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ABSTRACT 

This paper presents a stochastic model based on Monte 

Carlo simulation techniques for measuring the performance 

of recommenders. A general procedure to assess the 

accuracy of recommendation predictions is presented and 

implemented in a typical case study where input parameters 

are treated as random values and recommender errors are 

estimated using sensitive analysis. The results obtained are 

presented and a new perspective to the evaluation and 

assessment of recommender systems is discussed. 
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INTRODUCTION 

In the literature, recent investigations have shown that 

recommender algorithms have a number of performance 

complications for worse or better, depending on several 

factors such as on the dataset chosen for testing, and data 

sparseness due to new users or few ratings (cold start) [1]. 

Another major challenge in recommenders is the fact that 

the user similarity computation is particularly susceptible to 

additional ratings that are added to, or changed in the 

database, at which point the similarity values should be 

recalculated over time [2]. Incorporating the different 

sources of uncertainty that affect the overall performance 

into the recommender effectiveness analysis complicates 

the evaluation method and renders traditional deterministic 

statistical approaches used for evaluation as insufficient to 

deal with the random formulation involved, particularly 

with random predictive behavior due to unwarranted input 

parameters. The novelty of this work is in the development 

of an evaluation model for efficiently representing the 

direct impact of the various recommender parameters on 

performance, quantifying the variability and reliability of 

prediction errors, and facilitating the understanding of 

different sources of uncertainty. 

In this paper, recommendation quality is evaluated 

according to a stochastic-based model that is established 

with the help of a sensitivity analysis scheme built upon 

multiple simulation scenarios. These scenarios represent the 

possible effects of particular combinations of input 

parameters to the prediction error through the recommender 

prediction algorithm associated with each run. By 

aggregating all of these individual performance indicators 

of each scenario, key summary statistics can be inferred to 

enable a more complete assessment, measurement, and 

representation of the recommender robustness. Lastly, 

reports on significant findings are outlined.  

RELATED WORK 

Approaches to empirical research incorporate both 

quantitative and qualitative methods for collecting and 

analyzing data [3]. Quantitative methods collect numerical 

data and analyze it using statistical methods, relying on 

precise measurement outcome to yield conclusions. There 

are a number of evaluation metrics have been available to 

evaluate the recommender systems performance [4]. These 

include statistical coverage and accuracy metrics. Coverage 

metrics such as precision, recall and F1-measure are widely 

used metrics to evaluate the quality of recommendations 

[5]. According to Palanival and Sivakumar [6], while 

“Precision” is defined as the ratio of the selected relevant 

items to the selected items, “Recall” is calculated as the 

ratio of the elected relevant items to the relevant items. The 

“F1-measure” is a combination metric that gives equal 

weight to both “Precision” and “Recall”. Accuracy metrics, 

on the other hand, are standard statistical calculations to 

compare the numerical deviation of the predicted ratings 

from the respective actual user ratings. The mean absolute 

error (MAE) and root mean square error (RMSE) are 

computed on result data where lower values indicate more 

accurate predictions. Relevant to recommenders, all of 

these efforts are deterministic in nature, that is, given a 

particular set of initial user-item rating conditions, the 

evaluation performs the same way. 

Based on the preceding discussions, we argue in this work 

that recommender evaluation is a continuous, on-going 

process much more than determining the precise error 

outcome at a given moment. It is rather a way of gauging 

the performance of predictions over time, which in the 

context of this work, is achieved by simulating those 



 

conditions using Monte Carlo simulation techniques for 

uncertainty modeling. In a stochastic model, randomness is 

present, and input variable ratings are not described by 

unique values, but rather by their probability distributions. 

The Monte Carlo method has been reported as appropriate 

when the final outcomes to a decision problem depend on 

the effects of a number of different uncertain events (i.e., 

rating activity) and on the manner in which they might 

combine (i.e., proposed recommendation strategy) [7]. 

Another motivation for this work is the lack of 

experimentation with stochastic modeling in the context of 

recommenders. 

MONTE-CARLO METHOD 

A Monte Carlo method is a stochastic technique used to 

assess uncertainty in the performance of systems [8]. The 

word “stochastic” means that it uses random numbers and 

probability analysis in its formulation. The term “Monte 

Carlo” comes from the name of the city of Monte-Carlo in 

the principality of Monaco, Europe. The city's main 

attractions are casinos, which run activities such as roulette 

wheels, dice and slot machines. These games provide 

entertainment by exploiting the random behavior of each 

game. Similarly, Monte Carlo methods consider the 

situation when the parameters or factors affecting a problem 

are not deterministic. 

The beginning of real use of Monte Carlo methods as 

research tools remotes to the development of the atomic 

bomb as part of the Manhattan Project during World War II 

due to the experimental mathematics-nature of the problems 

being tackled. Physicist Nicholas Metropolis, inspired by 

his colleague Stanislaw Ulam’s interest in poker, coined the 

term for the experimentations that were conducted soon 

after the project was over [9]. However, they are now 

applied to a wide range of multivariable problems, from 

nuclear reactor design, econometrics and stellar evolution to 

stock and market forecasting, just to name a few.  

Problems handled by Monte Carlo methods are of two types 

called probabilistic or deterministic according to whether or 

not they are directly concerned with the behavior and 

outcome of random processes. In the case of a probabilistic 

problem, the simplest Monte Carlo approach is to observe 

random numbers, chosen in such a way that they directly 

simulate the physical random processes of the original 

problem, and to infer the desired solution from the behavior 

of these random numbers [10]. 

Monte Carlo Simulation 

In the case of a deterministic problem, the idea behind the 

Monte Carlo approach is to exploit the strength of 

theoretical mathematics where one can write down 

symbolic expressions or formal equations, which abstract 

the essence of a problem and reveal its underlying structure 

by replacing theory by experiment whenever the former 

falters [11]. More specifically, a Monte Carlo simulation is 

a derived method for iteratively evaluating a deterministic 

model using sets of random numbers as inputs. 

In a Monte Carlo simulation, as presented in Figure 1, a 

random selection process is used to create multiple 

scenarios, in which the parameters of the known factors that 

affect the process take one of their possible values. As such, 

each scenario provides one possible solution to the 

problem. Together, these scenarios give a range of possible 

solutions, some of which are more probable and some less 

probable. When the process is repeated for hundreds or 

thousands of scenarios, the average solution will give an 

approximate answer, considering all of the variability 

among the scenarios. The data generated from the 

simulation can be represented as probability distributions 

(or histograms) or converted to error bars, reliability 

predictions, tolerance zones, and confidence intervals. 

Accuracy of this answer can be improved by increasing the 

number of scenarios. 

In this approach, the effects of a particular combination of 

factors can also be closely examined by analyzing the 

uncertainty propagation, where the goal is to determine how 

random variation, lack of knowledge, or error affects the 

sensitivity, performance, or reliability of the system that is 
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Figure 1. Monte Carlo Simulation Principle 



being modeled [12]. 

Summary Statistics 

In order to effectively communicate the evaluation results 

when performing a data analysis by using Monte Carlo 

simulation techniques, it is necessary to summarize the set 

of observations due to the large amount of observations. 

There are four basic measures that do that, as below: 

Measure of Location  

Relates to the tendency of data to be clustered around a 

central value, that is, the measure of central tendency is an 

average of a set of measurements. However, it should be 

noted that depending on the context, the word average can 

be interpreted as mean, median, mode, or other measure of 

location. The arithmetic mean is the most commonly used 

measure, and it is given by  

�̅ � 	 1�	���	
�
�  (1) 

where, n is the number of observations and, x represents 

an observation. 

Measure of Dispersion 

Expresses the amount of variability or spread there is from 

the “average” (mean). The Standard deviation is a widely 

used measure of variability or diversity used in statistics, 

and can be estimated by 

� � 	
1����� � �̅��	
�
�  (2) 

where, { x1, x2, … , xn } are the n observed values, and �̅ 
is the mean value of these observations. 

A low standard deviation indicates that the data points tend 

to be very close to the mean, whereas high standard 

deviation indicates that the data points are spread out over a 

large range of values. Together, location and dispersion are 

the two mostly used properties of distributions. The 

standard error can be used to calculate confidence intervals 

for the true population mean [13], for instance, for a 95% 2-

sided confidence interval, the Upper Confidence Limit and 

Lower Confidence Limit are calculated as: 0.95 � 	1 � 	� � ���� � � � �� 
	� ���1.96 � �̅ � �� √�� � 1.96� (3) 

where, the number z follows from the cumulative 

(normal) distribution function P(Z), α is the significance 

level, n is the number of observed values, �̅ is the mean 

value of these observations. 

Measure of Shape 

Common measures of the shape of a distribution are 

Skewness and Kurtosis. Whereas the first relates to the 

asymmetry of the probability distribution, the second 

measure quantifies the “peakedness” of the distribution and 

the heaviness of its tail [14]. Skewness values can be 

positive or negative, or even undefined, as shown in Figure 

2. In case the left tail of a distribution is longer (Figure 2.a) 

that implies that the mass of the distribution is concentrated 

on the right of the distribution and in this case it is said that 

the distribution has a negative skew, or left-skewed, left-

tailed, or skewed to the left; likewise, a positive skew 

(Figure 2.b) means that the mass of the distribution is 

concentrated on the left of the figure (the right tail is 

longer) which is said to be right-skewed, right-tailed, or 

skewed to the right.  In case of the distribution is 

symmetric, then the mean is equal to the median and the 

distribution will have close to zero skewness. For a sample 

of n values the skewness is equal to 

� !" � 	 1�∑ ��� � �̅�$	�
�
%1�∑ ��� � �̅��	�
� &$� (4) 

where, { x1, x2, … , xn } are the n observed values, and �̅ 
is the mean value of these observations. 

The Kurtosis, as specifically measuring the heaviness of the 

tail, can also be interpreted as the extent to which the 

distribution of the variable falls off relatively slowly or 

rapidly near the extremes [15]. As such, longer fatter tails, 

and often (but not always) a sharper peak are high kurtosis 

distributions; similarly, a low kurtosis distribution has 

shorter, thinner tails, and often (but not always) a more 

rounded peak. For a sample of n values the Kurtosis is 

equal to 

 '()*�+� � 	 1� ∑ ��� � �̅�,	�
�%1�∑ ��� � �̅��	�
� &� � 3 (5) 

where, { x1, x2, … , xn } are the n observed values, and �̅ 
is the mean value of these observations. A perfectly 

normally distributed probability density function has 

kurtosis equal to zero. 

Measure of Order 

Relates to Percentile-Rank functions which can be used to 

describe the probability that a real-valued random variable x 

with a given probability distribution will be found at a value 

less than or equal to X [16]. Percentiles represent the area 

under the normal curve; the 25
th

 percentile is also known as 

the first quartile (Q1), the 50
th

 percentile as the median or 

second quartile (Q2), and the 75
th

 percentile as the third 

Figure 2. Example of Skewed Distributions 

(a) Negative skew               (b) Positive skew 



 

quartile (Q3). It can be computed as an integral of the 

probability density function as follows: 

.��; 	�, ��� � 	Φ %� � �� & � 12 31 + !(5 6� � ��√2 78 (6) 

where, erf is the special function of sigmoid shape 

related to the integral of the standard normal distribution.  

EMPIRICAL STUDY 

This section presents the experimental evaluation procedure 

that was derived in order to compare the algorithms and the 

results of the evaluation are discussed.  

Dataset 

The experimental data comes from an in-house movie 

recommendation system built for research purposes. The 

database currently consists of 27 users who provided 46 

ratings in the range of 1(min) to 5(max) to 25 movies. The 

lowest sparsity level is therefore (27 × 25) ˗ 46 ⁄ (27 × 25) ≈ 

0.93. The prediction algorithms are tested over a pre-

selected 26-ratings set. The actual dataset to the case study 

was kept small for simplicity and expediency once this 

paper focuses on the evaluation method, not specific results 

attained. 

Simulation Model 

The simulation model is accomplished by generating 

numerous runs with random input rating values (step 1) in 

the range of 1 to 5 and, for each run, determining the error 

and improvement associated in predicting the results (steps 

2 and 3), to finally compute the complete summary 

statistics of all runs to report on the outcome variability. 

Step 1 – Input parameter 

The computation of similarity metric takes as input a user-

to-item matrix of size m × n in which the i-th row of m total 

number of users contains the rating values of the i-th user 

against every other item of n total number of items.  

Step 2 – Parametric Prediction Model 

The baseline prediction is computed using Pearson’s 

correlation coefficient: 

9:+;��, <� � 	 ∑ ��� � �̅�	.		�<� − <=�	�
�
>∑ ��� − �̅��	�
� .		∑ �<� − <=��	�
�

 (7) 

where, n is the total number of commonly rated items, xi 

and yi represent the current rate of a pair of items of two 

individuals x and y (i = 1 to m), and x= and y= represent the 

average of all of those rates. The second similarity metric, 

which influences standard recommendation accuracy, is a 

compound weighting that combines baseline similarity (Eq. 

(7) with a modifier metric in an aggregation function. For 

practicality, the modifier metric formulation m(x,y) was 

based on a previous study [17], and aggregated as a 

harmonic function, as follows: 

":+;��, <� = 	2A9:+;��, <�.;��, <�B9:+;��, <� + ;��, <�  (8) 

 Next, the classic last step of Collaborative Filtering 

computes the final prediction, as follows: 

�(!C��, <� = �̅ + ∑ 	":+;��, <�	.		�<� − <=�D�
�
∑ 	":+;��, <�D�
�

		 (9) 

where, the predicted rating of item i for the current 

individual x is the weighted sum of the ratings given to item 

i by k neighbours y of x; in the proposed algorithm, all y 

neighbours of individual x are considered, that is, k = n. 

Step 3 – Output parameter 

The simulation considers two response variables. The 

computation of the numerical deviation of the predicted 

ratings from the respective actual individual rating is given 

by the Mean Absolute Error (MAE), as follows:   

EFGHIJKL�	K	|	NOP�Q�KP = 	
1
�	�|<� − <R�|

	

�
�
 (10) 

where, n is the number of observations, <� 	is the 

prediction/calculated and <R� is the true/observed value. 

Predictions’ overall perceived benefits (gain or loss) 

between the two strategies are given by: 

S!�!5+) = 	EFGNOP�Q�KP −EFGHIJKL�	KEFGHIJKL�	K 	�%� (11) 

RESULTS AND DISCUSSIONS 

Figure 3 shows a visual representation of the simulation 

data results as histograms. Figure 3.a represents the 

prediction error response variable, and Figure 3.b depicts 

the improvement outcome variable. For each of the two 

variables, an array of N (=25 and =17, respectively) evenly 

spaced numbers was created as bins. The number of times a 

particular result occurred on each bin was recorded. To fit 

the histogram with a cumulative probability distribution, it 

was necessary to scale the histogram so that the area under 

the curve is equal to 1. To scale the histogram, the 

following method was employed: Scaled = (Count/Points) / 

(BinSize). Once the scaled histogram is plotted, it is 

possible to glean a lot of good information from it. For 

instance, Figure 3.a suggests that there are about 50-50% 

chances that the modified prediction strategy outperforms 

the classical approach; the uncertainty in MAE is quite 

large, varying between 0.600 to 0.830; the distribution does 

not look like a perfect Normal distribution (right-skewed). 

Likewise, Figure 3.b indicates that the modified strategy 

may outperforms the traditional approach most of the time 

but the uncertainty associated with the performance 

gain/loss seems to be very large to make such assumption. 

Nevertheless, the benefit distribution does not look like a 

perfect Normal distribution either. Moreover, the 

distribution is skewed to the left, suggesting that the 

horizontal axis data are in reverse order, as some shape 

similarity between both charts was expected. This issue is 

confirmed when observing Table 2 and Table 4 calculations 

where kurtosis and positive performance figures are 



inverted, respectively. Both histograms do not appear to 

have outliers, truncation, multiple modes, etc.  

Even though the histograms tell a very good story about the 

models’ behavior, a more pragmatic approach is to estimate 

the probability of being below or above some values, or 

between a set of specification limits. Table 5 to Table 5 

show the summary statistics of the simulation results that 

were derived for that purposes.  

 MAE Benefit 

Sample Size (runs) 350 350 

Mean 0.694 0.1 % 

Median 0.690 0.8 % 

Min 0.613 11.8 % 

Max 0.830 - 19.5 % 

Table 1. Central Tendency (Location) 

 

 MAE Benefit 

StDev 0.035 5.0 % 

Skewness 0.592 - 0.592 

Kurtosis 0.621 0.621 

Table 2. Spread and Shape 

 

 MAE Benefit 

Q (.025) 
k = 0.05 

0.634 -10.2 % 

Q (.975) 0.766 8.8 % 

Q (.475) 
k = 0.95 

0.687 0.4 % 

Q (.525) 0.692 1.1 % 

Table 3. Quantiles, Percentiles, Intervals 

 

 MAE Benefit 

Pr (y > Traditional) 46% 54 % 

Pr (min < y < Traditional) 54% 46 % 

Table 4. Probabilities 

 

 MAE Benefit 

Lower Conf. Limit 0.691 - 0.5 % 

Upper Conf. Limit 0.698 0.6 % 

(Significance Level α = 95%) 

Table 5. Confidence Interval for the Means 

This case study has focused on the effects of uncertainties 

of ratings alone. However, the recommendation quality of 

recommenders depends on several factors. Because of that, 

there are a number of possible extensions to the simulation 

methodology currently being pursued by us. This includes 

extending the study to account for the effects of: 

• Different data representation schemes such as 

categorized, normalized or as-collected inputs. 

• Data sparsity when all possible ratings are considered 

in the simulation, and not only “given” ratings. 

• Different similarity calculation algorithms such as 

cosine. 

•  Different aggregator methods such as addition, 

subtraction and multiplication as transformation 

functions to the original recommender formulation. 

• Different evaluation metrics such as RMSE, Precision, 

Recall and F-1 measure. 

For this study, the number of simulation scenarios (runs) 

was determined based on practicality and experience. For 

the future, we proposed that the simulation continues until a 

stopping criterion is reached. This can be achieved by 

establishing a desired precision for the calculations. Since 

the iterative Monte Carlo simulation technique computes 

 

Outperforms 

traditional 
Outperforms 

traditional 

Figure 3. Histograms of Monte Carlo Simulation Results 



 

successive approximations to the solutions, a percentage 

difference between a computed iterate and all previously 

computed interactions could limit the maximum amount of 

time spent iterating. 

CONCLUSION 

The main purpose of the paper is to suggest a new method 

to evaluate recommenders using stochastic rather than 

deterministic approach. It is in this regard that we consider 

our method to be different and more refined to deal with the 

complexity associated with the uncertainties in input 

parameters of recommenders. In addition to providing an 

estimate of the likely improvement decision of a particular 

strategy and its variance, the advantage of applying the 

Monte Carlo simulation technique is that it can provide a 

more complete assessment of the probability of (under) 

outperforming at a given level under different conditions. 

The proposed evaluation model has been successfully 

applied to a real-world case study project to demonstrate 

the usefulness of the model and its capabilities over current 

practice. This work is expected to help researches and 

practitioners to gain many insights into the performance of 

recommenders. More specifically, the perceived benefits of 

the developed model are expected to be improved 

understanding, higher confidence, longer lasting value, and 

better depiction of performance indicators of recommender 

predictions. While this work is focused mainly on the input 

parameters problem, it can be adapted to any number of 

parameters that ultimately affect the performance of all 

particular implementations of recommender solutions. 
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