
Automated Code Generation Using Case-Based Reasoning,

Routine Design and Template-Based Programming

Yuri Danilchenko and Richard Fox

Department of Computer Science

Northern Kentucky University

Nunn Drive

Highland Heights, KY 41099

{danilcheny1, foxr}@nku.edu

Abstract

Automated code generation is the process whereby a

computer program takes user specifications in some form

and produces a program as output. Automated code

generation can be the process undertaken by a compiler,

which generates an executable program from a source

program, but it also applies to the situation where the input

is a task described at some level of abstraction and the

output is a program that can perform that task. Several

different approaches have been utilized to varying degrees

of success to automate code generation, including Case-

Based Reasoning, formal methods and evolutionary

algorithms. In this paper, a system is introduced which

combines Case-Based Reasoning, Routine Design and

Template-Based Programming to generate programs that

handle straight-forward database operations. This paper

presents the approach taken and offers some brief

examples.

Automated code generation (ACG) is the process whereby
a computer program takes user specifications in some form
and produces a working program as output. When the user
input is some abstract description of a task, as opposed to
source code in some high level language, ACG presents
both a challenging problem and an opportunity to reduce
cost. Automating the programming task, which normally
requires a great deal of expertise involves employing
techniques that comprise design or planning, logic and
programming knowledge. The benefits of ACG include
reducing or eliminating expenses involved in software
development and maintenance, which studies have
indicated could cost corporations as much as 10% of their
yearly expenses (Jones 2010).
 One form of ACG is the compiler. The user provides
source code as input and the compiler generates an
executable program. Compilers have been in regular use
since the late 1950s when the first high level languages
were developed. Although initially many programmers
scoffed at the idea that ACG could produce efficient and
correct code, very few programmers today would write
code in a low level language, favoring the high level
languages and compiler technologies. However, the

compiler requires too detailed an input as the programmer
must still produce the algorithm in a proper syntactic form.
 In Artificial Intelligence (AI), a variety of approaches
have been explored to support software development.
Case-Based Reasoning (CBR), for instance, can be used to
maintain a library of code routines (e.g., objects, methods),
select the code routines that best match user specifications,
and present the those options to the software developer.
Alternatively, through genetic and evolutionary
programming, code can be mutated and tested for
improvements. If improved, the new code becomes a base
for the next generation of code. Random changes can
potentially lead to code that is more concise, more
efficient, or more correct.
 At present, neither CBR nor evolutionary approaches
has yielded an ACG system that can replace a software
developer. In this paper, the research focuses on three
different but related areas. First, code generation is
thought to be a design problem. A solution will be a plan.
Plan steps can be specified at a generic level and then
refined into more detail. Eventually all plan steps will be
filled in with code components from a component library.
Once selected, these components are combined and used to
fill in a program template.
 Although the word “plan” is being used, the plan is a
description of a solution, or a design to solve the stated
problem. The plan steps provide goals to be fulfilled.
Code components are selected to fulfill each of these
goals. Thus, the problem is one of designing a solution
through a code component library.
 The plan itself is retrieved from a library of plans, based
on user specification. Additionally, if the selected plan
does not precisely match the user specifications, alterations
can be made. The refined plan can be stored for future
retrieval. Thus, an ACG system can be built as a
combination of Routine Design (RD), Template-Based
Programming (TBP) and Case-Based Reasoning (CBR).
 In this paper, the Automated Coder using Artificial
Intelligence (ACAI) system is presented. The paper is laid
out as follows. Section 2 identifies related work and some
background into both RD and CBR. Section 3 presents the
ACAI system. Section 4 contains a brief example and

description of the system in action. Section 5 offers some
conclusions and future work.

Related Work

The earliest instance of CBR is found in the system CHEF
(Hammond 1986), a program to generate Szechwan
cuisine recipes based on user goals. CHEF utilized a
library of previous dishes for cases. Cases included such
pieces of information as ingredients, textures, and
preparation instructions. The CHEF system would retrieve
a closely matching recipe based on the user specification,
compare the goals of the matched recipe to the user’s
specifications, identify goals that were not met, or
constraints that would not be met, and attempt to repair the
selected recipe. The new recipe would be stored in the
library so that the system could learn over time. This
initial CBR system demonstrated the utility of the
approach: solving new problems through previous
solutions. A CBR system would perform four primary
tasks: case retrieval, case reuse, case revision,
caseretention.
 The Kritik system (Goel, Bhatta and Stroulia 1997)
developed in the late 1980s applied CBR to the physical
design problem. Cases would represent component parts
and Kritik would propose a design for a physical artifact
by selecting components. Unlike CHEF where cases were
represented by goals, Kritik represented its cases by their
structure, function and behavior. The components’
structures would be used to ensure that the components did
not violate constraints, components’ functions would be
used to match goals, and components’ behaviors could be
used in simulation to ensure that the device functioned as
expected. CHEF and Kritik are noted for their contribution
to CBR although neither addressed ACG.
 The Individual Code Reuse Tool, or ICRT, applies CBR
to software reuse (Hsieh and Tempero 2006). A library of
software components comprises the cases for the system.
In ICRT, the software components are represented by both
complete code segments and incomplete or partial code
segments, the latter of which may be syntactically invalid
as is. Cases are stored in a flat structure and indexed using
attribute-value pairs. Indexes are assigned by the software
developers using the system. Components are selected
using a nearest-neighbor algorithm and brought to the
developer’s attention. It is up to the developer to utilize the
suggested code segment or not. Therefore, while CBR is
used, it is not an automated system. Of particular note
however is the indexing scheme. Case attributes are
represented using functionality cards, describing for each
code segment the segment’s language, feature, property
and description.
 In the Software Architecture Materialization Explorer
(SAME) system, the goal is to produce object-oriented
designs (Vazquez, Pace and Campo 2008). These designs
are then presented to the developers who use the designs to
produce the final programs. The designs are produced
from a case library of various software architectural parts,

such as a data access layer. Although the developers
modify the case components by hand, SAME monitors any
such operations to capture the changes for future uses.
 The Case-Based Reasoner for Software Component
Selection (Fahmi and Choi 2009) is currently only a
conceptual design of a CBR system for software
component selection. As with the previous two systems,
this system automates only the selection of case
components from a library of reusable software
components. Cases include function, associated
components, component justification and case justification
in support of providing rationale for why a component
might be used.
 While the previous systems automated only a portion of
the process, the Case-Based Software Reuse System, or
CAESAR, (Fouqut and Matwin 1993) offers an example of
a complete ACG. CAESAR applies a variant of CBR
called compositional software reuse to perform code
generation in the domain of linear algebra. Cases are
reusable mathematical routines written in C. Code
segments are retrieved based on user specifications and
partial matching, along with plan decomposition.
Inductive logic is used to capture frequently occurring
instances of code segments so that these can be stored for
future use. Such groupings are called slices.
 Finally, Menu Browser Using Case Based Reasoning
(MESCA), applies CBR to the problem of generating a
user interface based on reusable software components
(Joshi and McMillan 1996). Here, the reusable
components are menus and the system will adapt menus to
fit specified functions, application types, user-tailored
fields and graphical design.
 Aside from a great number of CBR efforts, the ACAI
system highlighted in this paper draws from both RD and
TBP. RD (Chandrasekaran and Josephson 2000) is a class
of design problem in which the overall design strategy is
well known and can be represented through plan
decomposition. That is, solving an instance of the design
problem is handled by decomposing the problem into
subproblems or components. Each component itself might
be further decomposed.
 In RD, at the lowest level, specific design steps are
available as component descriptions. A component
description defines in English, through code, or
mathematically how a given component is constructed and
placed into the overall design. Commonly, there are
multiple component descriptions available for any
component. Therefore, the best component description is
selected using some form of matching knowledge based on
user specifications, constraining factors, and demands
imposed by other components. RD has been applied to
numerous problems from physical design (air cylinders) to
abstract planning (air force mission planning) and abstract
design (nutritional meal design) (Brown and
Chandrasekaran 1989, Brown 1996, Fox and Cox 2000).
 Template-based programming (TBP) originated in the
1960s but came into use primarily in the 1990s. The idea
is to represent program logic in a generic form that can be

filled in later by another program. For instance, a loop
might be represented generically only to have its details
filled in at a later time when those details become known.
TBP has been applied to a number of problems ranging
from the numeric subroutines to web site generation
(Fernandez et al 1993, Jiang and Dong 2008).

An Automated Coding System: ACAI

The Automated Coder using Artificial Intelligence (ACAI)
system is a first pass at a purely automated code generation
system (Danilchenko 2011). Code generation systems cited
in the previous section either required human involvement
in the processing loop or were restricted to domains that
may not be amenable to a general case, such as creation of
menus and linear algebra. It is envisioned that the
approach taken by ACAI can extend to a great number of
applications and domains, although currently ACAI only
solves database-type problems. Specifically, the initial
implementation of ACAI was constructed to tackle the
queries listed below. These queries were identified by data
analyst at a hospital, citing that software which could solve
such tasks would greatly reduce their workload.

 Average, maximum, minimum patient length of
stay, by diagnosis, age, department

 Average amount of time patients waited between
arrival and first procedure, first lab test, first
physician visit, first triage

 Search for all patients who meet a given mode of
arrival (ambulance, car, walk-in, air-transport)
sorted by arrival time

 Average, maximum, minimum time to get lab
results over all patients and lab requests

 Average, total, mean number of patients
with/without insurance by day, week, month, year

 Most common diagnoses by time of day,
weekday, month or season

 Number of patients by doctor, unit, nurse,
diagnosis, location, age

 Average, mean amount of time between
preliminary finding and final lab result

 The restriction to the medical domain was made because
of the interest in the topic. The limitation to handling
database-type operations was made to ensure that a
prototype system could be constructed. See section 5 for
comments on future work.
 ACAI accepts two forms of user input, the goal (i.e., the
query or queries to be answered) and specifications for
how to achieve the goal (e.g., computational complexity,
memory and disk usage, form of input, form of output).
The output of ACAI is a working Java program.
 Given user input, the first step that ACAI undertakes is
similar to that of CBR. A case must be retrieved from the
library of cases. In ACAI, cases are plans, described using
XML.
 ACAI selects a plan through simple matching of user’s
stated goal for the program. ACAI contains plans for such
activities as sorting, filtering, computation, and reasoning

over event durations. As each plan is generic in nature, the
queries listed above can be solved by just a few plans.
Even so, the user’s goals may match multiple plans, in
which case ACAI uses a combination of matching plans
rather than selecting a single plan.
 A plan comprises several sections. First, the plan has a
name and a description. Next, a plan has a number of
steps broken down in three distinct types: input, operation,
and output. Input steps describe from where the program
will obtain its input. Operation steps describe the
individual, executable portions that must make up the
program to solve the given problem. Operation steps
include a variety of types of computations such as
summation, average, or maximum. Finally, output steps
describe where the program will send its output. Notice
that input and output steps describe the “where” while the
operation steps describe the “how”. Each step of a plan is
described in terms of goals to be fulfilled. The goals are a
list of attributes that describe the code that should be used
to implement the given plan step.
 Figure 1 provides an example of the input portion of a
plan. This section contains two types of inputs. First are
the generation inputs. This input allows ACAI to query
the user who is generating a program, not the end user.
Such input might, for instance, obtain information about
the functionality of the intended program. For example,
the user might input a specific type of aggregate function
such as average or maximum. This input helps specialize a
plan step, for instance altering the goal [Utilities –
Aggregate – Property] into [Utilities – Aggregate –
Maximum] or [Utilities – Aggregate – Maximum - String].
The second type of inputs is the running inputs. This input
consists of actual prompting messages that will appear in
the generated program so that, when run, the program will
be able to ask the end user for additional details. One
example might be a pathname and filename for the input
file of the program.

<UserInputs>

<GenerationInputs>

<Input RefineGoal="[Utilities –

Aggregate – Property]"

Prompt="Which aggregate function

(Max, Min, Avg, Total)?"/>

 <Input RefineGoal="[IO - Out]"

Prompt="Where to output (Console,

File)?"/>

</GenerationInputs>

<RunningInputs>

 <Input Name="AggregateUserInput1"

Prompt="What is your data file?"/>

 <Input Name="AggregateUserInput2"

Prompt="What is the name of the

property you would like to

aggregate?"/>

 </RunningInputs>

</UserInputs>

Figure 1: Example Input Portion of a Plan

The heart of a plan is the list of plan steps. Figure 2
illustrates two plan steps of an aggregate plan. The first

plan step is used to declare a variable. In this case, the
variable is a collection of maps. The second plan step
performs an aggregate computation operation on a
declared collection. Notice how the type of operation is
not specified. This piece of information is required before
a specific piece of code can be generated, and the type of
operation is obtained via the user specification.

<Step Name="records" StepType="Input">

<Description>

 Declare a collection.

 </Description>

 <Goals>

 [Variables - Declaration - Declare –

Collection - Of Maps]

 </Goals>

</Step>

<Step Collection="records"

 PropertyName="AggregateUserInput2">

 <Description>

 Apply an aggregate to a

collection.

 </Description>

 <Goals>

 [Utilities - Aggregate - Property]

 </Goals>

</Step>

Figure 2: Two Sample Plan Steps

Now that ACAI has a plan, with its steps, ACAI must
locate code segments to fulfill each of the plan step goals.
ACAI contains a library of Java code components. The
code components come in two different forms. First are
fully written methods, each available to handle a type of
goal or situation (e.g., an input routine, a sort routine, a
search routine). Second are inline or partial pieces of
code. These include, for instance, variable declarations,
method calls, control statements and assignment
statements. All code components are indexed in a similar
strategy to ICRT’s attributes. In this case, code indexes
are described by:

 Type: variables, collections, I/O, control flow,
utilities

 Function: declaration (for variables), filter,
aggregate operation, event, input/output,
assignment statement

 Operation: initialization, criteria for filtering or
sorting, type of loop, duration of event, location
of input or output

 Data type operated upon
 As noted above, every step of a plan is described by a
list of goals. Every goal is a generic version of
information that can be found in the component library.
For instance, a goal might be to declare a collection type of
variable. The goal might be expressed as [Variables -
Declaration - Declare - ArrayList]. Code components are
selected based on how well they match the goal list of the
plan step. Additionally, user specifications that include,
for instance, whether speed or space is more critical, help
select between matching code segments.

 Three example code components are listed here. First is
an inline statement that declares a collection and initializes
it. Notice the use of ^^ symbols. When surrounding an
item, these symbols represent a placeholder to be filled in
later.

 Component index: [Variables – Declaration –
Initialize and Declare – ArrayList]

 Component: Java.Util.ArrayList ^^Name^^ =
new ArrayList();

 Type of component: inline declaration
 Second is another inline statement, in this case a loop.
Notice the use of placeholders to flesh out the portions of
the for-loop that depend on user specifications, such as
data type, or an already generated identifier name that
replaced a previous placeholder. Replacing placeholders is
described below.

 Component index: [Utilities – Iteration –
Collection - Map]

 Component: for (java.util.Map <String,String>
^^CurrentItem^^ : ^^Collection^^) { ^^Body^^ }

 Type of component: inline code
 Third is a method to compute event duration. Only the
header is shown here.

 Component index: [Utilities – Event –Duration –
Find Even Duration – int]

 Component: int findEvenDuration
(^^StartTimeStamp^^ ^^Name^^);

 Type of component: method

 Now, ACAI replaces the component placeholders to
construct final component code. In some cases,
placeholders represent data types. The selected data type
then is used for all matching placeholders. In other cases,
names must be generated. For instance, parameter names
for methods and variable names replace placeholders.
Similarly, method names and method calls must match.
ACAI fills in the placeholders and adds the names to
complete the component code.
 Once ACAI has complete component code, the next step
is to fill in the program template. The template comes
with the necessary code to make up a Java program. For
instance, the template contains proper import statements, a
main method, try and catch blocks, as well as additional
placeholders.
 Another step, which will not be described in detail here,
occurs when multiple plans were initially selected. Recall
that ACAI contains only a few basic plans. For a simple
problem, only one plan would be retrieved. For instance,
if the user requires a program to simply sort a collection of
patient records by age, only the sorting plan will be
required. However, a more complicated problem might
involve first filtering records to find patients that meet a
particular criterion (e.g., a diagnosis or arrival time), an
aggregate computation involving length of stay between
events, and finally a sort. Such a problem would require
three different plans. In such a case, ACAI would have to
combine the three selected plans together. To date, ACAI
has only performed modest forms of plan combination.

 The code generation process carried out by ACAI
results in a program that fits the user specifications to
solve the selected problem. Aside from the generated
program, if plan combination was performed, the new plan
is indexed and stored for future use.
 In summary, ACAI uses CBR to retrieve a solution plan.
The system uses RD to select appropriate code
components and generate the concrete plan steps required
to solve the problem. ACAI uses TBP in that it uses a
template of a Java program, filling in the details and
replacing the placeholders. The overall architecture for
ACAI is shown in figure 3.

 Figure 3: ACAI Architecture

A Brief Example

Here, a brief example is presented to demonstrate how
ACAI carries out its code generation task. The user has
specified a goal of sorting over integer data and requested
the output to be sent directly to the console. Further, the
user specifies that speed is of a greater concern than
memory space usage.
 Based on the input, ACAI retrieves the sort plan. The
sort plan contains generation inputs and running inputs.
These help specialize some of the goals in the plan steps
and provide end user with prompts. The plan steps consist
of a declaration of the input collection, an assignment
statement to assign a variable to the source of input, a
declaration of the sort operation collection variable, a sort

routine, and an output step. The goals of these steps are
listed here:

 Declare Input Collection: [Variables –
Declaration – Declare – Collection – Of Maps –
ArrayList]

 Store Input: [Variables – Assignment]
 Obtain Input: [IO – In – File – ArrayList]
 Declare Sorted Data Collection: [Variables –

Declare – Declare – ArrayList]
 Store Sorted Data: [Variables – Assignment]
 Sort Data: [Utilities – Sort – ArrayList]
 Output Sorted Data: [IO – Out]

Now, ACAI must identify code components for each of the
steps listed above and insert them into appropriate
locations of the program template. The template is shown
in figure 4.

package edu.nku.informatics.thesis.acai;

^^Program Comments^^

public class ProgramSkeleton

{

 public static void main (String [] args

)

 {

 ^^User Inputs^^

 ^^User Prompts^^

 getUserInputs(userInputs,

userPrompts);

 ^^Inline Code^^

 }

 // Get the inputs from the user

 ^^Method Code^^

}

Figure 4: The Java Program Template

The first code component sought is that of the declaration
of input. ACAI selects the following inline statement:

 java.util.ArrayList <java.util.Map <String,
 String>> ^^Name^^;

 Here, ^^Name^^ is a placeholder. ACAI now
specializes the instruction to the given program by
replacing the placeholder with an actual identifier:

java.util.ArrayList <java.util.Map <String,
 String>> records;

 The inline code above is inserted into the template under
the ^^Inline Code^^ placeholder. As ACAI continues to
find code components to fulfill the given plan step goals,
the inline code (whether declaration, assignment or method
call) are inserted in order based on the original list of plan
steps.
 With the identifier records in place in the program,
ACAI will continue to use this name whenever it must
replace other placeholders that reference this same datum.

For instance, the first assignment statement step is handled
by the inline code:
 ^^Variable^^ = ^^Body^^;
which becomes
 records = ^^Body^^;
 The placeholder ^^Body^^ will be replaced by a method
call which will obtain the input and return it as an
ArrayList to be stored in records. In this case, the selected
method is named readCSVFileIntoArrayList, which
contains the code to read data from a file and return it as an
ArrayList. This method call is used to replace ^^Body^^.
 In many cases, the choice of code component to fulfill a
plan step goal is a one-to-one mapping. That is, at least
presently, there are few options because of the limited
domain that ACAI is working in. However, there are some
component options. For instance, there are several
different sort routines available. For ACAI to select the
best code component for the given goal, user specifications
may come into play.
 The sort step of this example could be fulfilled by any of
six different sort methods. The sort code breaks down into
two dimensions: the data type to be sorted and the sorting
algorithm. Data types are restricted to numeric, date and
string. Since numeric types can be handled generically in
Java, Float, Integer, and Double are all sorted by the same
routine. As a different type of operation is required to
compare two Date objects or two String objects, there is a
need for three distinct sorting methods. There are currently
two sorting algorithms used in ACAI, Quick Sort and
Selection Sort. As Quick Sort uses more space but is
guaranteed to be as fast as or faster than Selection Sort, the
user specification of speed over memory space causes
ACAI to select Quick Sort in this example. The result is
that the plan step goal is fulfilled by the following method
call:
 quickSortNumbers(^^Source^^, ^^Criteria^^);
 The ^^Source^^ placeholder is replaced by the
aforementioned records variable. The ^^Criteria^^
placeholder references the need for the program to obtain
from the end user the criteria by which the sort should
operate. This will be the type of data to be compared (e.g.,
a test result, patient’s age, number of visits). The
placeholder is replaced by code generated based on the
running input. The following is the method call inserted
into the program.
 quickSortNumbers(records,
 userInputs.get(“SortUserInput2”));
 The program’s methods must also be inserted into the
template. Methods are largely self-contained and require
little change. However, they also contain placeholders,
such as variable types, identifier names, and other method
calls. The example from this section called for output to
console. Assume instead that the output was to be sent to a
disk file. Figure 5 contains the stored method selected by
ACAI for such an output plan step. Recall that the plan
step has the generic goal of [IO – Out]. This must be
specialized to fit the user specifications, output to disk file.
The ^^Data^^ placeholder in the method call must be

replaced with the proper value. In this case, ^^Data^^
becomes list.
 Once methods are put into place, the program is
complete. ACAI now provides the program as output. An
end user can now run the program to solve the desired
problem. Running inputs are used to obtain the run-time
information required for the program to fulfill the given
task.

printDataToFile (^^Data^^);

private static void printDataToFile (Object

objData)

{

try

{

// Declare variables

java.io.BufferedWriter out = new

java.io.BufferedWriter (new

java.io.FileWriter("Data.txt"));

// Write the specified string to the file

out.write (objData.toString());

// Flushes and closes the stream

out.close ();

System.out.print("Result is stored in: "

 + System.getProperty("user.dir"));

}

catch (java.io.IOException e)

{

e.printStackTrace ();

}

}

Figure 5: Sample Method Call and Method for Output

Conclusions

ACAI, Automated Coder using Artificial Intelligence,
combines the case base, case selection and case storage of
CBR with plan decomposition of RD to fill in a template
program using TBP. In this case, ACAI succeeds in
automated code generation (ACG). Unlike other attempts
at ACG, ACAI operates without human intervention other
than high level input specification.
 In ACAI, plans represent generic solutions to given
database type problems. Each plan describes its solution
through plan steps. A plan step describes the action
required in terms of a goal. Goals provide such
information as the type of operation, specific criteria for
the operation, and data types.
 Given a plan with plan steps, ACAI then selects specific
code components from a separate code library. Code
components are themselves indexed using attribute lists
which match or overlap the goals from plan steps. These
code components combine both inline Java code and Java
methods. The code components are inserted into a Java
program template. Placeholders in the code are replaced
by specific identifiers, types, method calls and other
programming units as needed.
 In order to provide variability, each plan tackles a
specific type of operation, such as sort or search. In

complex problems, multiple plans are selected and refined
into a single solution plan. Plan merging, although not
discussed here, provides a seamless transition from one
plan to another. The result is a new, more complex plan,
which is stored back into the case base for future use.
 ACAI has successfully generated programs to solve a
number of medical database domain queries and
subqueries from the list given in Section 3. ACAI is
currently limited to the domain of medical record queries.
Although this overly restricts ACAI’s abilities, it is felt
that the approach is amenable to a wide variety of
problems.
 It is important to note that the advantage of using ACAI,
as oppose to solving the same medical record queries using
SQL, is that ACAI’s architecture is not restricted to any
specific programming language. The ACAI system can be
used to tackle a much wider range of problems that would
be difficult or inappropriate to address with SQL.
Additionally, ACAI allows end users with no
programming knowledge to obtain desired results, while
SQL would require learning the SQL language as well as
having knowledge of programming concepts to accomplish
the same task.
 Due to ACAI's expandable architecture, theoretically,
the only limitation of applying the system in other domains
is the availability of associated plans and code
components. All that is required to expand ACAI is a
greater variety of plans and code components that can
implement any new plan steps. Expanding ACAI is a
direction for future research along with an examination of
additional forms of plan step merging and case reusability.
Another direction for future research is increasing the
number of criteria that a user might specify for code
selection beyond the speed versus space tradeoff
mentioned here.

References

Brown, D. C, and Chandrasekaran, B. 1989. Design

Problem Solving: Knowledge Structures and Control

Strategies. Research Notes in Artificial Intelligence Series,

Morgan Kaufmann Publishers, Inc.

Brown, D. C. 1996. Knowledge Compilation in Routine

Design Problem-solving Systems, Artificial Intelligence

for Engineering, Design, Analysis and Manufacturing, p.

137-138, Cambridge University Press.

Chandrasekaran, B, and Josephson, J. R. 2000. Function

in device Representation, Engineering with Computers,

162-177, Springer.

Danilchenko, Y. (2011). Automated Code Generation

Using Artificial Intelligence. M.S. thesis, Dept. of

Computer Science, Northern Kentucky University,

Highland Heights, KY.

Fahmi, S. A. and Choi H. 2009. A Study on Software

Component Selection Methods, in Proceedings of the 11th

international conference on Advanced Communication

Technology, p. 288-292, Gangwon-Do, South Korea.

Fernandez, M. F., Kernighan, B. W., and Schryer, N. L.

1993. Template-driven Interfaces for Numerical

Subroutines, in ACM Transactions on Mathematical

Software (TOMS) TOMS p. 265-287.

Fouqut, G., and Matwin, S. 1993. Compositional Software

Reuse with Case-based Reasoning, in 9th Conference on

Artificial Intelligence for Applications. P. 128-134, IEEE

Computer Society Press.

Fox, R. and Cox, M. 2000. Routine Decision Making

Applied to Nutritional Meal Planning, in the Proceedings

of the International Conference on Artificial Intelligence,

IC-AI'2000, Volume II, p. 987-993, H. R. Arabnia editor,

CSREA Press.

Goel, A., Bhatta, S., and Stroulia, E. 1997. Kritik: An

Early Case-based Design System, in Issues and

Applications of Case-Based Reasoning in Design, by M

Maher and P Pu, 87-132. Mahwah, NJ: Erlbaum.

Hammond, K. J. 1986. CHEF: A Model of Case-based

Planning, in Proceedings of the Fifth National Conference

on Artificial Intelligence, p 267-271, AAAI.

Hsieh, M., and Tempero, E. 2006. Supporting Software

Reuse by the Individual Programmer, in Proceedings of

the 29th Australasian Computer Science Conference, p 25-

33, Australian Computer Society, Inc.

Jiang, Y., and Dong, H. 2008. A Template-based E-

commence Website Builder for SMEs, in Proceedings of

the 2008 Second International Conference on Future

Generation Communication and Networking Symposia -

Volume 01. IEEE Computer Society.

Jones, C. 2010. Software Engineering Best Practices. The

McGraw-Hill Companies.

Joshi, S. R., and McMillan, W. W. 1996. Case Based

Reasoning Approach to Creating User Interface

Components, in Proceedings CHI '96 Conference

companion on Human factors in computing systems:

common ground, p. 81-82.

Vazquez, G., Pace, J., and Campo M. 2008. A Case-based

Reasoning Approach for Materializing Software

Architectures onto Object-oriented Designs, in Proceeding

SAC '08 Proceedings of the 2008 ACM symposium on

Applied Computing, p 842-843, ACM.

