
On the evolution of the instance level of DL-Lite
knowledge bases

Maurizio Lenzerini, Domenico Fabio Savo

Dipartimento di Informatica e Sistemistica Antonio Ruberti
Sapienza Università di Roma
lastname @dis.uniroma1.it

Abstract. Recent papers address the issue of updating the instance
level of knowledge bases expressed in Description Logic following a model-
based approach. One of the outcomes of these papers is that the result of
updating a knowledge base K is generally not expressible in the Descrip-
tion Logic used to express K. In this paper we introduce a formula-based
approach to this problem, by revisiting some research work on formula-
based updates developed in the ’80s, in particular the WIDTIO (When
In Doubt, Throw It Out) approach. We show that our operator enjoys
desirable properties, including that both insertions and deletions accord-
ing to such operator can be expressed in the DL used for the original
KB. Also, we present polynomial time algorithms for the evolution of
the instance level knowledge bases expressed in DL-LiteA,id, which the
most expressive Description Logics of the DL-Lite family.

1 Introduction

Description Logics (DLs) are logics for expressing knowledge bases (KBs) con-
stituted by two components, namely, the TBox, asserting general properties of
concepts and roles (binary relations), and the ABox, which is a set of assertions
about individuals that are instances of concepts and roles. It is widely accepted
that such logics are well-suited for expressing ontologies, with the TBox cap-
turing the intensional knowledge about the domain of interest, and the ABox
expressing the knowledge about the instance level of the predicates defined in
the TBox. Following this idea, several Knowledge Representation Systems, called
DL systems, have been recently built, providing methods and tools for managing
ontologies expressed in DLs 1. Notice that numerous DLs have been studied in
the last decades, with the goal of analyzing the impact of the expressive power of
the DL language to the complexity of reasoning. Consequently, each DL system
is tailored towards managing KB expressed in a specific DL.

By referring to the so-called functional view of knowledge representation [11],
DL systems should be able to perform two kinds of operations, called ASK and
TELL. ASK operations, such as subsumption checking, or query answering, are

1 http://www.cs.man.ac.uk/ sattler/reasoners.html

used to extract information from the KB, whereas TELL operations aim at chang-
ing the KB according to new knowledge acquired over the domain. In other
words, TELL operations should be able to cope with the evolution of the KB.

There are two types of evolution operators, corresponding to inserting, and
deleting chunks of knowledge, respectively. In the case of insertion, the aim is to
incorporate new knowledge into the KB, and the corresponding operator should
be defined in such a way to compute a consistent KB that supports the new
knowledge. In the case of deletion, the aim is to come up with a consistent KB
where the retracted knowledge is not valid. In both cases, the crucial aspect
to take into account is that evolving a consistent knowledge base should not
introduce inconsistencies.

While ASK operations have been investigated in detail by the DL community,
existing DL reasoners do not provide explicit services for KB evolution. Never-
theless, many recent papers demonstrate that the interest towards a well-defined
approach to KB evolution is growing significantly [9, 12, 7, 13, 6]. Following the
tradition of the work on knowledge revision and update [10], all the above pa-
pers advocate some minimality criterion in the changes of the KB that must
be undertaken to realize the evolution operations. In other words, the need is
commonly perceived of keeping the distance between the original KB and the
KB resulting from the application of an evolution operator minimal. There are
two main approaches to define such a distance, called model-based and formula-
based, respectively. In the model-based approaches, the result of an evolution
operation applied to the KB K is defined in terms of a set of models, with the
idea that such a set should be as close as possible to the models of K. One basic
problem with this approach is to characterize the language needed to express
the KB that exactly captures the resulting set of models. Conversely, in the
formula-based approaches, the result is explicitly defined in terms of a formula,
by resorting to some minimality criterion with respect to the formula express-
ing K. Here, the basic problem is that the formula constituting the result of an
evolution operation is not unique in general.

In this paper, we study the problem of DL KB evolution, by focusing our
attention to scenarios characterized by the following elements:

(1) We consider the case where the evolution affects only the instance level
of the KB, i.e., the ABox. In other words, we enforce the condition that the KB
resulting from the application of the evolution operators has the same TBox as
the original KB (similarly to [12, 7]).

(2) We aim at a situation where the KB resulting from the evolution can be
expressed in the same DL as the original KB. This is coherent with our goal of
providing the foundations for equipping DL systems with evolution operators:
indeed, if a DL system S is able to manage KBs expressed in a DL L, the result
of evolving such KBs should be expressible in L.

(3) The KBs resulting from the application of an evolution operator on two
logically equivalent KBs should be mutually equivalent. In other words, we want
the result to be independent of the syntactic form of the original KB.

Assumption (1), although limiting the generality of our approach, captures
several interesting scenarios, including ontology-based data management, where
the DL KB is used as a logic-based interface to existing data sources.

As for item (2), we note that virtually all model-based approaches suffer
from the expressibility problem. This has been reported in many recent papers,
including [12, 7, 6], for various DLs. For this reason, we adopt a formula-based
approach, inspired in particular by the work developed in [8] for updating logical
theories. As in [8], we consider both insertions and deletions. However, we differ
from [8] for an important aspect. We already noted that the formula constituting
the result of an evolution operation is not unique in general. While [8] essentially
proposes to keep the whole set of such formulas, we take a radical approach, and
consider their intersection as the result of the evolution. In other words, we follow
the When In Doubt Throw It Out (WIDTIO) [14] principle.

Finally, to deal with item (3), we sanction that the notion of distance between
KBs refers to the closure of the ABox of a KB, rather than to the ABox itself.
The closure of an ABox A with respect to an TBox T is defined as the set of all
ABox assertions that logically follows from T and A. By basing the definition
of distance on the closure of ABoxes, we achieve the goal of making the result
of our operators independent of the form of the original KB.

After a brief introduction to DLs (Section 2), we provide the definition of
our evolution operators in Section 3. The remaining sections are devoted to
illustrating algorithms for deletion (Section 4), and insertion (Section 5) for
KBs expressed in the DL DL-LiteA,id, which is the most expressive logic in the
DL-Lite family [4]. The DL-Lite family2 has been specifically designed to keep
all reasoning tasks polynomially tractable, and we show that this property still
holds for the evolution operators proposed in this paper.

2 Preliminaries

Let S be a signature of symbols for individual (object and value) constants, and
atomic elements, i.e., concepts, value-domains, attributes, and roles. If L is a
DL, then an L-KB K over S is a pair 〈T ,A〉, where T , called TBox, is a finite
set of intensional assertions over S expressed in L, and A, called ABox, is a finite
set of instance assertions, i.e, assertions on individuals, over S expressed in L.
Different DLs allow for different kinds of concept, attribute, and role expressions,
and different kinds of TBox and ABox assertions over such expressions. In this
paper we assume that ABox assertions are always atomic, i.e., they correspond
to ground atoms, and therefore we omit to refer to L when we talk about ABox
assertions.

The semantics of a DL KB is given in terms of interpretations. An interpre-
tation is a model of a KB K = 〈T ,A〉 if it satisfies all assertions in T ∪A, where
the notion of satisfaction depends on the constructs allowed by the specific DL
in which K is expressed. We denote the set of models of K with Mod(K).
2 Not to be confused with the set of DLs studied in [2], which form the DL-Litebool

family.

Let T be a TBox in L, and let A be an ABox. We say that A is T -consistent
if 〈T ,A〉 is satisfiable, i.e. if Mod(〈T ,A〉) 6= ∅, T -inconsistent otherwise. The
T -closure of A with respect to T , denoted clT (A), is the set of all atomic ABox
assertion that are formed with individuals in A, and are logically implied by
〈T ,A〉. Note that if 〈T ,A〉 is an L-KB, then 〈T , clT (A)〉 is an L-KB as well,
and is logically equivalent to 〈T ,A〉, i.e., Mod(〈T ,A〉) = Mod(〈T , clT (A)〉). A is
said to be T -closed if clT (A) = A. Finally, for an ABox assertion γ1, we denote
by Subsumee〈T ,A〉(γ1) the set of atoms γ2 ∈ clT (A) such that 〈T ,A〉 |= γ2 ⊃ γ1.

The DL-Lite family [4] is a family of low complexity DLs particularly suited
for dealing with KBs with very large ABoxes, and forms the basis of OWL 2 QL,
one of the profile of OWL 2, the official ontology specification language of the
World-Wide-Web Consortium (W3C)3.

We now present the DL DL-LiteA,id, which is the most expressive logic in the
family. Expressions in DL-LiteA,id are formed according to the following syntax:

B −→ A | ∃Q | δ(U) E −→ ρ(U) C −→ B | ¬B
Q −→ P | P− V −→ U | ¬U R −→ Q | ¬Q
T −→ >D | T1 | · · · | Tn

where A, P , and U are symbols in S denoting respectively an atomic concept
name, an atomic role name and an attribute name, T1, . . . , Tn are all the value-
domains allowed in the logic (those corresponding to the data types adopted by
Resource Description Framework (RDF)4), >D denotes the union of all domain
values, P− denotes the inverse of P , ∃Q denotes the objects related to by the
role Q, ¬ denotes negation, δ(U) denotes the domain of U , i.e., the set of objects
that U relates to values, and ρ(U) denotes the range of U , i.e., the set of values
related to objects by U .

A DL-LiteA,id TBox T contains intensional assertions of three types, namely
inclusion assertions, functionality assertions, and identification assertions [5]
(IDs). More precisely, DL-LiteA,id assertions are of the form:

B v C (concept inclusion) E v T (value-domain inclusion)
Q v R (role inclusion) (funct U) (attribute functionality)

(id B π1, ..., πn) (identification)

In the identification assertions, π denotes a path, which is an expression built
according to the following syntax rule:

π −→ S | B? | π1 ◦ π2

where S denotes an atomic role, the inverse of an atomic role, or an atomic
attribute, π1 ◦π2 denotes the composition of the paths π1 and π2, and B?, called
test relation, represents the identity relation on instances of the concept B. In
our logic, identification assertions are local, i.e., at least one πi ∈ {π1, ..., πn} has
length 1, i.e., it is an atomic role, the inverse of an atomic role, or an atomic
attribute. In what follows, we only refer to IDs which are local.

3 http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/
4 http://www.w3.org/RDF/

The set of positive (resp., negative) inclusions in T will be denoted by T +

(resp., T −), and the set of identification assertions in T will be denoted by Tid.
A concept inclusion assertion expresses that a (basic) concept B is subsumed

by a (general) concept C. Analogously for the other types of inclusion asser-
tions. Inclusion assertions that do not contain (resp. contain) the symbols ’¬’
in the right-hand side are called positive inclusions (resp. negative inclusions).
Attribute functionality assertions are used to impose that attributes are actually
functions from objects to domain values. An ID (id B π1, ..., πn) asserts that for
any two different instances a,b of B, there is at least one πi such that a and b dif-
fer in the set of their πi-fillers. Note that IDs can be used to assert functionality
of roles. Specifically, the assertion (id ∃Q− Q−) imposes that Q is functional.

Finally, a TBox DL-LiteA,id T satisfies the following condition: every role or
attribute that occurs (in either direct or inverse direction) in a path of an ID
α ∈ Tid or in a functional assertion, is not specialized in T ′, i.e., it does not
appear in the right-hand side of assertions of the form Q v Q′ or U v U ′.

A DL-LiteA,id ABox A is a finite set of assertions of the form A(a), P (a, b),
and U(a, v), where A, P , and U are as above, a and b are object constants in S,
and v is a value constant in S.

Example 1. We consider a portion of the Formula One domain. We know that
official drivers (OD) and test drivers (TD) are both team members (TM), and
official drivers are not test drivers. Every team member is a member of (mf) a
exactly one team (FT), and every team has at most one official driver. Finally,
no race director (RD) is a member of a team. We also know that s is the official
driver of team t1, that b is a test driver, and that p is a team member. The
corresponding DL-LiteA,id-KB K is:

T : OD v TM TD v TM OD v ¬TD RD v ¬TM TM v ∃mf
TM v ¬FT ∃mf v TM ∃mf− v FT (id OD mf) (id FT mf−)

A: OD(s) mf(s, t1) TD(b) TM(p)

We conclude this section with a brief discussione on the complexity of reason-
ing about a DL-LiteA,id-KB 〈T ,A〉. Satisfiability can be checked in polynomial
time with respect to |T \Tid| and |A|, and in NP with respect to |Tid|. Moreover,
if 〈T ,A〉 is satisfiable, then answering a query q posed to 〈T ,A〉 can be done
in polynomial time with respect to |T | and |A|, and in NP with respect to |q|.
Finally, clT (A) can be computed in quadratic time with respect to |T | and |A|.

3 WIDTIO approach to KB evolution in DLs

In this section we first present our semantics for the evolution of DL knowl-
edge bases at the instance level, and then we provide a comparison between our
operator and other work in the literature.

In the rest of this section, L is a DL, and K = 〈T ,A〉 is a satisfiable L-KB. In
other words, we do not consider the evolution of unsatisfiable KBs. In addition,
F is a finite set of atomic ABox assertions in L.

The following definition specifies when a set of ABox assertions “realizes”
the insertion or deletion of a set of ABox assertions with respect to K.

Definition 1. Let A′ be an ABox. Then, A′ accomplishes the insertion of F into
〈T ,A〉 if A′ is T -consistent, and 〈T ,A′〉 |= F (i.e., F ⊆ clT (A′)). Similarly, A′
accomplishes the deletion of F from 〈T ,A〉 if A′ is T -consistent, and 〈T ,A′〉 6|=
F (i.e., F 6⊆ clT (A′)).

Obviously, we are interested in KBs which accomplish the evolution of a KB
with a minimal change. In order to formalize the notion of minimal change, we
first need to provide some definitions.

Let A1 and A2 be two ABoxes. Then, we say that A1 has fewer deletions
than A2 with respect to 〈T ,A〉 if clT (A)\clT (A1) ⊂ clT (A)\clT (A2). Similarly,
we say that A1 and A2 have the same deletions with respect to 〈T ,A〉 if clT (A)\
clT (A1) = clT (A) \ clT (A2). Finally, we say that A1 has fewer insertions than
A2 with respect to 〈T ,A〉 if clT (A1) \ clT (A) ⊂ clT (A2) \ clT (A).

Definition 2. Let A1 and A2 be two ABoxes. Then, A1 has fewer changes
than A2 with respect to 〈T ,A〉 if A1 has fewer deletions than A2 with respect
to 〈T ,A〉, or A1 and A2 have the same deletions with respect to 〈T ,A〉, and A!

has fewer insertions than A2 with respect to 〈T ,A〉.

Now that we have defined the relation of fewer changes between two KBs
w.r.t. another one, we can define the notion of a KB which accomplishes the
insertion (resp. deletion) of a set of facts into (resp. from) another KB minimally.

Definition 3. Let A′ be an ABox. Then A′ accomplishes the insertion (deletion)
of F into (from) 〈T ,A〉 minimally if A′ accomplishes the insertion (deletion)
of F into (from) 〈T ,A〉, and there is no A′′ that accomplishes the insertion
(deletion) of F into (from) 〈T ,A〉, and has fewer changes than A′ with respect
to 〈T ,A〉.

With these notions in place, we can now define our evolution operator.

Definition 4. Let U = {A1, . . . ,An} be the set of all ABoxes accomplishing the
insertion (deletion) of F into (from) 〈T ,A〉 minimally, and let A′ be an ABox.
Then, 〈T ,A′〉 is the result of changing 〈T ,A〉 with the insertion (deletion) of F
if (1) U is empty, and 〈T , clT (A′)〉 = 〈T , clT (A)〉, or (2) U is nonempty, and
〈T , clT (A′)〉 = 〈T ,

⋂
1≤i≤n clT (Ai)〉.

It is immediate to verify that, up to logical equivalence, the result of changing
〈T ,A〉 with the insertion or the deletion of F is unique. In the rest of this
paper, the result of changing K = 〈T ,A〉 with the insertion (resp. deletion)
of F according to our semantics will be denoted by K ⊕T∩ F (resp. K 	T∩ F).
Notice that, by definition of our operator, in the case where F is T -inconsistent,
the result of changing 〈T ,A〉 with both the insertion and the deletion of F is
logically equivalent to 〈T ,A〉 itself.

Example 2. Consider the DL-LiteA,id KB K of the Example 1, and suppose
that p becomes now a race director, and b becomes the new official driver of
the team t1. To reflect this new information, we change K with the insertion

of F1 = {RD(p), OD(b),mf(b, t1)}. Since the TBox implies that a race director
cannot be a team member, RD(p) contradicts TM(p). Also, since every team has
at most one official driver, OD(b) and mf(b, t1) contradict mf(s, t). According
to Definition 3, the KBs accomplishing the insertion of F1 into K minimally are:

K1 = 〈T , {RD(p),OD(b),mf(b, t1),TM(s),mf(s, t1)}〉
K2 = 〈T , {RD(p),OD(b),mf(b, t1),TM(s),OD(s)}〉

Thus, K ⊕T∩ F1 is:

K3 = 〈T , {RD(p),OD(b),mf(b, t1),TM(s)}〉.

Now, suppose that we do not know anymore whether b is a member of t1, and,
even more, whether b is a team member at all. Then, we change K3 with the
deletion of F2 = {TM(b),mf(b, t1)}, thus obtaining

K3 ⊕T∩ F2 = 〈T , {RD(p),TM(s),OD(b)}〉.

The following theorem is an adaptation to our setting of two results reported
in [8], and will be used in the next two sections.

Theorem 1. Let A′ be an ABox. Then
1. A′ accomplishes the deletion of F from 〈T ,A〉 minimally if and only if

clT (A′) is a maximal T -closed subset of clT (A) such that F 6⊆ clT (A′).
2. A′ accomplishes the insertion of F from 〈T ,A〉 minimally if and only if

clT (A′) = A′′ ∪ clT (F), where A′′ is a maximal T -closed subset of clT (A)
such that A′′ ∪ F is T -consistent.

We end this section with a brief discussion on related work. We mentioned
in the introduction several model-based approaches to DL KB evolution, and
noticed that they all suffer from the expressibility problem. This problem is also
shared by [13], that uses features instead of models, and proposes the notion of
approximation to cope with the expressibility problem, similarly to [7].

Related to our proposal are several formula-based approaches presented in
the literature. Perhaps, the closest approach to the one proposed in this paper
is that reported in [6], where formula-based evolution (actually, insertion) of
DL-Lite KBs is studied. The main difference with our work is that we base our
semantics on the WIDTIO principles, and therefore we compute the intersection
of all KBs accomplishing the change minimally. Conversely, in the bold semantics
discussed in [6], the result of the change is chosen non-deterministically among
the KBs accomplishing the change minimally. Another difference is that while
[6] addresses the issue of evolution of both the TBox and the ABox, we only deal
with the case of fixed TBox (in the terminology of [6], this corresponds to keep
the TBox protected). It is interesting to observe that the specific DL considered
in [6] is DL-LiteFR, and for this logic, exactly one KB accomplishes the insertion
of a set of ABox assertions minimally. It follows that for instance-level insertion,
their bold semantics coincides with ours. On the other hand, the presence of
identification assertions in DL-LiteA,id changes the picture considerably, since

with such assertions in the TBox, many KBs may exist accomplishing the inser-
tion minimally. In this case, the two approaches are indeed different. Finally, [6]
proposes a variant of the bold semantics, called careful semantics, for instance-
level insertion in DL-LiteFR. Intuitively, such a semantics aims at disregarding
knowledge that is entailed neither by the original KB, nor by the set of newly
asserted facts. Although such principle is interesting, we believe that the careful
semantics is too drastic, as it tends to eliminate too much information from the
original KB.

Finally, we point out that, to our knowledge, the evolution operator presented
in this work is the first tractable evolution operator based on the WIDTIO
principle.

4 Deletion in DL-LiteA,id

We study deletion under the assumption that the DL language L is DL-LiteA,id.
Thus, in this section, we implicitly refer to a DL-LiteA,id-KB K = 〈T ,A〉, and
we address the problem of changing K with the deletion of a finite set F of ABox
assertions. We assume that both 〈T ,A〉 and 〈T , F 〉 are satisfiable.

We first consider the case where the set F is constituted by just one assertion
f . By exploiting Theorem 1, it is easy to conclude that there is exactly one KB
accomplishing the deletion of {f} from a given KB.

Theorem 2. Let f be an ABox assertion. Up to logical equivalence, there is
exactly one KB of the form 〈T ,A′〉 that accomplishes the deletion of {f} from
〈T ,A〉 minimally, and such KB can be computed in polynomial time with respect
to |T | and |A|.

Let us now consider the case of arbitrary F , i.e., the case where F =
{f1, . . . , fm}, for m ≥ 0. Suppose that, for every 1 ≤ i ≤ m, Ai accomplishes
the deletion of {fi} from 〈T ,A〉 minimally. One might wonder whether the set
Γ1 = {〈T ,Aj〉 | Aj accomplishes the deletion of F minimally from 〈T ,A〉} co-
incides (modulo logical equivalence) with Γ2 = {〈T ,A1〉, . . . 〈T ,Am〉}. The next
theorem tells us that one direction is indeed valid: for each KB K1 ∈ Γ1 there
exists a KB K2 ∈ Γ2 such that Mod(K1) = Mod(K2).

Theorem 3. If 〈T ,A′〉 accomplishes the deletion of {f1, . . . , fm} from 〈T ,A〉
minimally, then there exists i ∈ {1..m} such that 〈T ,A′〉 accomplishes the dele-
tion of {fi} from 〈T ,A〉 minimally.

However, the following example shows that the other direction does not hold:
there may exist a K2 ∈ Γ2 that is not logically equivalent to any K1 ∈ Γ1.

Example 3. Let T = {B v C,C v D,E v D}, A = {B(a), E(a)}, and
F = {C(a), D(a)}. It is easy to see that the deletion of D(a) from 〈T ,A〉
is accomplished minimally by 〈T , ∅〉, while the deletion of C(a) from 〈T ,A〉
is accomplished minimally by 〈T , {E(a)}〉. Therefore, in this case, we have
Γ2 = {〈T , ∅〉, 〈T , {E(a)}〉}. Also, one can verify that 〈T , {E(a)}〉 is the only

(up to logical equivalence) KB accomplishing the deletion of F minimally, i.e.,
Γ1 = {〈T , {E(a)}〉}. Thus, there is a KB in Γ2, namely 〈T , ∅〉, that is not logi-
cally equivalent to any KB in Γ1.

The next theorem characterizes when a given 〈T ,Ai〉 ∈ Γ2 accomplishes the
deletion of F minimally.

Theorem 4. Let F = {f1, . . . , fm}, and, for every 1 ≤ i ≤ m, let 〈T ,Ai〉
accomplish the deletion of {fi} from 〈T ,A〉 minimally. Then, 〈T ,Aj〉, where
j ∈ {1..m}, accomplishes the deletion of F from 〈T ,A〉 minimally if and only if
there is no h ∈ {1..m} such that h 6= j, and 〈T , {fh}〉 |= fj.

By exploiting Theorems 2, 3, and 4, we can directly prove that K 	T∩ F can
be computed by the algorithm ComputeDeletion below. It is easy to see that the
time complexity of the algorithm is O(|T |2 × |F |2 + |A|2).

Input: a satisfiable DL-LiteA,id KB K = 〈T ,A〉, a finite set of ABox assertions
F such that 〈T , F 〉 is satisfiable

Output: a DL-LiteA,id KB
begin

F ′ ← F ;
foreach fi ∈ F ′ and fj ∈ F such that i 6= j do

if 〈T , {fj}〉 |= fi then F ′ ← F ′ \ {fi};
return 〈T , clT (A) \ {α ∈ SubsumeeK(f) | f ∈ F ′}〉;

end

Algorithm 1: ComputeDeletion(〈T ,A〉, F)

Theorem 5. ComputeDeletion(〈T ,A〉, F) terminates, and computes 〈T ,A〉	T∩
F in polynomial time with respect to |T |, |A| and |F |.

5 Insertion in DL-LiteA,id

In this section, we refer to a DL-LiteA,id-KB K = 〈T ,A〉, and address the prob-
lem of changing K with the insertion of a finite set F of ABox assertions. As in
the previous section, we assume that both 〈T ,A〉 and 〈T , F 〉 are satisfiable.

Theorem 1 tells us that, in principle, we can compute the KB resulting from
the insertion of F into 〈T ,A〉 by building all maximal subsets of A which are
T -consistent with F , and then computing their intersection. The main problem
to be faced with this method is that, depending on the DL used, there can
be an exponential number of maximal subsets A′ of clT (A) such that A′ ∪
{f} is T -consistent5.In particular, in DL-LiteA,id, building all maximal subsets
of A which are T -consistent with F , and then computing their intersection is
computationally costly. Fortunately, we show in the following that K ⊕T∩ F can
be computed without computing all maximal consistent subsets of A with F .
5 Note that this cannot happen in those DLs of the DL-Lite family which do not admit

the use of identification assertions (such as the DL studied in [6]).

To describe our method, we need some preliminary notions. A set V of ABox
assertions is called a T -violation set for t ∈ T \T + if 〈T +∪{t}, V 〉 is unsatisfiable,
while for every proper subset V ′ of V , 〈T + ∪ {t}, V ′〉 is satisfiable. Any set V
of ABox assertions that is a T -violation set for a t ∈ T \ T + is simply called a
T -violation set.

We know from Theorem 1 that the ABox A′ accomplishes the insertion of
F from 〈T ,A〉 minimally if and only if clT (A′) = A′′ ∪ clT (F), where A′′ is a
maximal T -closed subset of clT (A) such that A′′ ∪ F is T -consistent. Since we
must compute the intersection of all such ABoxes A′, it is sufficient to compute
those assertions in clT (A) that are not in the intersection, and remove them from
clT (A)∪ clT (F). All the assertions in clT (F) are obviously in the intersection of
the ABoxes A′. As for the ABox assertions in clT (A) \ clT (F), it is easy to see
that one such assertion α is not in the intersection of the ABoxes A′ if and only
if there exists a maximal subset Σ of clT (A) such that Σ ∪ F is T -consistent,
and Σ does not contain α.

Taking into account the above observation, the next theorem is the key to
our solution.

Theorem 6. Let α be an assertion in clT (A) \ clT (F). There exists a maximal
subset Σ of clT (A) such that Σ ∪ F is T -consistent, and Σ does not contain α
if and only if there is a T -violation set V in clT (A) ∪ clT (F) such that α ∈ V ,
and F ∪ (V \ {α}) is T -consistent.

Theorem 6 suggests immediately the algorithm ComputeInsertion below for
computing K ⊕T∩ F .

Input: a satisfiable DL-LiteA,id KB K = 〈T ,A〉, a finite set of ABox assertions
F such that 〈T , F 〉 is satisfiable

Output: a DL-LiteA,id KB.
begin

F ′ = ∅;
foreach α ∈ clT (A) \ clT (F) do

if ∃ a T -violation set V in clT (A) ∪ clT (F) s.t. α ∈ V and
〈T , F ∪ (V \ {α})〉 is satisfiable

then F ′ ← F ′ ∪ {α};
return 〈T , F ∪ clT (A) \ F ′〉;

end

Algorithm 2: ComputeInsertion(〈T ,A〉,F)

Algorithm ComputeInsertion requires to compute all T -violation sets in clT (A)
∪ clT (F). It can be shown that this can be done by computing the results of
suitable conjunctive queries posed to clT (A)∪ clT (F). Such queries are built out
of the negative inclusion assertions and the identification assertions Tid in T ,
and essentially look for tuples that satisfy the negation of such assertions. From
this observation, one can derive the following theorem.

Theorem 7. ComputeInsertion(〈T ,A〉,F) terminates, and computes 〈T ,A〉⊕T∩
F in polynomial time with respect to |T \ Tid|, |A|, and |F |, and in NP with
respect to |Tid|.

6 Conclusions

We plan to continue our work along several directions. First, we aim at extending
our approach to the problem of evolution of the whole KB, as opposed to the
ABox only. Also, we will add the notion of protected part to our approach, to
model situations where one wants to prevent changes on specific parts of the
KB when applying insertions or deletions. Finally, we aim at studying the case
where the KB contains other kinds of constraints, so as to capture the scenario
where updates are expressed on a conceptual model used as a global schema in
a data integration system [3]. In this context, one of the major challenges is to
deal with the problem of pushing the updates to the data sources.

References

1. Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query an-
swers in inconsistent databases. In Proc. of PODS’99, pages 68–79, 1999.

2. Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. The DL-Lite family and relations. J. of Artificial Intelligence Re-
search, 36:1–69, 2009.

3. Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini. Access-
ing Data Integration Systems through Conceptual Schemas. International Confer-
ence on Conceptual Modeling, LNCS 2224, 270–284, ER 2001.

4. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in de-
scription logics: The DL-Lite family. J. of Automated Reasoning, 39(3):385–429,
2007.

5. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Path-based identification constraints in description logics.
In Proc. of KR 2008, pages 231–241, 2008.

6. Diego Calvanese, Evgeny Kharlamov, Werner Nutt, and Dmitriy Zheleznyakov.
Evolution of DL-Lite knowledge bases. In Proc. of ISWC 2010, 2010.

7. Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi, and Riccardo Rosati.
On instance-level update and erasure in description logic ontologies. J. of Logic
and Computation, Special Issue on Ontology Dynamics, 19(5):745–770, 2009.

8. Ronald Fagin, Jeffrey D. Ullman, and Moshe Y. Vardi. On the semantics of updates
in databases. In Proc. of PODS’83, pages 352–365, 1983.

9. Giorgos Flouris, Dimitris Manakanatas, Haridimos Kondylakis, Dimitris Plex-
ousakis, and Grigoris Antoniou. Ontology change: Classification and survey.
Knowledge Engineering Review, 23(2):117–152, 2008.

10. Hirofumi Katsuno and Alberto Mendelzon. On the difference between updating a
knowledge base and revising it. In Proc. of KR’91, pages 387–394, 1991.

11. Hector J. Levesque. Foundations of a functional approach to knowledge represen-
tation. Artificial Intelligence, 23:155–212, 1984.

12. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic ABoxes. In
Proc. of KR 2006, pages 46–56, 2006.

13. Zhe Wang, Kewen Wang, and Rodney W. Topor. A new approach to knowledge
base revision in DL-Lite. In Proc. of AAAI 2010. AAAI Press, 2010.

14. Marianne Winslett. Updating Logical Databases. Cambridge University Press,
1990.

