
Improving the Efficiency of Workflow Analysis

Loucif. Zerguini

Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 514, NL-5600 MB, Eindhoven, The Netherlands
E-mail: L.Zerguini@tue.nl

Abstract. This paper presents an approach for the improvement of the efficiency of the performance
analysis of large workflow models. We propose a simple and powerful decidable Petri net reduction
technique that reduce the size of a workflow model. Our method avoids the direct solution of the
original model.

1 Introduction

An often used quantitative measure to assess the efficiency of a business process is its response time [3].
Business analysts need quick estimates of the response time distribution to check whether a design satisfies
user requirements. For the purpose of performance analysis, stochastic delays are more expressive than
fixed or interval delays. Many researches have been done under a workflow definition built by conventional
workflow routing constructs like sequential routing , parallel routing , choice routing and iterative routing
([3], [6]). Moreover, there are numerous techniques for deriving performance measures [5]. Despite these
results, the state-space explosion problem remains the major difficulty for using these methods in practical
applications. In this paper, we propose a methodology avoiding the direct solution of the original model
which consists of evaluating simpler models to derive performance measures on the complex underlying
model with general topology. Our goal is to provide business process designers with a powerful tool to
improve the efficiency of the analysis of large workflow models.

2 Stochastic Modeling of Workflows

A Petri net (PN) is a triple (P, T, F) where P is a finite set of places, T is a finite set of transitions (P ∩
T = ∅) and F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation) (see [4] for a complete description). A
Workflow net (WF-net) is a subclass of Petri nets tailored toward workflow analysis . It has a unique source
place i and unique sink place o . In such a net a task is modeled by a transition and intermediate states are
modeled by places. A token in the source place i corresponds to a case (workflow instance) which needs to
be handled, a token in sink place o corresponds to a case that has been handled. The process state is defined
by a marking. In addition, a WF-net requires all nodes (i.e. transitions and places) to be on some path from
i to o. This ensures that every task (transition) and every condition (place) contributes to the processing of
cases. A WF-net is safe iff for each place p and for every reachable state the maximum number of tokens in
p does not exceed 1. A WF-net is sound if a process can always terminate with a single token in place o and
all other places are empty and there is no dead task, i.e. each task can be executed (see [1] for a complete
description of all notions related to a WF-net). A set of input (resp. output) transitions of a place p ∈ P
is denoted by •p (resp. p•) and the set of input (resp.output) places of a transition t ∈ T is denoted by •t
(resp. t•); for X ⊆ (P ∪T), •X =

⋃
x∈X

•x and X• =
⋃

x∈X x•. Let N = (P, T, F) and N0 = (P0, T0, F0)
be WF- nets. N0 is a subflow of N iff P0 ⊆ P , T0 ⊆ T , and F0 = F ∩ ((P0 × T0) ∪ (T0 × P0)).

A stochastic workflow net (SWF-net) is a tuple (P, T, F, D,W) where

1. (P, T, F) is a sound and safe WF-net,
2. D: T −→ (IR+ −→ [0, 1]) is the probability distribution function for the firing time of t ∈ T ,
3. W : T −→ (IR+ − {0}) is the weight function.

The delay function D will be used to sample transition delays that represent the firing time of ac-
tual transition execution. A transition t ∈ T is called timed if Dt(0) < 1. A transition t ∈ T is called
immediate if Dt(0) = 1. Pictorially, square boxes represent stochastic timed transitions and thin bars rep-
resent immediate transitions. An enabled transition can fire after time delay sampled from a delay function
D. The weight function W is added to each transition to resolve conflicts, we denote the weight W (t) of a
transition t ∈ T with w(t). We assume implicitly preselection policy, this in contrast to the race semantics
used in [5]. For example, in Fig.1, transition T1 will fire with probability w(T1)

w(T1)+w(T2)
and transition T2

will fire with probability w(T2)
w(T1)+w(T2)

.

T1 T2

w (T1) w (T2)

Fig. 1. Weight Function

The preselection policy is reasonable in the context of workflow management, since tasks are often
performed by human whose work typically cannot (or will not) be cancelled upon completion of other
tasks. Except for the resolution of conflicts, we suppose in this paper that the semantic of SWF-net is the
same as the semantic of the non-Markovian stochastic Petri nets defined in [5]. A SWF-net captures the
dynamic behavior of a single case in isolation within a workflow. The stochastic process that it induces
expresses the way that a specific case or workflow instance is handled. In this paper we focus on the time
between the start and the end of the processing of a single case. Informally stated, this is the response time.
In the sequel a sound and safe SWF-net will be simply denoted by (P, T, F).

3 Decomposing the SWF-net Model

An approach can be based on the analysis of the structure of the SWF-net model, with the aim of identifying
embedded subflows, that are reducible. Reducible subflow (RSF) can be analyzed separately, and the result
obtained in isolation can later be combined in order to produce the overall result.

3.1 Reducible Subflow

Definition 1. Let G = (P, T, F) be a SWF-net and X ⊆ P ∪ T be a set of nodes, then a subflow
N = (P ∩ X , T ∩ X , F ∩ (X × X)) is an RSF of G, if and only if ∃ Zin, Zout ∈ P such that:
1. |T ∩ X| ≥ 2 (large enough, at least two transitions)
2. •(X\{Zin, Zout}) ⊆ (X\{Zout})∧ (X\{Zin, Zout})• ⊆ (X\{Zin}) (Zin is the input place and Zout

is the output place).

R
SF

Reduce

T f

Fig. 2. RSF routing pattern performance equivalent analysis

In Figure 2, RSF denotes tasks in reducible RSF pattern, and transition Tf denotes the task that has
the equivalent time performance to the RSF (one should note that this reduction is possible thanks to a
soundness and a safeness of the corresponding net).

When any transition outside the RSF is enabled, the number of tokens in any place belonging to the
RSF −{Zin, Zout} remains invariable, the subflow RSF remains thus completely isolated from the rest of
the SWF-net, and its evolution is independent from that of the rest of the model.We can thus analyze the
stochastic behavior of each RSF in isolation and then combine the results, rather than analyzing the whole
original system directly.

3.2 Algorithm

Algorithm 1: (Numbering Nodes Algorithm)
Input: x ∈ X
Output: l(x) = level of x

Begin
X := {i}
d := 0
Y := ∅
while X
= ∅ do

for x ∈ X do
l(x) := d

od
Y := Y ∪ X
X := X• \ Y
d := d + 1

od
end

With the algorithm 1 we obtain a function l with which all the nodes of the given SWF-net can be
numbered in strictly ascending order. This algorithm is related to those determining the level of the nodes
in graphs (see [2]). The obtained function l will be used in lines 7 and 8 of the algorithm 2.

Algorithm 2: (RSF Detection Algorithm)

Input : G= (P, T, F) a SWF-net
Output: RSF = reducible subflow

Begin
1. X := P
2. pick a ∈ X
3. Y := {a}
4. Zin := Zout := ∅
5. while •(Y \{Zin, Zout}) � (Y \{Zout}) ∨ (Y \{Zin, Zout})• � (Y \{Zin}) ∨ |T ∩ X| < 2 d
6. Y := Y ∪ •(Y \{Zin, Zout}) ∪ (Y \{Zin, Zout})•
7. Zin := {x∗ ∈ Y ∩ P | l(x∗) ≤ l(x) for all x ∈ Y ∩ P}
8. Zout := {x∗ ∈ Y ∩ P | l(x∗) ≥ l(x) for all x ∈ Y ∩ P}
9. od
10. Y is an RSF of G with a source place Zin and a sink place Zout

end

The straightforward algorithm 2 picks any place a from X, then it finds the embedded reducible subflow
containing the place a by determining the source and the sink places using the numbering function given by
the algorithm 1. By applying repeatedly this algorithm each of the reducible subflow can be decomposed
into smaller reducible subflows until to obtain the skeletons contained in a given SWF-net. The net has |P |
places, |T | transitions and |F | arcs.

4 Application

Let’s consider the reduction process depicted in the Fig.3. The first SWF-net has 8 places and 7 transitions.

T2

T1

T7

T3

T4

T5

T6

T2 T7

T5

T6

S1 T*

S2

T*

T**

T***

S3

Fig. 3. Reduction Process

To determine the response time distribution of the whole system, we will proceed by decomposition as
explained in the previous section.

– Step 1: Detect the first subflow S1 (using algorithm 2) and analyse it. The equivalent time performance
to the S1 is represented by transition T ∗. Clearly, the firing time distribution DT∗ of the equivalent
transition T ∗ is equal to w(T3)

w(T3)+w(T4)
. DT3 + w(T4)

w(T3)+w(T4)
.DT4 .

– Step 2: Detect the second subflow S2 (using algorithm 2) and analyse it. The equivalent time per-
formance to the S2 is represented by transition T ∗∗. Clearly, the firing time distribution DT∗∗ of the
equivalent transition T ∗∗ is equal to the distribution of the maximum of two independents random
variables. Thus, DT∗∗ = DT5 .DT6

– Step 3: Finally, the last subflow S3 can easily be analyzed. The firing time distribution DT∗∗∗ of the
equivalent transition T ∗∗∗ which correspond here to the response time distribution of the whole system
is equal to w(T∗)

w(T∗)+w(T∗∗) . DT∗ + w(T∗∗)
w(T∗)+w(T∗∗) .DT∗∗ (We should notice here that w(T ∗) = w(T1)

and w(T ∗∗) = w(T2)).

5 Conclusion

Due to the state-space explosion, a wide range of modelling problems concerning the evaluation of complex
workflows, according to aspects like response time distribution, are very difficult to handle if they are not
decomposed into separate submodels. Our decidable reductional approach provides an elegant, effective
and efficient solution procedure by means of structural decomposition and aggregation. This approach is
based on the identification of general reducible subflows. We have presented an automated technique to
reduce the complexity to compute the response time distribution of SWF-net models with unrestricted
topology. A workflow instance response time distribution can thus be analyzed more efficiently.

References

1. W.M.P.van.der Aalst. The application of Petri nets to workflow management. The Journal of Circuits,
Systems and Computers, vol.8, pp. 21 – 66, 1998.

2. Berge, C. The theory of graphs and its applications. London- New York: 1964.
3. H. Jonkers, P. Boekhoudt, M. Rougoor and E. Wierstra. Response time and critical path analysis for

the optimization of business process models, Proc. of the summer computer simulation symposium,
pp. 222- 229, Chicago 1999.

4. T. Murata. Petri nets: properties, analysis and applications. Proc. IEEE, vol.77, pp. 541–580, April
1989.

5. A. Puliafito, M. Scarpa and K. S. Trivedi. Petri nets with k simultaneously enabled generally distributed
timed transitions. Performance Evaluation, vol. 32, pp. 1–34, 1998.

6. L. Zerguini. Approximate computation of response time distribution in workflows. Proc. High Perfor-
mance Computing Symposium (HPC’02), pp. 280–287, April 2002.

	Str:
	:441: 45
	:451: 46
	:461: 47
	:471: 48

