Parent Selection Criterion for Extracting Treesfrom
Concept L attices

Cassio Melé, Bénédicte Le-GrarfdAnastasia BezeriangMarie-Aude Aufaurk

1 Ecole Centrale Paris — MAS Laboratoire,
69121 Chatenay-Malabry, France
2 Laboratoire d'Informatique 6 — LIP6,
69121 Paris, France

{Cassio.Melo, Anastasia.Bezerianos, Marie-Aude. Auéa@ecp.fr
Benedicte.Le-grand@lip6.fr

Abstract. Traditional software in Formal Concept Analysiskes little use of
visualization techniques, producing poorly readabtmncept lattice
representations when the number of concepts excaeddss dozens. This is
problematic as the number of concepts in suclcéstgrows significantly with
the size of the data and the number of its dimessitn this work we propose
several methods to enhance the readability of quinletices firstly though
colouring and distortion techniques, and seconglgXtracting and visualizing
trees derived from concept lattice structures. €hasntributions represent an
important step in the visual analysis of concepstialctures, as domain experts
may visually explore larger datasets that tradilovisualizations of concept
lattice cannot represent effectively.
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1 Introduction

The vast amount of data generated over the lastdéschas brought new challenges
to the analytics science. Visual data analysis lemalvledge representation employ
methods such as Formal Concept Analysis (FCA) deoto identify groupings of
patterns from the analysis process [14]. FCA presidn intuitive understanding of
generalization and specialization relationships rgnobjects and their attributes in a
structure known as a concept lattice. A concefittats traditionally represented by a
Hasse diagram illustrating the groupings of objetscribed by common attributes.
A Hasse diagram is a graph where concepts appeartces on the plane connected
by line segments or curves. The layout of the allytiordered set may be seen as a
layered diagram [2]. Lattices visualization beconzgeproblem as the number of
clusters grows significantly with the number of @tig and attributes. Interpreting the
lattice through a direct visualization of the lidegram rapidly becomes impossible
and more synthetic representations are needed.

In this work we propose alternatives to the tradidl lattice representation,
firstly by enhancing the readability of conceptitas though colouring and distortion



techniques; secondly by extracting and visualiziregs derived from the lattices
structure. The tree extraction from the origindfit@ has some unique advantages: it
eliminates all edges crossing and the resultingahiby is also easier to interpret and
to represent. Moreover, this representation stivigles an overview of the dataset,
highlighting significant properties of the lattide. order to extract trees from lattices,
we define a set of parent concept selection caiténcluding the stability and support
indexes [1,4] provided by FCA literature, confidenindex as well as topological
features of the lattice.

The paper is organized as follows. Section 2 pewitbackground on lattice
representations; Section 3 proposes a set of ieriter transforming concept lattices
into trees; Section 4 discusses colouring and wdisto techniques for enhancing
interpretations of lattices. Section 5 presentsamitations of the suggested criteria
and visualizations in the biology domain, followég a discussion in section 6.
Section 7 finally concludes and presents perspexfior future work.

2. Visual Representation of Concept L attices

As mentioned above, FCA analysis produces lattiossally represented as layered
directed acyclic graph graphs, named Hasse diagtausillustrate the groupings of
objects described by common attributes. Hasse atiagdisplay the partially ordered
sets (posets) between concepts in a hierarchishlida, where each concept may
have several parent concepts as illustrated inrdigi The partial order among
concepts of the lattice is materialized through gemeralization and specialization
relationships: for instance the concept represgritie set oflying birds, containing
Finch and Eagle objects, is more specific than the one which dastall birds —
flying or not-, and thus contains a smaller numtifeobjects (the first concept has an
extra one, th@strich). This partial order provides different levelsaiistraction and
native navigation links from a given concept.

As mentioned earlier, such diagrams are usuallgriay graphs, where concept
vertices are assigned to horizontal layers accgrdih the number of common
attributes, and are ordered within each layer tluce edge crossings. FCA lattices in
particular suffer from considerable edge crossingspecially if the number of
concepts exceeds a few dozen as is the case in makravord applications [13],
which leads to reduced graph readability and agsthi3].

To reduce the complexity of lattices, simplifiecagiams can be produced by
displaying only concepts with a sufficient supppti. Visualisations can also be
restricted to portions of the data [5], and concegpmber reduction is possible by
incorporating conditions into the data mining prexe[6]. Finally, conceptual
measures can be applied to identify the most ratesancepts and filter outliers [7].

To deal specifically with the visual complexity ¢tasse diagrams, several
approaches allow users to dynamically explore aenvbal specific parts of the
diagram, using visual query languages [8-10]. Hamvethese techniques do not
provide a clear view of the entire lattice.

Other FCA visualization approaches map the distabeéween concepts to visual
variables, in order to highlight patterns. For epéamin [11] similar concepts are



represented as similarly coloured pixels placeth@2D space along a Peano-Hilbert
curve, so that similar concepts are placed closeatth other. Nevertheless in these
representations detailed relationships between egiacare lost. Finally, systems

often provide users with hybrid/combined latticsualization, e.g. showing both a

general Hasse diagram and a tag cloud for repiiegetiite neighbours of a specific

concept (for a review see [12]).

Our approach consists in representing latticesaadtlasse diagrams, but as trees.
We use different criteria to extract trees frontidats, and visualize the resulting trees.
Trees are inherently simpler hierarchical struguten Hasse diagrams and due to
their applicability in many domains, there is atptga of tree representations.

1 bird 2 praying 3 mammal

Ostrich Snake Hare

4 fying 6

Firch Lion

5

Eagla

Figure 1. An example of animal’s concept lattice.

3. Tree Extraction from Concept L attices

Trees are a common and easily understandable viepagésentation. We consider

them as a visualization alternative to large cheteconcept lattices, which preserves
all lattice entities and some of its structure ohder for a tree visualization to be an

effective alternative to a lattice, the extractiointhe tree from the lattice needs to
preserve the most essential features of the otiginacture.

The present approach consists in extracting aftope a concept lattice by choosing

one single parent concept for each concept of dftecé. We start from the most

specific concepts i.e. the parent concepts of tweet bound of the lattice, at the

bottom of the Hasse diagram and select a singkenpaoncept for each of them, and
reproduce this recursively. Choosing a single gacencept at each step leads to an
information loss. Our goal is to minimize this ldssselecting parents using the most



relevant criteria according to the kind of analysesformed by the analyst. Before
proceeding, we briefly recall the FCA terminology]. Given a (formal) context K =
(G,M, 1), where G is called a set of objects oreext M is called a set of attributes or
intent, and the binary relatidnc GxM specifies which objects have which attributes,
the derivationoperators (*)are defined foA € G andB £ M:
A={meM|vgeA:gim};
B ={geG|vmeB:gm}

In the following sections we consider various sigigs for selecting parent concepts,
including thestability andsupportindexes from FCA literatureonfidenceas well as
topological features of the lattice.

3.1. Parent Selection based on the highest Stability or Support

The stability index measures the proportion of stb®fobjectsof a given concept
whose derivation is equal to thgent of this concept [1]. In other words, th&bility
indicates the probability of preserving a condapgnt while removing some objects
of its extent We recall the definition of stability:

Definition 1. LetK = (G,M,l) be a formal context and (A,B) be arfml concept of K.
Card is a cardinality function. The stability indek(A,B) is defined as:

Card({C CA|Cr=B}) (0]
2Card(A)

o(A,B) =

Using the lattice in figure 1 as an example, wewake thestability for concepts 2
and 4 in order to select a parent for concept Zb(@nd 0.5 respectively); we keep the
one with highesstability, in this case we therefore remove the edge betweecepts

2 and 5. The idea behind the choice of the paremtept with the highestability is
that we expect to keep parent concept’s meaning éveome of the objects or
attributes are removed. Another measure which @amded for assigning to each
concept a unique upper neighbor is the notioswgport'[4]:

Definition 2. Let B [1 M. The support count of the attribute set B irsK i

Card(Br) 2
Card(G)

o(B) =

The use of support as parent selection criteria leag to trees containing concepts
that have fewer specialization levels since in ganegeneric concepts have higher
support values than their most specific countesgdit Concepstability andsupport
measures have been widely used in FCA and theiboation has been promising
[1] in reducting the lattice.



3.2. Parent Selection Based on Shared Attributes and Objects

This approach relies on clustering parent and aulicepts which share most of their
attributes or objects. Parent and child havingeagnumber of attributes in common
are supposed to be grouped together following tirgciple of similarity clustering
and local predictability [15]. Its definition is:

Definition 3. Let Parent Concept (A,B) be such thatl/A G and B[] M. Let Child
Concept (C,D) be A1 G and D I M. The shared attribute index of an edge E

(C.D)—~(AB):
Card(B ND) (©)
card(M)

¢(E) =

In the same animal’'s context illustrated by theidatin figure 1, we have potential
parent concepts 2 and 4 sharing the same numbebje€ts with concept 5, but
concept 4 has more attributes in common with 5f should be chosen as the unique
parent of concept 5.

3.3. Parent Selection Based on Confidence

The confidencevalue of a concept estimates how likely an objgbich has an
attribute set A, also has an attribute set C [[Mpther words, it tries to measure how
strong theimplication of the parent attributes in the child objectsHsr instance,
considering the lattice in figure 1, what is thelmbility of a given object that is
{Bird, Flying} to be also ird, Flying, Preying? The following paragraph
formalizes its definition.

Definition 4. Let Parent Concept (A,B) be such thatl/A G and B[] M. Let Child
Concept (C,D) be d1 G and DJ M. The confidence of an edge E (G:E(A,B):

_ Card(©) @

6(E) ~ Card(4)

An advantage of this method is its consistency it interpretation of concept
lattices. Taking our animals context as examplerghs a 50% probability that an
animal that is dlying bird is also aflying andpreying bird By contrast, an animal
that ispreyinghas only 33% of chance to be alsilyang bird.

4. Using extraction criteria to enhance Lattice and Tree
Inter pretation through Drawing, Sizing and Shaping

Common graph drawing techniques include the asstgmnof different colours,
shapes and sizes to nodes and edges, accordiiffetert dimensions or properties.
This approach is underused in traditional latticualizations, where the main visual



variable used is node/link colour to reflect uselestions or node size to indicate the
immediate presence of an extent or intent as dieplin ConExp.

05 0.5 0.33

bird preying mammal
Ostrich Snake Hare
0.67 0.33 0.5
fiying 0.33
Finch Lion
0.5
Eagle 0

Figure 2. Animal lattice with nodes as pie charts sizedtapility, and edge thickness by
confidence. Pie charts indicate the ratio intetéexof the concept.

In our work we use these as well as other visugbbes in a Hasse diagram to
represent possible tree extraction criteria. Thizvidles several benefits to lattice and
extracted tree understanding. First, it enablesrsude rapidly associate the
dimension/criteria in question (e gtability, supportin Figure 2) with concepts, thus
justifying the choices made during the tree extoacprocess. Second, visualizing
different extraction criteria using various visuariables, allows users to compare
these criteria in order to choose the one thaebétt their needs. Third, irrespective
of the tree extraction process, matching visuatibattes to concept attributes
establishes a benchmark/comparison among conaepldng it possible to compare
at a glance different concepts, even if they dohate a link in common, as well as
gain insights on the whole lattice itself. Finalprominent features of the lattice like
specialization and generalization can be betteerstdod: for instance the power of
implications of different concepts can be rendelbgdedge thickness. The concept
node itself can be a visual metaphor for the ingemt extent. In the example of figure
2, a pie chart replaces the traditional box reprieg®n to depict the proportion of
objects (blue) and attributes (yellow). In this wasers can be guided in
understanding and choosing criteria for extractinges to simplify the lattice
representation.

1 ConceptExplorerhttp://conexp.sourceforge.net/



5. A Qualitative Analysis of the Proposed Parent Selection Criteria

In this section we discuss a case study of a canatjze to qualitatively examine the
nature of the trees resulting from different ciderThe techniques for lattice
transformation and drawing were implemented in suai analytics tool called
CUBIST Analytics and applied to a dataset contginghanimals and 9 attributes
which produced a lattice with 19 concepts (figByeEach of the measures proposed
revealed particular aspects on the analysis dtiadaillustrated in table 2.

Table 1 a) shows the tree generated with stat@Btparent selection criterion. In
practice, it resulted in a tree with very stablen@apts more likely to retain their
subsequent children. For instance, the concepedlin land} was the preferred parent
of the concept that holds our notion for amphibigtiges on land, lives in water}
because it is more stable than its counterparts.

The measure of shared objects was the criteriangibr@erated the tree in table 1
b). Parent concepts sharing most objects with chddcept were the preferred
candidates. As an example, the concept {lives owl}lashares more objects with
{lives on land, needs chlorophyll} than concept ¢ds chlorophyll} does, therefore it
was the chosen parent in this case.

needs water to live

lives-on land needs chlorophyll can move lives in water
maonocotyledon has fimbs
Fish leech
Corn
. Water weeds
dicotyledon breast feeds .
Bean Dog Reed Bream
Frog

Figure 3. Concept lattice of the biology domain.

Table 1 c) the tree was generated from confidemiterion, therefore children
nodes are associated with the parent with whichreteionship of confidence is the
highest among the candidates. As a result, théioel§can move, has limbs} has a
stronger implication in {lives on land} than {livesn land} has for {can move, has
limbs}, for example.



6. Discussion

Some may argue that due to the tree constructienptesent approach breaks the
original lattice meaning, and therefore subsequeathematical models based on this
structure. It is noteworthy to observe howevert thay the links in the lattice graph
structure are removed and the lattice structureanesnsemantically valid, since there
is no need to take out the attributes or objeci$ toncepts have in common with
their parents.

The choice of parent selection criteria for tremnsformation corresponds to a
classification problem to some extent. Deciding lfion is more “mammal” than it is
“preying” it's not always straightforward, hence wady on the measures that attempt
to keep the context semantics when looking at thigeeconcept lattice. For instance,
if we have more objects described by mammal whieh“eloser” to Lion than other
concepts, then it may reasonable to be chosen ssparent. As general
recommendations, one should use the criteria thstt fiis to their analysis task (table
2).

Table 1. Examples of trees generated from the latticégiaré 3 for each of the proposed
measure.

a) Stability

b) Shared attributes

¢) Confidence

lives on land

Frog Reed Com,Reed

Example

Dog Frog Bean

needs chiorophylllives in water,dicotyledon,

canmovehasfimbs  livesinwater  needschiorophyll

breastfeeds  canmovehaslimbs  dicotyledon

lives on land

Dog,Corn,Bean

lives in water

Frog,Reed

canmove

L lives in water

Fish leech

lives in water
ives onland

Bream

breast feeds lives in water

Dog Frog

In addition to the tree-extraction strategies, ulse of colours, size, shaping and
thickness for both nodes and edges in the origettice to represent the criteria
metrics (such as stability, support, specializatanimplication) can enhance the
interpretation of a concept lattice, and aid usertheir choice and interpretation of
the created trees.

The labelling strategy for identifying concepts shibbe taken into account as
well. Merely placing attributes and objects namasconcepts may be cumbersome
for large lattice analysis (used in most FCA vigatlons). In this case, it is
recommended to represent the concept’s intent arehtewith visual metaphors like
the pie chart shown in figure 2.



Table 2. General guidelines on the usage of the propostdas.

Criteria Description Rationale Suitablefor

Stability It measures how likely a Stable concepts are lesbserving real
concept is to change if someimpacted by noise angworld analogies
of their attributes or objects usually represent strong
are removed. correlation with real world
entities (e.g.: a concept that
encapsulates our notion of

“mammal’”).
Support It measures the frequency pfFrequent  concepts  afeFrequent patter
the concept itemset. usually generic conceptsanalysis

since they aggregate a larger
number of objects than the
specialized ones.

Shared It represents the degree | Concepts that share mc| Similarity
objects /| similarity between parent attributes or objects shouldanalysis
attributes | and child nodes. be linked together because

they are similar.

Confidence It measures how strong thelmplication is one of thg Confidence
implication is between a desired interpretation of aanalysis

parent concept in a childconcept lattice.
concept.

Conclusions and Future Work

Traditional software in FCA makes little use of uddization techniques, producing
poorly readable lattice graphs when the numbeioatepts exceeds a few dozens. In
this work we have presented a transformation ambroa extract trees from concept
lattices, attempting to minimize both semantic amwhceptual loss in favour of
readability and interpretation. We have also presgmways to visually show the
extraction criteria in the original lattice. This an important step in the visual
analysis of conceptual structures, as the resulteeg structures are visually easier to
understand than cluttered lattice graphs. Domapess can thus visually explore
larger datasets that traditional visualizations cohcept lattice cannot represent
effectively. Each of the tree construction measyrexposed in our work provides
particular insights valuable to different analysésks, identified in our paper as
recommendations.

In the future we plan to combine two or more ciétefior parent selection with
other lattice reduction techniques (e.g. icebeattices [4]). We also plan to conduct
user experiments to understand when users wanave full lattice views vs. tree
views, which metrics for creating trees are of nmingrest to them and under which
circumstances, and assess if our visual indicatelfev users to understand the
extraction tree process.
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