
VariaMos: a Tool for Product Line Driven Systems

Engineering with a Constraint Based Approach

Raúl Mazo
1,2

 , Camille Salinesi
1
, Daniel Diaz

1

1 CRI, Université Paris 1 – Sorbonne, 90, rue de Tolbiac, 75013 Paris, France
2 Ingeniería de Sistemas, Universidad de Antioquia, Medellín, Colombia

raulmazo@gmail.com, {camille.salinesi, daniel.diaz}@univ-

paris1.fr

Abstract. The creation of error-free variability models and their usage in prod-

uct line analysis and product derivation is central to product line engineering

(PLE). The complexity of these tasks makes tool support a success-critical fac-

tor. Tools supporting the core activities of PLE are a challenge and a real need

for academics, industrial researchers, and practitioners of the PLE domain. In

this paper, we present a tool for variability modeling, model integration,

verification and analysis, derivation requirements specification and product

derivation.

Keywords: Product line engineering, variability, product line models.

1 Introduction

Variability models are used to specify the variability of software product lines.

These variability models are represented by means of a modeling formalism. In our

literature research, we have found quite a number of variability modeling formalisms,

such as FODA (Feature-Oriented Domain Analysis) [9], Orthogonal Variability Mod-

els (OVM) [13], UML classes [26], DOPLER [5] and Goals [6]. To represent and

reason on these models, a number of approaches and tools exist in the literature.

However, there is a lack of methods and tools that can support modeling, integration,

reasoning and complex configuration on the Product Line (PL) domain. This lack is

more accentuated when the model is composed of a collection of views representing

the same product line. In this paper, we present a tool allowing represent, integrate,

reason and configure product line models.

The paper is structured as follows: Section 2 gives a brief overview of our tool

VariaMos. Section 3 describes some functions of VariaMos. Section 4 presents relat-

ed tools supporting integration, verification, analysis and configuration of product line

models. Section 5 concludes the paper and describes future works.

mailto:daniel.diaz%7d@univ-paris1.fr
mailto:daniel.diaz%7d@univ-paris1.fr

2 VariaMos Architecture

VariaMos (Variability Models) is an Eclipse plug-in for specification, automatic

verification, analysis, configuration and integration of multi-view product line mod-

els. From a deployment point of view, VariaMos is an Eclipse plug-in that communi-

cates with our GNU Prolog [3] by means of a socket. The VariaMos tool, its docu-

mentation and a video training are available online
1
.

3 Functionalities

VariaMos allows working simultaneously on a set of models in multi-formalism

mode. There are several activities that VariaMos is intended to support: domain en-

gineering with multiple models, integrated verification of the verification criteria

existing in literature [1, 14], analysis [1] and configuration [10, 16]. In additiVn,

MariaMos allows creating/editing Product Line Models (PLMs) that have been im-

ported as SPLOT XMI
2
 or constraint program text files (cf. Figure 1(a)) and export-

ing/importing PLMs using a XMI or a constraint program file. This functionality al-

lows communicating models from and to other applications.

3.1 Integration of Variability Models by means of Constraint Programs

In our approach, each view of the product line system is transformed into a con-

straint program. A constraint program is a collection of constraints without a specific

order. In this way, the constraint programs, representing the different views of the PL

system, can be easily integrated into a single constraint program. The resulted con-

straint program represents the general system and offers a richer view of the PL (than

individual views). VariaMos implements the five integration strategies presented by

[10]. In our approach, two models’ elements referring to the same concept must have

the same name; we do not deal with mismatching of names. Mazo et al. [10] offer a

list of rules to transform the most popular formalisms to represent variability models

into constraint programs. Once each view of the PL system is transformed into CP,

they can be integrated in a single constraint program using the graphical user interface

presented in Figure 1 (b).

3.2 Verification of Variability Models

VariaMos implements the typology of verification criteria presented in [10]. Using

this classification we can detect if the model is void [9], if the model is not a false

PLM [1, 14], if the model does not have errors (like dead variables [1, 9, 14] or varia-

bles with wrong domains [1, 14], inconsistencies (like full-mandatory features [1]

requiring optional features [9]) and redundancies (like full-mandatory variables in-

1 https://sites.google.com/site/variabilitymodels/home/downloads/PresentationVariaMos2.js
2 http://www.splot-research.org

https://sites.google.com/site/variabilitymodels/home/downloads
http://www.splot-research.org/

cluded by another variable [14] or inclusion of a relative father [14]). A snapshot of

the graphical user interface of VariaMos to implement these verification operations is

presented in Figure 1 (c).

(b)

(e)(c) (d)

(a)

Fig. 1. GUI of VariaMos: (a) Definition/edition of Product Line Models, (b) Integration, (c)

verification, (d) analysis and (e) configuration. Fig. 1 in high resolution is available at:

https://sites.google.com/site/variabilitymodels/home/downloads/GUIofVariaMos.JPG

3.3 Execution of Analysis Operations

All the analysis operations implemented in VariaMos are taken from literature and

from industrial projects with our partners; most of the operations are explained and

referenced on the literature review of Benavides et al. [1]. A small description of each

analysis operation implemented in VariaMos and how they have been implemented

are presented as follows:

1. Calculating the number of valid products represented by the PLM. This operation

may be useful for determining the richness of a PLM. VariaMos implements this

operation with GNU Prolog in the following way: g_assign(cpt,0), pl(_), g_inc(cpt),

fail;g_read(cpt,N), where pl is the fact that represents the product line model. With

this operationalization we avoid the overload of the RAM with each solution gener-

ated and counted by the solver because each time a solution is found, we release the

pile of solutions before the generation of a new one.

2. Obtaining the list of all valid products represented by the PLM, if any exist. This

operation may be useful to compare two product line models. The list of valid prod-

uct is obtained one by one from the solver by means of the backtracking technique.

As the screenshot shows it in Figure 1(d), VariaMos provides users with the possi-

bility to navigate in the list of products using the Next and Previous buttons.

3. Calculating product line commonality. This is the ratio between the number of

products in which the set of variables of the PLM is present and the number of

products represented in the PLM. This operation calculates the number of solutions

in which all the variables of the PL are present and divides this number with the re-

sult obtained with operation 1.

4. Calculating Homogeneity: A more homogeneous PLM would be one with few

unique variables in one product (i.e. a unique variable appears only in one product)

while a less homogeneous one would be one with a lot of unique variables.

By definition Homogeneity = 1 - (#unicVariables / #products). This

operation computes the number of variables that appear in only one product by

means of a request to the solver and computes the number of products using the op-

eration 1.

5. Calculating variability factor: This operation takes a PLM as input and returns the

ratio between the number of products and 2
n
 where n is the number of variables

considered. In particular, 2
n
 is the potential number of products represented by a

PLM, assuming that there are not cross-tree constraints on the model and that all

PLM’s variables are Boolean. Variability factor = NProd / 2^ NVar. This function

uses the solver to compute the number of variables and the number of products in

the PLM.

6. Checking validity of a configuration. A configuration is a collection of variables and

may be partial or total (e.g., the partial configuration presented in Figure 2(d)). A

valid partial configuration is a collection of variables respecting the constraints of

the PLM but not necessary representing a valid product. A total configuration is a

collection of variables respecting the constraints of a PLM and where no more vari-

ables need to be added to form a valid product. This operation may be useful to de-

termine if there are or not contradictions in a collection of variables or to determine

whether a given product is available in a product line. To operationalize this func-

tion, the configuration to check is considered as a collection of external constraints

where each constraint corresponds to the assignation of a particular value to each

one of the variables of the PLM. Then, the external constrains and the constraints of

the PLM are executed together in the solver to verify if the whole of constraints is

consistent (i.e., there is a valid solution satisfying all these constraints).

7. Executing dependency analysis or decision propagation. It looks for all the possible

solutions after assigning some fix value to a collection of values and then asking the

solver for almost one solution. This operation is very similar to the operation 6,

however, with this operation we can check the satisfaction of constraints by means

of reification, and not only the satisfaction of variables of the PL as in operation 5.

8. Specifying external requirements specifications for configurations using constraints.

This operation allows the specification of constraints that are not constraints of the

domain, but configuration constraints. To operationalize this function, external con-

straints are defined in GNU Prolog and then added to the constraints of the PLM;

once added, all the constraints are executed in the solver. See [10] for more details

and Figure 1(e) for a snapshot of the implementation of this function in VariaMos.

9. Applying a filter. This operation takes a configuration (i.e., set of variables, each

one with a particular value) and a collection of external requirements and returns the

set of products which include the input configuration and respect the PLM’s con-

straints and the external constraints. Figure 1(e) presents a snapshot of the GUI of

this function in VariaMos.

10. Calculating the number of products after applying a filter. This operation uses the

technique presented in operation 1 to compute the number of products that can be

configured from a PLM in presence of a filter. A filter is presented as a collection of

external constraints and particular assignation of values to the variables of the PL.

To operationalize this function, the filter is added to the collection of the PLM’s

constraints and then executed in the solver. Figure 1(d) presents a snapshot of the

GUI of this function in VariaMos.

11. Find an optimal product with respect to a given attribute like cost (min goal) and

benefit (max goal). Detection of “optimal” products is very important for decision

makers as presented in [10]. To operationalize this function we use the fd_maximize

and the fd_minimize facts offered by the GNU Prolog solver.

3.4 Other Features

According to [8], a tool for automating reasoning on variability models should be

efficient, scalable and with enough expressivity to represent different kinds of varia-

bility constraints. These characteristics are evaluated on VariaMos as follows:

Reasoning efficiency. The execution time of each reasoning operation can be cal-

culated by the solver by means of a request for the current time (by means of the

prolog function user_time(T1)) at the beginning and at the end (by means of the

prolog function user_time(T2)) of each constraint program. The time spent by the

solver to execute the operation at hand, is computed by means of the clause: T is

T2 - T1. We have showed the reasoning efficiency of VariaMos in several works;

for instance: [10, 12, 15] show the efficiency of VariaMos in verification of product

line models and [11] shows the efficiency of VariaMos in transforming PLMs.

Scalability. VariaMos scalability has been validated using a corpus of 54 models

specified in several languages, representing several domains and with sizes from 9 to

10000 variables. In all these cases, VariaMos shows a promising scalability in the

execution of the reasoning operation presented in this paper. The results have been

reported in works like [10, 12, 15].

Expressivity. In VariaMos, product line models can be loaded as XMI or text files

and then, labeled with it particular notation. VariaMos offers several capabilities to

represent and transform different types of product line models into constraint pro-

grams. In addition, models can be edited with XML and text editors furnished by

Eclipse IDE. The power of expression of VariaMos is compared with the one of con-

straint programming to specify PLMs [10, 15].

4 Related Works

The most of the tools for supporting product line engineering focus on one or two

aspects but not in all of the aspects presented in this paper.

For instance, from the point of view of modeling, there are tools like Feature

Plugin
3
, XFeature

4
, AHEAD Tool Suite

5
, Pure::variants

6
 and Requiline

7
. The most of

these tools were built to graphically construct feature models and to derive products

from these models, not to reason on these models.

From the point of view of analysis and verification, most of the tools found in liter-

ature are formalism-dependent and they only focus on feature models. In addition,

most of them focus on verifying the consistency of a combination of features (a fea-

ture configuration) against the feature model. Tools like FAMA
8
 and SPLOT

9
 consid-

er several analysis and verification operations over feature models; however, they

have been targeted in the analysis and verification of models represented by a single

view.

From the point of view of expressivity, modeling tools available in the literature

are just starting to offer some model-to-model transformation capabilities, but these

are still limited and often ad hoc. Some examples of these tools are: Andro-MDA
10

,

openArchitectureWare
11

, Fujaba
12

 (From UML to Java And Back Again), Jamda
13

(JAva Model Driven Architecture), JET
14

 (Java Emitter Templates), MetaEdit+
15

 and

Codagen Architect
16

. There are also approaches that do combine multiple variability

3 http://gp.uwaterloo.ca/fmp
4 http://www.pnp-software.com/XFeature/
5 http://www.cs.utexas.edu/~schwartz/ATS/fopdocs/
6 http://www.software-acumen.com/purevariants/feature-models
7 http://www-lufgi3.informatik.rwth-aachen.de/TOOLS/requiline
8 http://www.isa.us.es/fama
9 http://www.splot-research.org
10 http://www.andromda.org.
11 http://www.openarchitectureware.org/
12 http://www.fujaba.de
13 http://sourceforge.net/projects/jamda
14 http://www.eclipse.org/articles/Article-ET/jet_tutorial1.html
15 http://www.metacase.com/
16 http://www.codagen.com/products/architect/default.htm

http://gp.uwaterloo.ca/fmp
http://www.cs.utexas.edu/~schwartz/ATS/fopdocs/
http://www.isa.us.es/fama
http://www.splot-research.org/

models, e.g., KumbangTools
17

 combining the feature and component-based models.

However, none of them deals whit transformation of product line models, where the

semantic of the model represents not only one but an undefined collection of product

models.

From the point of view of configuration, there are several tools in literature that

address this topic. For instance, FAMA, SPLOT and FdConfig [16]; however these

tools do not support as much reasoning operations over product line models as

VariaMos do. In addition, they do not support reasoning operations over multiple

PLMs.

5 Conclusions and Future Works

In this paper we introduced the first release of VariaMos which is an Eclipse plug-in

for edition, integration, verification, analysis and configuration of PLMs. We intro-

duced the functionalities of the tool and we exposed some of the most relevant design

and implementation details. Finally, we showed the differences between VariaMos

and other tools found in literature and we concluded that VariaMos supports more

variability modeling languages, automatically verifies more criteria than the other

tools, and is the first tool to implement reasoning operations over multi-views PLMs.

Although VariaMos is not a mature tool yet, its promising capabilities of extensibility,

interoperability, scalability, expressivity and efficiency will allow the tool to become

accepted and used by the academic and industrial community in the future.

Several challenges remain for our future work. On the one hand, the implementa-

tion of more verification and analysis functions. For instance, verification against a

meta model defined by users, incorporation of a guided process allowing correcting

anomalies and support incorporation for incremental verification are envisaged for

future releases. On the other hand, it is planned to incorporate, in our tool, a graphical

representation of constraint programs, automation of PLM construction from a collec-

tion of products models, multi-stage configuration of products from complex re-

quirements formulated as constraint programs and also connection with other kind of

solvers; e.g., SAT (SATisfiability), BDDs (Binary Decision Diagrams) and SMTs

(Satisfiability Modulo Theories) in order to improve the efficiency of certain reason-

ing operations.

Acknowledgments

Many thanks to Diego Quiroz, Sebastian Monsalve, and Jose Ignacio Lopez for their

invaluable help with this tool.

17 http://www.soberit.hut.fi/KumbangTools/

http://www.soberit.hut.fi/KumbangTools/

References

1. Benavides D., Segura S., Ruiz-Cortés A. “Automated Analysis of Feature Models 20

Years Later: A Literature Review”. Information Systems. Elsevier, 2010.

2. Czarnecki, K., Helsen, S., Eisenecker, U. “Formalizing cardinality-based feature models

and their specialization”. Software Process Improvement and Practice, 10(1):7– 29, 2005.

3. Diaz D., Codognet P. “Design and Implementation of the GNU Prolog System”. Journal of

Functional and Logic Programming (JFLP), Vol. 2001, No. 6, October 2001

4. Djebbi O., Salinesi C. “Towards an Automatic PL Requirements Configuration through

Constraints Reasoning”. Int. Workshop on Variability Modelling of Software-intensive

Systems (VaMoS), Essen, Germany, January 2008.

5. Dhungana D., Grünbacher P., Rabiser R. "The DOPLER Meta-Tool for Decision-Oriented

Variability Modeling: A Multiple Case Study," Automated Software Engineering, 2010 (in

press; doi: 10.1007/s10515-010-0076-6).

6. González-Baixauli B., Laguna M., Sampaio J. “Using Goal-Models to Analyze Variabil-

ity”. First International Workshop VaMoS, 2007.

7. Griss, M., Favaro, J., Allesandro, M. “Integrating Feature Modeling with RSEB”. Proceed-

ings of the 5th International Conference on Software Reuse, Vancouver, Canada, 1998.

8. Hai H. Wang, Yuan Fang Li, Jing Sun, Hongyu Zhang, Jeff Pan. “Verifying feature mod-

els using OWL”. Journal of Web-Semantics (2007) 117–129.

9. Kang K., Cohen S., Hess J., Novak W., Peterson S. “Feature-Oriented Domain Analysis

(FODA) Feasibility Study”. Technical Report CMU/SEI-90-TR-21, Software Engineering

Institute, Carnegie Mellon University, November 1990.

10. Mazo R., Salinesi C, Djebbi O., Diaz D., Lora-Michiels A. “Constraints: the Heart of Do-

main and Application Engineering in the Product Lines Engineering Strategy”. Interna-

tional Journal of Information System Modeling and Design IJISMD. ISSN 1947-8186,

eISSN 1947-819. April-June 2012, Vol. 3, No. 2.

11. Mazo R., Salinesi C., Diaz D., Lora-Michiels A. “Transforming Attribute and Clone-

Enabled Feature Models Into Constraint Programs Over Finite Domains”. 6th International

Conference on Evaluation of Novel Approaches to Software Engineering (ENASE),

Springer Press, Beijing–China, 8-11 June 2011.

12. Mazo R., Lopez-Herrejon R., Salinesi C., Diaz D., Egyed A. “Conformance Checking with

Constraint Logic Programming: The Case of Feature Models”. In 35th Annual Interna-

tional Computer Software and Applications Conference (COMPSAC), IEEE Press, Mu-

nich-Germany, 18-22 July 2011. Best Paper Award.

13. Pohl K., Böckle G., van der Linden F. “Software Product Line Engineering: Foundations,

Principles and Techniques”. In: Springer-Verlag New York, Inc., Secaucus, NJ, 2005.

14. Salinesi C, Mazo R. “Defects in Product Line Models and how to Identify them”. Software

Product Line - Advanced Topic, edited by Abdelrahman Elfaki, InTech editions, ISBN

978-953-51-0436-0, April 2012.

15. Salinesi C., Mazo R., Diaz D., Djebbi O. “Solving Integer Constraint in Reuse Based Re-

quirements Engineering”. 18th IEEE International Conference on Requirements Engineer-

ing (RE'10). Sydney - Australia. September-October 2010.

16. Schneeweiss D., Hofstedt P. “FdConfig: A constraint-based interactive product configura-

tor”. International Conference on Applications of Declarative Programming and Knowl-

edge Management (INAP) Vienna, Austria. September 28-30, 2011.

