6

Picture 5: Importing a database table

After an import of a database table, this one is embedded as a concept into the concept
taxonomy. The former primary key from the attribute “name” has moved to the object id
of the concept “client”. Tables are interpreted as objects or concepts, as they usually
contain information about a distinct entity. Rows typically describe attributes of that entity
and are coherently interpreted as attributes of concepts.

2.3.2. Concept-to-Concept Mapping
An ontology mapping process15 is very similar to pure database respectively XML-
mapping [Bo01]. In each case the two schemas, which are going to be mapped, are
displayed in vertical rows parallel to each other (picture 6: concept-to-concept-mapping).
If two concepts of two different sources contain the same type of information, a concept-
to-concept mapping can be drawn (i.e. “automobile” and “car”).

picture 6: concept-to-concept-mapping

2.3.3. Attribute-to-Attribute Mapping
An attribute-to-attribute mapping connects two attributes, stating that these contain the
same information (i.e. “maximum velocity” and “absolute speed”) (picture 7: attribute-to-
attribute-mapping). A previous concept-to-concept mapping is prerequisite for that.

picture 7: attribute-to-attribute-mapping

15 OntoEdit contains OntoMap, a mapping tool for ontologies. More information can be
found at http://www.ontoprise.de/documents/tutorial_ontoedit.pdf.

7

2.3.4. Attribute-to-Concept Mapping
Another important aspect is the mapping of table rows (attributes) that are represented as
concepts in other formats. The attribute-to-concept mapping shown below states that the
primary key “id” of “automobile” in connected to the object id of “car” (picture 8:
attribute-to-attribute-mapping).

picture 8: attribute-to-attribute-mapping

2.4. Requirement 3: Deductive Logic
An often asked question is: “Why using logic? Didn’t databases solve all problems
decades ago?”
On the one hand applications with lots of logical dependencies (i.e. configuration or
variant management systems, solutions representing extensive knowledge domains, expert
systems) can be realized much better with rule-based systems.
 On the other hand deductive logic reduces complexity. It’s a difference, if you ask

- “Who is the contact person of client ‘Smith’?” or
- “Who is the employee that handles the orders of the product, that client ‘Smith’

has ordered?” (
- Picture 9: using deductive rules).

As this is just a small example, in really complex contexts with many relations between
the concepts of the ontology the effort and complexity to realize in SQL quickly gets too
high.
As a third reason, the user doesn’t need to know the underlying data structures. For
example he only knows, that he can ask for “contact persons of clients”, and not the whole
conceptual structure that lies behind this question.

2.4.1. Rule Modelling
It’s an often underestimated fact for today’s rule-based-systems in commercial
environments that users do not want to encode these rules by hand, just as they dislike to
write SQL queries. Therefore we will propose our idea of a visual rule editor in (3.1).

After having tied together the different data sources (2.3.1-2.3.3), we want to illustrate the
extendibility that deductive logic rules offer to applications. Our basic ontology (Picture
2: an “integration” ontology) has been enriched by three simple rules to expand the
knowledge base (
Picture 9: using deductive rules):

8

Picture 9: using deductive rules

- If an order is about a product and an employee is the sales manager of this
product, this order is handled by the employee. (rule 1)

- If a client sends an order request, which is handled by an employee, this
employee is the contact person for the client. (rule 2) As we see, rule 2 is based
on rule 1.

- If a client sends an order request, which is handled by an employee, then
generate a bill with all available information: client, name and quantity of the
product, the responsible employee … (rule 3)

2.4.2. Inferencing
By an inferencing process16 the rules are applied to the given facts (1.,2.,3.) and extend the
knowledge base by the newly created facts (4.,5.,6.). picture 10 visualizes this process.

picture 10: inferencing graph

In analogy to the graphical rule editor (3.1), there has to be a visual rule debugger for the
modeller to show the outcome of his rules. In (3.2), we propose our idea of a visual rule
debugger.

16 Inferencing has been realized in OntoBrokerTM, ontoprise’s core ontology server. Please
read the product tutorial at http://www.ontoprise.de/documents/tutorial_ontobroker.pdf to
get detailed information.

9

After the inferencing you can decide whether you want to materialize the attained new
facts into the data storage (2.5.), or to keep them only virtually in the inference server.

2.5. Requirement 4: Provide a Data Storage
As a name for a mainly unchanging pool of information the terms Knowledge Base or
Repository are often used. We prefer to say data storage instead, emphasizing that in
integration solutions the content is permanently changing.
For maintenance reasons, the data itself should be kept only once, preferably in the origin
application. If this application isn’t able to query, we propose migrating it to a database.
Although the ER-Model has its weaknesses (2.1), we suggest using relational databases as
storage because of its widely spread and mature solutions. In comparison to other
repositories there’s no alternative concerning performance and compatibility. Therefore
we need an SQL-Export for creating the database schema out of the ontology.

3. Introducing a Toolbox for the Ontology-based Integration
As we found in (2.) and (3.), the following components are needed within an ontology
modelling environment [AS2002], for meeting the requirements for an integration solution:

- a core modelling component for concepts, attributes, relations, instances,
multilingual representations and domain entries

- a schema import and export (2.3.1, 2.5) supporting various formats, particularly
SQL

- a mapping tool (2.3.2-2.3.4)
- a rule editor (2.4.1)
- a rule debugger (2.4.2)

The first three points have been realized in recent modelling tools more or less. For the
last two points we will introduce a rough idea of visualization, not covering all
functionalities coming up.

3.1. Visual Rule Editor
In our example, rule 1 (2.4.1) is a composition relation rule, connecting the three concepts
product, order and employee. In our proposal (
picture 11: a visual rule editor), a user would select them by drag&drop from a left
window, where all concepts are listed in a “is-a”-hierarchy, and move them to the center
window.

10

picture 11: a visual rule editor

There the modelled relations (is about, is sales manager of, is handled by) will appear. By
moving them by drag&drop into the fields on the right side (if, then), you would create the
rule shown in F-Logic code below. There you could change the rule also by hand.
In picture 11 the ability to define attribute conditions (i.e. employee.name=”Miller”) or
operators (+, -, *, /, NOT, EXISTS, …; i.e. price=quantity*[price per unit]*discount) is
missing and has to be added to the draft yet.

3.2. Visual Rule Debugger
The visual rule debugger is an important tool for the IT professional. It’s supposed to
support him during the rule modelling phase, showing him the outcome of the rules.
Thereby it visualizes the inference process for one selected new fact (picture 12: a visual
rule debugger). If the concerning rules (rule 1, rule 2) for this new fact (i.e.: “Miller is
the contact person for client Smith”) have been enabled in the window on the right side, a
graph would appear showing the course of conclusion.

11

picture 12: a visual rule debugger

4. Case Study: Online Design of Events
In this section we introduce an event design support application in which complex
knowledge integration is required. This application, developed within the OBELIX
project (IST-2001-33144), aims to support event organisers and suppliers in the process
of designing events such as symposiums, conferences, exhibitions, workshops or
meetings, and where the service provided, i.e., a running event, should be configured and
customised to the needs of the type of event and client.
The aim of this application is to develop a Web-based system that will support the
collaborative process of designing customised events, thus greatly improving this type of
service.

12

Client Ontology

Evaluation
(based on requirements)

er Needs & Desires Configuration Problem
Specification

Configuration Problem
SolutionEvent Design

Events Services
Ontology

Events
Configuration

Ontology

Configuration Problem
Solving Tool

Services Ontology Configuration Problem
Solving Ontology

Semantic Web

Requirements Formation
(Identification, modification...)

Events Types
Ontology

Picture 13: System Architecture

(Picture 13: System Architecture) presents a view of the system architecture. It shows
how the different ontologies needed are integrated so as to provide the desired support of
event designers and clients. This system architecture is derived from a Knowledge Level
theory of designing, known as KLDE (see [Sm96, Sm98, Sm02a, Sm02b]).
As a Knowledge Level theory, KLDE defines the necessary and sufficient kinds of
knowledge needed and generated in any kind of designing, together with the roles each
kind of knowledge plays, and the relationships between them. Applying this theory to the
design of the event design support system described here, made it possible to quickly and
easily identify the kinds of knowledge-based support needed, and the way the different
kinds of knowledge needs to be integrated.
Starting with the needs and desires of a client, the event design support system first
supports the identification of a set of requirements that, when satisfied, would result in an
event design acceptable to the client. It further supports the development of well formed
problem specifications that are essentially attempts to operationalise some or all of the
requirements. In this event design application, the problems are formed as configuration
problems, which are then passed to a configuration problem solver being developed by
LABEIN.
The solutions that are returned are then evaluated with respect to the current requirements.
And the outcome of this evaluation then leads either to the identification of further or
modified requirements, a different operationalisation, or a final design.
To support this process, the event design support system thus integrates a "Client
Ontology", to support the identification and construction of the requirements set, an
"Event Services Ontology" and "Event Type Ontology" to support the formulation of well
formed problems that operationalise effectively some or all of the current requirements, an

13

"Event Configuration Problem Solving Toolbox", which in turn uses the "Events
Configuration Ontology."
Each of these ontologies model different kinds of knowledge. The "Events Types
Ontology", contains the different types of events that can be configured by the application.
These are defined in terms of resources used, such as networks, computers, rooms,
layouts, etc. The "Client Ontology" contains information about type of clients and their
needs, and the "Events Services Ontology" refers to considering the design of events as an
event service. In the "Configuration Problem Solving Ontology" different types of
configuration problems are reflected. In the "Service Ontology" the different kinds of
services are reflected. The "Events Configuration Ontology" represents different types of
event configurations problems, such as the configuration of layouts in a room assigned to
an event or the different resources requested by the client.
These kinds of knowledge are integrated within the system. At the same time, (and again
informed by KLDE), relationships can be identified between them. For example, the
"Event Service Ontology" is related to both the "Events Types Ontology" and the "Service
Ontology". In the same way, the "Events Configuration Ontology" is related to both the
"Events Types Ontology" and the "Configuration Problem Solving Ontology".
Thus, in this event design support application we can see clearly the need for effective
integration of different ontologies, and how what ontologies are needed and how they
should be integrated has been effectively established by applying the KLDE theory of
designing.

5. Closing Remarks
Looking at today’s available software for ontologies, [NM02] compare different tools
distinguishing editors from mappers. As shown above (2.), this must be no opposite17.

Another mapping mechanism between distributed ontologies18 is introduced in MAFRA
[MMSV02], an interactive, incremental and dynamic framework for ontology mapping.

Of course, integration across different sources depends on the compatibility of their data
structures. Just as you can’t map Newton’s 3-dimensional world by 100% to Einstein’s 4-
dimensional one, the result will always be an approximation. In the worst case, when
ontologies are totally orthogonal to each other, a mapping can be impossible. But should a
mapping be feasible, the manual approach described here (2.3) might be supplemented by
semi- or full automatic approaches. [MDH02] deliver new findings on this subject.

6. References
[AL03] J. Angele, G. Lausen: Handbook on Ontologies in Information Systems, Springer
(editors: S. Staab, R. Studer), 2003/2004

[An01] J. Angele: Semantik und Wissensmodelle, Proceedings Deutscher Internet Kongress,
Karlsruhe, 2001

17 In OntoEdit, there’s a modelling component as well as a mapping plug-in.
18 i.e. in the vision of the Semantic Web

14

[An02] J. Angele: F-Logic Tutorial, http://www.ontoprise.de/documents/tutorial_flogic.pdf,
Karlsruhe, 2002

[An03] J. Angele: XML reicht nicht aus, Springer, 2003

[AS92a] J. Angele, R. Studer: Konsistenzprüfung in wissensbasierten Systemen, Universität
Karlsruhe, 1992

[AS92b] J. Angele, R. Studer: Inferenzmechanismen in wissensbasierten Systemen, Universität
Karlsruhe, 1992

[AS2002] J. Angele, Y. Sure: Evaluation of Ontology based Tools, Siguenza, 2002

[Ba02] F. Baader: The description logic handbook: theory, implementation and applications
Cambridge University Press, 2002

[BCB91] C. Batini, S. Ceri, C. Batini: Conceptual Database Design: An Entity-Relationship
Approach, Addison Wesley Publishing Company, 1991

[Br92] K. Brinker: Linguistische Textanalyse. Eine Einführung in Grundbegriffe und Methoden, E.
Schmidt, Berlin

[Bo01] R. Bourret: Mapping DTDs to Databases, 2001, at
http://www.xml.com/pub/a/2001/05/09/dtdtodbs.html

[DL91] M. Dahr, K. Lautenbach: Towards a formal theory of datalog nets, Koblenz, 1991

[Gr93] T. R. Gruber: A translation approach to portable ontology specifications;
Knowledge Acquisition; 1993;

[Ho86] H. Hoffmann: On the visualization of design notions, of notion instantiations, and
of structural relationships in a design data base realized as a semantic net, Darmstadt,
1986

[KL90] M. Kifer, G. Lausen: F-Logic - A Higher-Order Language for Reasoning about Objects,
Inheritance, and Scheme, Freiburg, 1990

[KK01] K. Kline, D. Kline: SQL in a Nutshell, O'Reilly, 2001

[Kr99] D. Kreuz: Formale Semantik von Konnektoren, Techn. Univ. Hamburg, Dissertation, 1999

[Ma01] A. Maier, Vergleich von Wissensmodellen, December 2001

[MDH02] A. Doan, J. Madhavan, P. Domingos, A. Halevy: Learning to Map between
Ontologies on the Semantic Web, Honolulu, 2002

[Me95] N. Meder, Konstruktion und Retrieval von Wissen: "Thesauri als Terminologische Lexika",
Weilburg, 1995

15

[MMSV02] A. Mädche, B. Motik_, N. Silva, R. Volz: MAFRA — A Mapping
FRAmework for Distributed Ontologies in the Semantic Web, FZI - University of Karlsruhe,
2002

[MS00] A. Maier, H.-P. Schnurr: Wissensmanagement bei einer Investmentbank, 2000

[NM02] N. Noy, M. Musen: Evaluating Ontology Mapping Tools - Requirements and
Experience, Stanford University, 2002

[Pe89] Christof Peltason: Wissensrepräsentation für Entwurfssysteme : d. Behandlung von
Klassifikation und Taxonomie, Berlin, Techn. Univ., Diss., 1989.

[PH02] J. Park, S. Hunting: XML Topic Maps, Addison-Wesley Professional, 2002

[Sc00] W. Schwetz: Customer Relationship Management, Gabler, 2000

[SM02] Y. Sure, E. Moench: Semantic Miner: Smarter Knowledge Retrieval. Poster Session at:
First International Semantic Web Conference 2002 (ISWC 2002), June 9-12 2002, Sardinia, Italia.

[Sm96] T. Smithers, 1986: On Knowledge level theories of design process, in J S Gero an
F Sudweeks (Eds.) Artificial Intelligence in Design '96, Dordrecht: Kluwer Academic
Publishers.

[Sm98] T. Smithers, 1988: Towards a knowledge level theory of design process, in J S
Gero an F Sudweeks (Eds.) Artificial Intelligence in Design '98, Dordrecht: Kluwer
Academic Publishers.

[Sm02a] T. Smithers, 2002: On Knowledge Level Theories and the Knowledge
Management of Designing. International design conference - Design 2002, Dubrovnik,
May 2002.

[Sm02b] T Smithers 2002: Synthesis in Designing, in J S Gero (ed), Artificial Intelligence
in Design '02, Kluwer Academic Publishers, Dordrecht, pp 3--26.

[Sp96] J. M. Spivey: An introduction to logic programming through Prolog, Prentice Hall London,
1996

[SSN01] R. Studer, H.-P. Schnurr, A. Nierlich: Semantisches Knowledge Retrieval, ontoprise
Whitepaper Series, 2001

[SSS02] S. Staab, R. Studer, Y. Sure: Knowledge Processes and Meta Processes in Ontology-based
Knowledge Management. In: Handbook on Knowledge Management. C. W. Holsapple (ed.),
Springer, 2002.

[UB03] M. Ullrich, S. v.d.Bergh: Sales Knowledge Manager - Kombination von statistischen und
semantischen Ansätzen zur Verkaufsberatung, Karlsruhe, 2003

