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Abstract. In 2D, Venn and Euler diagrams consist of labelled simple
closed curves and have been widely studied. The advent of 3D display
and interaction mechanisms means that extending these diagrams to 3D
is now feasible. However, 3D versions of these diagrams have not yet been
examined. Here, we begin the investigation into 3D Euler diagrams by
defining them to comprise of labelled, orientable closed surfaces. As in
2D, these 3D Euler diagrams visually represent the set-theoretic notions
of intersection, containment and disjointness. We extend the concept of
wellformedness to the 3D case and compare it to wellformedness in the
2D case. In particular, we demonstrate that some data can be visualized
with wellformed 3D diagrams that cannot be visualized with wellformed
2D diagrams. We also note that whilst there is only one topologically
distinct embedding of wellformed Venn-3 in 2D, there are four such em-
beddings in 3D when the surfaces are topologically equivalent to spheres.
Furthermore, we hypothesize that all data sets can be visualized with 3D
Euler diagrams whereas this is not the case for 2D Euler diagrams, unless
non-simple curves and/or duplicated labels are permitted. As this paper
is the first to consider 3D Venn and Euler diagrams, we include a set of
open problems and conjectures to stimulate further research.

1 Introduction

Euler diagrams represent intersection, containment and disjointness of sets. Cur-
rently, these diagrams are drawn in the plane and consist of labelled simple
closed curves. These 2D Euler diagrams have been widely studied over the last
few years and much progress has been made on their theoretical underpinning
and techniques for automatically drawing them.

Here we introduce the concept of 3D Euler diagrams. We know of no other
work defining this type of 3D representation and, thus, this paper focusses on
setting the groundwork for discussing this new diagrammatic type. Furthermore,
it provides a platform to engage the community in discussion about the various
issues in 3D Euler diagram research. 3D Euler diagrams consist of labelled ori-
entable closed surfaces drawn in R3. An example of a 2D and a 3D Euler diagram
representing the same information can be seen in figure 1. This 3D diagram, as
well as all of the 3D Euler diagrams drawn in this paper, can be accessed from
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Fig. 1. A 2D Euler diagram with an equivalent 3D Euler diagram.
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Fig. 2. Four topologically distinct wellformed Venn-3s.

www.eulerdiagrams.com/3D/workshop/. Using the freely available Autodesk
Design Review software, one can rotate and explore the 3D diagrams.

We define 3D Venn diagrams as 3D Euler diagrams where all combinations of
surface intersections are present. An interesting comparison between 2D and 3D
is in the common Venn-3 case, i.e the Venn diagram representing exactly three
sets. It is known that there is only one topologically distinct embedding of well-
formed Venn-3 in 2D [9]. In 3D, there are infinitely many topologically distinct
embeddings of wellformed Venn-3 when the surfaces are closed and orientable
(i.e. connected sums of tori). When the surfaces are topologically equivalent to
the sphere, there are at least four topologically distinct embeddings of wellformed
3D Venn-3, shown in figure 2.

Whilst 3D Venn and Euler diagrams are interesting in their own right, we
believe that there are also solid practical motivations for examining them. Firstly,
the recent advances in hardware available for 3D display and interaction (eg. 3D
televisions and Microsoft Kinect) support 3D visualization. As Venn and Euler
diagrams form an important aspect of 2D visualization, it is reasonable to expect
that they will also be important for 3D visualization.

Secondly, there are intrinsic benefits to exploring 3D with respect to Euler
diagrams. When 2D Euler diagrams are defined as consisting of (anything equiva-
lent to) simple closed curves without duplicated labels (for instance [4] and [6]),
not all data sets can be visualized. This is clearly a major limitation. Subse-
quently, the definition of a 2D Euler diagram was relaxed, permitting diagrams
to have non-simple curves and duplicated curve labels [7, 10]. Under this new ap-
proach, all data sets can be visualized but potentially at the cost of significantly
reduced usability [8]. However, as we note later in this paper, in the 3D case
we conjecture that it is possible to draw all data sets (encapsulated by diagram
descriptions) without duplicate labels and non-simple surfaces. Consequently,
this major limitation on undrawability is overcome in the 3D case.
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Fig. 3. An non-wellformed 2D diagram and an equivalent wellformed 3D diagram.

Wellformedness properties are a key aspect of drawing of Euler diagrams. In
2D, they relate to how the curves intersect and to the properties of the regions
present. In 3D, we generalize them to how the surfaces intersect and the prop-
erties of the solids to which the surfaces give rise. The 2D Euler diagram on the
left of figure 3 is not wellformed because it has a triple point of intersection be-
tween the curves. By contrast, the same data can be represented in a wellformed
manner in 3D, as shown in the righthand side of figure 3; we will demonstrate,
in section 4, that any way of drawing a 2D Euler diagram representing the same
data breaks a wellformedness property. Often, there exists wellformed 3D Euler
diagrams for data that has no wellformed 2D representation.

The remainder of this paper is as follows. Section 2 formally defines 3D Euler
diagrams and related concepts. Section 3 generalizes wellformedness properties
of 2D Euler diagrams to the 3D context. Section 4 establishes that more data sets
can be drawn wellformed with 3D Euler diagrams than with 2D Euler diagrams.
We then go on to examine future work and propose open questions in section 5.
Finally, section 6 concludes.

2 What is a 3D Euler Diagram?

3D Euler diagrams are formed from closed surfaces embedded in R3 rather than
closed curves embedded in R2. We refer the reader to [12] for a formal definition
of a 2D Euler diagram and associated wellformedness properties. As with closed
curves in 2D Euler diagrams, which are typically required to be simple, we choose
not to use arbitrary surfaces in 3D Euler diagrams. This is because we want to be
able to define certain properties of 3D Euler diagrams that require the surfaces
to be ‘nice’. Choosing our surfaces to be orientable gives us a well-understood
notion of what constitutes the interior. Hence, we define 3D Euler diagrams as
follows, where L is a set of labels that we use to label the surfaces:

Definition 1. A 3D Euler diagram is a pair, d = (S, l), where

1. S is a finite set of closed, orientable surfaces embedded in R3, and

2. l:S → L is an injective function that labels each surface.
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In 2D Euler diagrams, zones are sets of points in the plane that are inside all
curves in a given set and outside the rest of the curves in the diagram. In figure 1,
both diagrams have five zones. Zones are fundamentally important, since these
correspond to the semantics of the diagram: between them, the present zones
must represent all of the non-empty set intersections. We now generalize the
notion of a zone to the 3D case:

Definition 2. A zone in a 3D Euler diagram, d = (S, l), is a set of points, z,
in R3 for which there exists a subset, S, of S such that

1. every point, pin , in z is inside all of the surfaces in S and outside all of the
surfaces in S − S, and

2. z is maximal with this property.

Such a zone, z, is described by des(z) = {l(s) : s ∈ S}. The set of zones in d is
denoted Z(d).

In the visualization process, one starts with a description of the to-be-drawn
diagram. A diagram description is a list of the set intersections that must be
present in the diagram, given the sets to be visualized, thus precisely encapsu-
lating the categories in which data items lie. For example, suppose we wish to
visualize the sets P , Q, and R, and the intersections we wish to visualize are
P∩Q∩R, Q∩P∩R, R∩P∩Q (i.e. the set intersections that comprise elements in
exactly one of the three sets), along with P ∩Q∩R, P ∩R∩Q and Q∩R∩P (i.e.
the set intersections that comprise elements that are in exactly two of the sets).
Further, we also must visualize the set intersection that comprises elements in
none of the three sets, namely P ∩ Q ∩ R. This is more succinctly represented
as ∅, P,Q,R, PQ,PR,QR, listing the non-complemented sets from each speci-
fied intersection, and is visualized by both diagrams in figure 3. More formally
these diagrams have description {∅, {P}, {Q}, {R}, {P,Q}, {P,R}, {Q,R}}, but
we will abuse notation as just illustrated.

Definition 3. A diagram description, D, is a subset of PL that includes ∅.
The description of a 3D Euler diagram, d = (S, l), is {des(z) : z ∈ Z(d)}.

The classic drawing problem, generalized to 3D, is given a diagram descrip-
tion, D, draw a 3D Euler diagram with description D. In 2D, this problem is
often subject to a range of extra constraints that typically relate to the well-
formedness properties. For instance, we may wish to find a diagram that has no
concurrency between surfaces. We generalize the wellformedness properties to
3D in the next section.

3 Wellformedness Properties of 3D Euler Diagrams

There are various wellformedness properties that can be applied to 2D Euler
diagrams [12]. These are informally described in table 1, where we also present
their generalizations to 3D. Examples of non-wellformed diagrams in both 2D
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Property 2D Case 3D Case

Connected Zones Every zone is a connected compo-
nent of R2.

Every zone is a connected compo-
nent of R3.

n-Point Every point in R2 is passed
through at most n = 2 times by
the curves.

Every point in R3 is passed
through at most n = 3 times by
the surfaces.

Crossings Whenever two curves intersect,
they cross transversely.

Whenever two surfaces intersect,
they cross transversely.

Line Concur-
rency

No two curves share a common line
segment.

No three surfaces share a common
line segment.

Surface Concur-
rency

N/A No two surfaces share a common
sub-surface.

Table 1. Wellformedness properties.

and 3D are shown in table 2. Some of the wellformedness properties in 3D are
obvious generalizations of the 2D case, but others benefit from further discussion.

First, consider the n-points properties. For the 2D case, a diagram is non-
wellformed if it contains a triple point (i.e. a 3-point). The reason that the pres-
ence of 2-points does not render a diagram non-wellformed is because whenever
two curves intersect, a 2-point is formed. However, given three curves that pair-
wise intersect it need not be the case that a 3-point is formed. Thus, 3-points are
avoidable in 2D. However, 3-points are not avoidable in 3D. This is illustrated
in figure 4. Here, three spheres intersect to form Venn-3. The cross-section of
the diagram shown on the right of the figure illustrates that a three 3-point is
formed.

Now consider now line concurrency. In 2D, diagrams that have two curves
running concurrently along a line segment are not wellformed. However, in 3D,
such a property is unavoidable: two surfaces that intersect and share common
interior points necessarily share a common line segment. For instance, the Venn-3
diagram drawn with spheres on the left of figure 4 has line concurrency.

Q

P

R

Q

P

R

Fig. 4. The necessity of 3-points in 3D.
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Property 2D Case 3D Case

Connected
Zones P

Q

R

Q

P

The zone PQ is disconnected. Here, P is a sphere with a
‘sausage’, Q, through it. The zone
inside Q and outside P is discon-
nected.

n-point
P

QR

Q

P R

S

The curves P , Q, and R form
two 3-points.

The spheres P , Q, and R form a 4-
point where they all intersect with
S.

Crossings

P Q

R

S

Q

P

R

Q

P

R

The curves P and Q intersect
at a point where they do not
cross (as do R and S).

The sphere R intersects withQ but
does not cross Q; a cross-section is
shown on the right.

Line Concur-
rency

P

Q R

Q

P

R

Q

P

R

The two curves P and Q share
a common line segment.

The three tori share a common line
segment; a cross-section is shown
on the right.

Surface Con-
currency

N/A
P

R

The two ‘squashed’ spheres share
a disc-like surface.

Table 2. Examples of non-wellformed diagrams.
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4 Drawability of 3D Euler Diagrams

One of our key motivations for developing 3D Euler diagrams is that they allow
more diagram descriptions to be drawn in a wellformed manner than is the case
for 2D Euler diagrams. Recall that a 2D Euler diagram comprises a set of labelled
simple closed curves such that no label is used on more than one curve.

Definition 4. Let D be a diagram description. Then D can be drawn well-
formed if there exists a Euler diagram with description D which satisfies all of
the wellformedness properties of table 1.

We now establish that every diagram description that can be drawn well-
formed in 2D can be drawn wellformed in 3D. Our proof strategy is to convert a
wellformed 2D diagram into a wellformed 3D diagram with the same description.
To illustrate the approach, consider figure 5. Here, the wellformed 2D diagram is
converted into a 3D diagram by rotating the 2D diagram around line that does
not pass through any of the curves. Each resulting surface is a torus and the
final 3D diagram is shown on the right.

P Q

R

P

Q

R
P

QR

Fig. 5. Converting a wellformed 2D diagram into a wellformed 3D diagram.

Theorem 1. Let D be a diagram description. If D can be drawn wellformed in
2D then D can be drawn wellformed in 3D.

Proof (Sketch). Suppose that D can be drawn wellformed in 2D. Choose any
wellformed 2D diagram, d2, with description D. Draw a line, λ, that does not
pass through any curve in d2. Rotate d2 about λ by 2π to create a 3D Euler
diagram, d3. Each closed curve, c2, in d2 gives rise to a torus, t3, in d3 and we
label t3 the same as c2. It can be shown that each zone, z2, in d2 gives rise to
a zone, z3, in d3 with the same description and that no other zones appear in
d3. That is, the description of d3 is D. The wellformedness of d3 can be trivially
established using the wellformedness of d2.

We now demonstrate that there are diagram descriptions that cannot be
drawn wellformed in 2D that can be drawn wellformed in 3D. Work by Flower
and Howse [4] identified necessary and sufficient conditions for when a diagram
description can be drawn wellformed in the 2D case. We will demonstrate that
their conditions are not both necessary and sufficient in 3D, failing in multiple
ways. Their approach starts by converting a diagram description into a graph,
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called the super-dual, and looks at properties of this graph to establish drawa-
bility.

Definition 5. Given a diagram description, D, the super-dual of D is a graph,
G = (V,E), where V = D is the set of vertices and, for every pair of vertices,
v1 and v2, there is an edge between v1 and v2 if and only if v1 and v2 differ by
a single label (recall elements of D, i.e. the vertices, are sets of labels).

Assuming we have a super-dual that is planar, we can draw that graph in the
plane without edges crossing. Given such an embedding of the super-dual, we
can attempt to form the required Euler diagram. An illustration of the process
is given in figure 6. Here, we start with description ∅, P,Q, PQ and turn it into
the super-dual, shown on the left of figure 6. The curves of the 2D Euler diagram
are constructed by enclosing the vertices appropriately. For example, to draw a
curve labelled P we enclose the vertices that include P but no others. The curve
labelled Q is similarly formed. Finally, we delete the super-dual and are left with
the required 2D Euler diagram, shown on the right.

The preceding example is rather simple, but it is by examining the super-dual
and, if necessary, its subgraphs that we can determine wellformed drawability in
the 2D case. Now, the curves of a (wellformed) 2D Euler diagram are all simple
which means that for each curve, c, the set of points inside c is a simply connected
region. In terms of a super-dual, this implies that the maximal subgraph induced
by the vertices that contain the label of c is connected and, moreover, that
the subgraph induced by the vertices that do not contain the label of c is also
connected. This key insight led Flower and Howse to define the connectivity
conditions for graphs; these are used to establish properties of super-duals arising
from diagram descriptions.

Definition 6 (Connectivity Conditions [4]). Let G = (V,E) be a graph
such that V ⊆ PL. The connectivity conditions for G are:

1. G is connected,
2. for each curve label, λ, in L, the maximal subgraph of G whose vertices

include λ is connected, and
3. for each curve label, λ, in L, the maximal subgraph of G whose vertices do

not include λ is connected.

PQP Q PQ

P Q

P Q

P Q

Fig. 6. Constructing a 2D Euler diagram from the super-dual.
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Theorem 2 (2D Connectivity Test [4]). Let D be a diagram description
whose super-dual fails connectivity conditions. Then there is no 2D Euler dia-
gram, d, with description D that is wellformed.

The connectivity conditions are necessary for wellformed drawability in 3D:

Theorem 3 (3D Connectivity Test). Let D be a diagram description whose
super-dual fails connectivity conditions. Then there is no 3D Euler diagram, d,
with description D that is wellformed.

Flower and Howse further introduce the face conditions, which we now infor-
mally explain via an example; for full details we refer to [4]. Consider the diagram
description ∅, P,Q, PQ,R, PR,QR. This has super-dual as shown on the left of
figure 7. All three curves will pass through the face f , which will lead either
to a 3-point (as shown in the figure), a disconnected zone, or an un-required
zone (to create such a zone, nudge one of the curves to remove the triple point).
The non-wellformedness of the diagram is determined by examining the edges
around f . By traversing the simple cycle around f , each time we pass along an
edge we write down the curve label that is in one of the incident vertices but
not the other to form a word, say w = RPQRPQ. By examining alternations
of letters in w, we can see which curves are required to cross. For instance, P
and Q alternate, since PQPQ is a scattered subword of w. This tells us that
(the curves labelled) P and Q must cross in f . Similarly, P and R must cross
and Q and R must cross. This indicates the possible presence of a triple point.
In general, a combinatorial analysis of the words around faces in the graph is
used to determine whether the plane embedding will give rise to a wellformed
2D Euler diagram. The face conditions for the graph, roughly speaking, identify
whether too many crossings occur for wellformedness to be achieved. Of note is
that our example is very simple and the actual details are more complex than
we have illustrated. In any case, the super-dual in figure 7 is planar, passes the
connectivity conditions, but fails the face conditions. Hence, this embedding of
the super-dual cannot be used to draw a wellformed 2D Euler diagram with the
specified description. Moreover, there is no different choice of embedding which
passes the face conditions.

PQ

P

Q

QR

PR

R

Q

P

R
PQ

P

Q

QR

PR

R

Q

P

R

Q

P

R

Fig. 7. Failure of the face conditions.
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For some diagram descriptions, but not the one just considered, it is possible
to remove edges from the super-dual whilst ensuring connectivity holds and pro-
duce a subgraph, G, that has an embedding which passes the face conditions. A
further complication is the potential lack of planarity of the super-dual. Again,
we may be able to remove edges to create a planar subgraph G with the prop-
erties just described. In either case, if such a G exists then D is drawable as a
wellformed 2D Euler diagram, otherwise it is not. This key result is captured in
the following theorem:

Theorem 4 (2D Drawability – Necessary and Sufficient Conditions [4]).
Let D be a diagram description with super-dual SG(D). There exists a wellformed
2D Euler diagram that is a drawing of D iff there exists a planar subgraph, G, of
SG(D) obtained by removing edges from SG(D), which passes the connectivity
conditions and has a plane embedding that passes the face conditions.

We can immediately generalize one side of this theorem to the 3D case:

Theorem 5 (3D Drawability – Sufficient Conditions). Let D be a dia-
gram description with super-dual SG(D). If there exists a planar subgraph, G,
of SG(D) obtained by removing edges from SG(D), which passes the connectivity
conditions and has a plane embedding that passes the face conditions then there
exists a wellformed 3D Euler diagram that is a drawing of D.

Proof. By theorem 4, a wellformed 2D Euler diagram exists. The result then
follows from theorem 1.

We now demonstrate that there are diagram descriptions that are not draw-
able wellformed in 2D (they fail one of more of the conditions in theorem 4) but
that are drawable wellformed in 3D. The three examples below fail the condi-
tions of Theorem 4 in different ways. This shows that there are more diagram
descriptions that can be drawn wellformed in 3D than 2D and that the condi-
tions to determine drawability in 2D are not useful for determining drawability
in the context of 3D diagrams. For these three examples, the wellformedness
of the 3D representations suggests that they are more readable than the 2D
representations and the 3D diagrams display a pleasing symmetry.
Example 1: Figure 7 shows a planar super-dual that passes the connectivity
conditions but fails the face conditions, so the corresponding 2D representation
shown in figure 7 is not well-formed (it has a triple-point). All plane embeddings
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Fig. 8. Failure of planarity of the super-dual.
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Fig. 9. Failure of planarity with no planar subgraph that passes connectivity.

of this graph fail the face conditions. Removing edges from this graph will never
result in a graph that passes the connectivity and face conditions. Hence, there
is no wellformed 2D Euler diagram with the given description. A wellformed 3D
Euler diagram with this description can be seen in figure 7.

Example 2: Figure 8 shows a super-dual that is non-planar, since it is home-
omorphic to K5,5, so some edge removal is necessary to achieve planarity. We
demonstrate that any way in which edges can be removed to achieve planarity
whilst maintaining connectivity does not produce a graph which passes the face
conditions. If we remove an edge from the super-dual that is not incident to ∅
then we break the connectivity conditions. If we remove an edge which is incident
to ∅ then the graph becomes planar and connectivity is preserved, so we then
look for an embedding which passes the face conditions. However, any plane em-
bedding of the graphs resulting from the removal of exactly one of these edges,
shown here with the edge between ∅ and S removed, fails the face conditions.
Continuing this kind of analysis, it can be demonstrated that there is no well-
formed 2D Euler diagram with the given description. A wellformed 3D Euler
diagram with the same description can be seen in figure 8.

Example 3: Figure 9 shows a super-dual that is non-planar, since it has a proper
subgraph homeomorphic to K5,5, so again some edge removal is necessary to
achieve planarity. However, all planar subgraphs fail the connectivity conditions.
Take one edge as an example, say the edge between T and RT . This edge is in
the maximal subgraph of the super-dual whose vertices include T . The removal
of the T -RT edge would disconnect this subgraph, breaking connectivity. The
same argument prevents removal of any edge not incident to ∅. Thus, the only
edges we can consider removing are those incident with ∅. However, the subgraph
obtained by removing the vertex ∅ is homeomorphic toK5,5. This implies that we
cannot obtain a planar subgraph by removing edges from the super-dual whilst
preserving connectivity. Hence, there is no wellformed 2D Euler diagram with
the given description. A wellformed 3D Euler diagram with the same description
can be seen in figure 9.

Thus, more diagram descriptions are drawable wellformed in 3D than in 2D.
In particular, the face conditions need not be passed in order for us to have
wellformed drawability in 3D and we need not have planarity of the dual.
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Q

P

Fig. 10. Constructing 3D diagrams from descriptions.

5 Future Work and Open Problems

There are numerous open questions in 3D. Following the previous section:

Open Problem 1 What are necessary and sufficient conditions for determin-
ing wellformed drawability in the 3D case?

We have demonstrated that the connectivity conditions are necessary, but
there is no obvious generalization of the face conditions to the 3D case (the
notion of a face does not translate to 3D graphs). We conjecture that a differ-
ent approach is needed and it is very possible that this could provide a new
perspective on wellformed drawability in the 2D case as well.

An important question is how the definition of Euler diagrams needs to be
relaxed in order to draw every diagram description. As discussed previously, in
2D we require either non-simple curves or duplicated label use. We believe that
the definition given in this paper for the 3D case is sufficient for drawability in
general, if we do not impose any wellformedness properties:

Conjecture 1 For every diagram description there exists a 3D Euler diagram
with that description.

We are confident that this conjecture is true because we believe the following
method for construction works in general. Given the diagram description D =
{∅, {P}, {Q}, {P,Q} for each element, z, in D create one sphere for each label
in z and draw them concurrently. For each pair of elements, z1 and z2, in D, if
they share a non-empty set of labels, L = z1 ∩ z2, then join the spheres with
labels in L arising from z1 and z2. This example can be seen in figure 10.

We focus now on a specific class of Euler diagrams which is the widely known
family of Venn diagrams [9]. In 2D, Venn diagrams are Euler diagrams where all
2n possible intersections between n sets are represented by connected regions,
that is there are 2n zones each of which is connected. In 3D:

Definition 7. A 3D Venn diagram, d = (S, l), is a 3D Euler diagram where
there are 2|S| zones, each of which is connected.

Four topologically distinct embeddings of Venn-3 are shown in the introduc-
tion, figure 2. To see that they are distinct, we make arguments about their
zones. The first (leftmost) Venn-3 has only simply connected zones. The second
Venn-3 has exactly two zones that not simply connected, namely P and PR.
The third Venn-3 has exactly two zones that are not simply connected, namely
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∅ and R. The fourth (rightmost) Venn-3 also has exactly two zones that are
not simply connected, namely QR and PQR. The four diagrams are pairwise
topologically distinct because the non-simply connected zones are contained by
different numbers of surfaces.

Conjecture 2 There are exactly four topologically distinct embeddings of well-
formed 3D Venn-3 when the surfaces are all topologically equivalent to spheres.

A variety of other open problems can be stated for 3D Venn diagrams, some
of which have been answered for 2D Venn diagrams (see [9] for an excellent
survey on results for 2D Venn diagrams). One such example is:

Open Problem 2 How many topologically distinct embeddings of wellformed
Venn-n exist when the surfaces are all topologically equivalent to spheres?

Returning to the more general case of Euler diagrams, there has been consid-
erable interest in drawing them with curves of particular shapes. For instance,
Stapleton et al. [13] identified a class of diagram descriptions that could be
drawn using only circles and Wilkinson devised a method that only drew Euler
diagrams using circles [14]. Kestler et al. devised a method for drawing Euler
diagrams with regular polygons [5] and others have considered drawing Venn
diagrams where the curves have other geometric shapes, such as triangles [1].
Thus, curve shape is considered interesting and important in the 2D case. For
3D, this generalizes to surface shape (where we no longer mean ‘up to topological
equivalence’). We pose the following two problems concerning surface shape:

Open Problem 3 What class of diagram descriptions can be drawn when the
surfaces are all some specified shape, such as spheres?

Open Problem 4 Can all diagram descriptions that can be drawn wellformed
in 2D using only circles can be drawn wellformed in 3D using only spheres?

P

Q

R

S

P

Q

R

S

Fig. 11. Converting from circles to spheres.

A näıve method for converting a diagram drawn with circles into one drawn
with spheres is to use each circle to generate a sphere. However, this construc-
tion approach need not lead to the required diagram description or preserve
wellformedness. This is demonstrated in figure 11: the leftmost Euler diagram is
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drawn with circles, the 3D Euler diagram is obtained by converting the circles to
spheres and the remaining diagrams show cross-sections of the 3D Euler diagram.
Unfortunately, this created an extra zone, that inside only S and, moreover, this
zone is disconnected. We conjecture that there does not exist a wellformed 3D
diagram drawn with spheres with the same diagram description as figure 11.
However, we believe that some classes of diagram descriptions drawable well-
formed with circles can be drawn wellformed with spheres:

Conjecture 3 The class of inductively pierced descriptions, introduced in [13]
and generalized in [10], which can all be drawn wellformed with circles in 2D can
be drawn wellformed with spheres in 3D.

Finally, there has also been significant interest in drawing 2D Euler diagrams
in a so-called area-proportional manner. In the area-proportional 2D case, the
zones must have specified areas. Key publications on area-proportional Venn
and Euler diagram drawing include Chow and Rodgers [2], Chow and Ruskey [3],
Kestler et al. [5], Stapleton et al. [11], and Wilkinson [14]. These methods mostly
consider drawing the diagrams where the curves have specific shapes, such as
circles. In 3D, the area-proportional case generalizes to the zones having specified
volumes, the volume-proportional case.

Definition 8. A volume specification is a function, v:PL−{∅} → R+∪{0}.
The diagram description induced by v is {z : v(z) 6= ∅ ∨ z = ∅}. A 3D Euler
diagram conforms to a volume specification, v, if its description is induced by
v and its zones have the volumes specified by v.

Open Problem 5 What class of volume specifications can be drawn in a well-
formed manner?

Open Problem 6 What class of volume specifications can be drawn where the
surfaces are all some specified shape?

6 Conclusion

In this paper we have introduced the concept of 3D Euler diagrams, formally
defining them as orientable closed surfaces which implies the surfaces are simple.
We have compared them with 2D Euler diagrams and discovered that 3D Euler
diagrams have some benefits over 2D Euler diagrams in terms of drawability
when wellformedness is considered. In particular, we have shown that there are
more diagram descriptions that can be drawn wellformed with 3D diagrams than
2D diagrams and we conjecture that all diagram descriptions can be drawn in
3D without allowing non-simple surfaces and duplicate label use, unlike in 2D.

We established that there are four topologically distinct wellformed embed-
dings of 3D Venn-3, whereas there is only one such embedding in 2D. This
demonstrates that there is more choice in terms of how we layout diagrams in
3D over 2D, which is likely to be beneficial when more sets need to be repre-
sented. This gives further insight into why more diagram descriptions can be
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drawn wellformed in 3D: we have greater control over which zones are topolog-
ically adjacent and topological adjacency impacts whether we can add a new
surface (or curve in 2D) and maintain wellformedness.

By presenting a series of open questions and conjectures, we hope to stimulate
research progress on 3D Euler diagrams. In some cases there is no obvious way
to extend existing 2D results to the 3D case, such as Open Problem 1 concerning
the drawability of wellformed diagrams. Hence, a different approach is likely to
be required. It may be that results in the 3D case will allow more progress to be
made in the 2D case.

With the advent of recent affordable 3D display, interaction and printing
devices, 3D visualization has the potential to be commonplace. We expect that
3D Euler diagrams will form a useful component in this field.
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