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Abstract. We describe a package that performs inferences for the prob-
abilistic description logic CRALC: given a terminology consisting of a set
of sentences in CRALC, and a set of assertions, the package computes
the probability of additional assertions using an approximate variational
method. We briefly review the essentials of CRALC, mention some recent
applications, and describe the package. We then describe our current ef-
forts to incorporate lifted inference into the package.

1 Introduction

This paper focuses on a particular probabilistic description logic, Credal ALC
(referred to as CRALC). This logic adds some probabilistic operators to the pop-
ular logic ALC [1] and combines these operators with independence assumptions
inspired by the theory of relational Bayesian networks [4]. One can see CRALC
as a language to express ontologies with probabilistic assessments, or simply
as a language to describe relational Bayesian networks. Applications in mobile
robotics [2], automatic construction of ontologies [7], and analysis of social net-
works [8] have benefited from the use of CRALC, often coupled with machine
learning techniques. We summarize the main features of CRALC, and some of its
applications, in Section 2. Alas, so far there has been no simple way to produce
inferences in CRALC — here an inference means the computation of a probabil-
ity value for a given assertion conditional on other observed assertions, using a
probabilistic terminology as background knowledge.

In Section 3 we introduce a package, coded by the first author, that ac-
cepts sentences and assertions in CRALC, and that produces inferences using
an approximate variational algorithm. We then discuss our current efforts in
developing exact lifted inference methods that can be added to the package.

2 crALC: A summary, and applications

As usual with description logics, we have individuals, concepts, and roles. The
semantics is given by a domain D (a set that we assume finite in this paper)
and an interpretation - (a functor). Each concept is interpreted as a subset of
a domain D. Each role is interpreted as a binary relation on the domain.



Many probabilistic descriptions logics have appeared in the literature [6]. Sev-
eral consider probabilities over the interpretations. For example, one interprets
P(Professor(John)) = 0.001 as assigning 0.001 to be the probability of the set
of interpretations where John is a Professor. The logic CRALC is a probabilistic
extension of the description logic ALC that adopts such an interpretation-based
semantics [3]. It keeps all constructors of ALC, but only allows concept names
on the left hand side of inclusions/definitions. Additionally, in CRALC one can
have probabilistic inclusions such as P(C|D) = « or P(r) = (3 for concepts C
and D, and for role r. If the interpretation of D is the whole domain, then we
simply write P(C) = a. The semantics of these inclusions is roughly (a formal
definition can be found in [3]) given by:

Ve € D : P(C(z)|D(z)) = a, Ve e D,y e D : P(r(z,y)) = 6.

We assume that every terminology is acyclic; no concept uses itself. This as-
sumption allows one to represent any terminology 7 through a directed acyclic
graph. Such a graph, denoted by G(T), has each concept name and role name
as a node, and if a concept C directly uses concept D, then D is a parent of C
in G(T). Each existential restriction 3r.C and value restriction Vr.C' is added to
the graph G(7) as nodes, with an edge from r and C' to each restriction directly
using it. Each restriction node is a deterministic node in that its value is com-
pletely determined by its parents. We then assume a Markov condition on this
graph, similar to the Markov condition on Bayesian networks; with a few addi-
tional assumptions concerning uniqueness of names and values, this guarantees
that any probability distribution over interpretations factorizes as a Bayesian
network over grounded concepts and roles [3].

Inferences, such as P(A,(ag)|A) for an ABox A, can be computed by ground-
ing a set of sentences into a possibly large Bayesian network. As this may be too
complex in practice, an alternative is to run approximate schemes, for instance
schemes based on approximate variational approximations [3].

Recent work has explored the use of probabilistic terminologies in CRALC in
several applications [2, 7, 8]. These applications require the computation of many
inferences; thus it is important to have a package that can perform inference in
CRALC terminologies.

3 A package

This section describes a software package that handles CRALC terminologies and
assertions, and that produces inferences (either by producing relational Bayesian
networks that can be further processed, or by running approximate variational
inference). The package has been coded by the first author using the Java lan-
guage, and can work either from the command prompt or through a graphical
user interface (depicted in Figure 1).

The first design decision was the input language. We have chosen to adapt
the Knowledge Representation System Specification (KRSS). The standard com-
plete specification of KRSS can be found at http://dl.kr.org/krss-spec.ps. We use
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Fig. 1. Terminologies are written in the larger panel, while assertions are set in the
right panel; the lower panel reports on inferences.

the following constructs: (and C1...Cn) for conjunction; (or C1...Cn) for dis-
junction; (not C) for complement; (all r C) to indicate the quantifier Vr.C,
(some r C) to indicate the quantifier 3r.C’; (define-concept C D) for C' = D;
and (define-primitive-concept C D) for C' C D.

Probabilistic inclusions are specified as follows: (probability B «) denotes
P(B) = a; (conditional-probability B A «) for P(A|B) = a. An example
of valid input file is:

(probability A(x) 0.7) (probability B(x) 0.4)
(define-concept C(x) (and A(x) (mot B(x))))

Assertions can be represented through written files as well; inference results
can be exported to files. Alternatively, the graphical user interface depicted in
Figure 1 can be used to load/save files, to specify the size of the domain and
the assertions, to ask for inferences, and to check results. The package is freely
available at http://sites.poli.usp.br/pmr/ltd /Software/CRALC/index.html.

Approximate inferences are produced by generating a set of grounded Bayesian
networks, one for each individual mentioned in the query and in the evidence,
plus an additional Bayesian network for a “generic” individual [3]. Exact Bayesian
network inference is performed in each one of these networks (the package as-
sumes that such exact inference is feasible) and messages are exchanged be-
tween the networks using a loopy-propagation scheme. A relatively small number
of message-passing iterations seems to generate good approximations; the cost



of running an approximate inference is then the number of allowed iterations
times the sum of inference costs for each one of the grounded networks plus the
“generic” individual network.

4 Conclusion

Efficient inference for probabilistic description logics is a key enabler of tech-
nologies that must deal with uncertainty and semantic information. Currently
there are many proposals for probabilistic description logics but relatively few
implemented inference engines. In this short paper we have described our modest
efforts in providing easier ways to represent and process sentences in probabilistic
description logics. The software package we have presented still requires much
development, but it is a step in a direction we feel has not received enough
attention.

Our current effort is to implement exact lifted inference; that is, inference
that does not require grounding concepts and roles for the entire domain. We
are using recently developed methods for lifted inference in graphical models [5],
and plan to report on the results soon.
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