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ABSTRACT
Data is increasingly distributed across networks of mobile
nodes such as wireless sensor networks, distributed smart-
phone applications, or ad hoc recovery networks in disaster
scenarios, but must still be reliably collected, stored, and
retrieved. While such networks run in either ad hoc mode
or use existing infrastructure, all of them must deal with
node heterogeneity. Wireless nodes invariably have differing
levels of power availability, and often varying connectivity
and computing power. While many distributed hash tables
(DHTs) have been designed for mobile ad hoc or hetero-
geneous networks, they do not consider differences in node
strength, or resource availability, for an arbitrary number of
resource availability levels. In this paper, we present a scal-
able, location aware, hierarchical DHT that utilizes nodes’
varying resource availability levels to increase and prolong
the mobile network’s data storage and retrieval capabilities.
Furthermore, we compare this DHT to other location aware
flat and hierarchical approaches, examining their structures’
suitability for nodes with varying resource availability.

1. INTRODUCTION
Today, mobile applications are no longer restricted to the

classic client/server architecture relying on a backbone in-
frastructure. Instead, an increasing number of applications
for smartphones (e.g. mobile games, content sharing) as
well as wireless sensor network applications follow a server-
less ad-hoc model of interaction and data exchange. Even
if such applications require a server or gateway to initially
fetch some data or to finally publish results, data has to be
collected, exchanged, and stored for some time in the net-
work. From a data management point of view, this poses
two challenges: (1) to efficiently manage and retrieve data
in a distributed way and (2) to reliably provide the data
while taking possible node failures and resource restrictions
(connectivity, battery power) into account.

Distributed hash tables (DHT) for mobile peer-to-peer
(P2P) networks have been proposed in the past to address

the first challenge. However, constructing a distributed hash
table on a mobile P2P network, where nodes have restricted
battery power and communication costs the peers vital en-
ergy, is a definite challenge. While traditional DHTs such as
the Content Addressable Network (CAN) [24] and Chord [29]
may be reliable on a network without such communica-
tion restraints, they fail to take the important differences in
nodes’ resource availabilities into account for resource sen-
sitive dynamic networks. And while today’s large mobile
networks are based on smartphones, laptops, etc. which
use an intact backbone infrastructure that nodes need not
consider, the use of DHTs on ad-hoc networks should be
considered for the near future.

A fundamental operation for any kind of data manage-
ment task (store, update, retrieve) in a DHT is the key
lookup operation. To implement this operation in a (mo-
bile) ad-hoc network, overlay nodes also forward messages
on the network layer, in which case a long distance over-
lay hop may require many forwarding nodes, while a short
distance lookup hop may be completed with few network
hops. This case brings the additional challenge of routing
distances, giving the physical distance that lookups traverse
a central role in a network’s ability to survive its load. Thus,
power and (in the future) location awareness are important
for DHTs running on mobile networks.

Consider for example a large network based on smart-
phones, laptops and a limited number of servers that coop-
eratively maintain a DHT, with each node storing some of
the global application data. As long as the load is balanced
between the nodes, this network is inherently scalable - each
of the nodes is responsible for fetching and storing a portion
of the network’s information and for routing and processing
a portion of the network’s requests. While the numerous
smartphones jointly provide a large portion of the network’s
storage and routing capabilities, a single smartphone has a
restricted amount of battery power available in a give time
frame (until it is recharged). Thus, the network must find
a way to incorporate each of these weaker nodes’ resources
in order to provide scalability without causing failure by
overuse. In this paper, we address the second of the above
mentioned challenges by examining several approaches to
balancing maintenance and routing load according to node’s
resource (i.e. power) availabilities and locations. None of
these approaches acts blindly with regard to either resources
or locations, yet each has clear limitation with regard to
how much it can incorporate. Since we could, for example,
consider a node’s restricted computing power or bandwidth
availability instead of its power availability, we consider the
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abstract notion of a node’s “resource availability.”
The three major approaches towards addressing heteroge-

neous node capabilities in DHTs - hierarchical DHT struc-
tures, virtual nodes, and node movements within the iden-
tifier space - are typically not well adept to our scenario.
Hierarchical approaches, typically with two tiers [3, 13, 36],
offer large reductions in the load on leaf nodes but overuse
peers with restricted resources which act as super peers (in
order to assure the system’s scalability). On the other hand,
virtual nodes and node movement approaches, which vary
the quantity of data at each physical node, actually intro-
duce more maintenance overhead and churn while assuming
that higher resource availability implies larger storage ca-
pacity. However, since the main communication overhead
in a DHT comes from maintenance, we are most interested
in balancing the network maintenance and lookup routing
load to nodes’ resource availabilities.

We compare four different structural resource and location
aware DHT approaches in this paper: (a) a novel, multi-
tiered hierarchical approach, (b) a two-tiered hierarchical
approach, (c) a flat resource and location aware approach
[27], and (d) a (novel) hybrid approach between (a) and (c).
While all three hierarchical approaches treat the lowest level
nodes as leaf nodes, approach (a) constructs multiple upper
tiers, approach (b) uses location aware DHash++ [9] for the
upper tier, and approach (d) uses the location and resource
aware Chord extension RBFM [27] for the upper tier. We
examine each network’s ability to store and retrieve data,
as influenced by the nodes’ lifetimes and the percentage of
deliverable lookups. This paper’s main contributions are:

• A novel location aware hierarchical DHT for an arbi-
trary number of resource availability levels and

• a simulated comparison of network robustness for four
flat and hierarchical resource and location aware ap-
proaches.

We discuss related work in Section 2; explain our network
assumptions and foundations in Section 3; describe our novel
DHTs and consider the routing complexity of the approaches
in Section 4; and compare the four DHTs using simulation
in Section 5.

2. RELATED WORK
The DHT forerunners such as CAN (Content Address-

able Network) [24], Chord [29], and Kademlia [21] use effi-
cient routing but were not designed to run on mobile nodes
where both location and available resources play important
roles. Proximity-awareness in DHTs is generally classified as
proximity-aware identifier selection (PIS, such as Mithos [31]
and SAT-Match [26]), proximity-aware neighbor selection
(PNS, such as DHash++ [9]), proximity-aware route selec-
tion (PRS, such as Tapestry [35]), or a combination thereof
and is primarily directed at reducing overall traffic or aver-
age round trip times [16]. Proximity-awareness has gained
interest in many areas related to DHTs, including caching
and replication protocols and hybrid overlays [10, 20].

The three main approaches for balancing load in hetero-
geneous DHTs are the use of hierarchical DHT structures,
virtual nodes, and node movements within the identifier
space. Hierarchical DHTs often group nodes by some defin-
ing characteristic such as group associations (e.g. depart-
ments within a university) or peer capabilities (“have” or

“have not”). Systems with group structures such as Canon
[12], Hieras [32], and Cyclone [2] tend to route lookups as far
as possible within one group before forwarding them on to a
different (often hierarchically higher) group. In contrast,
hierarchical DHTs based on two-tier peer capabilities [3,
36], where nodes assume the roles of super-peer or leaf-
peer, route lookups directly from leaf nodes to parent nodes,
rendering the parent nodes fully responsible for performing
lookup routing and neglecting the varying nuances of nodes’
resource availabilities. A combination of the group and two-
tiered capabilities structures has also been suggested in [13],
such that weak peers are arranged in disparate DHTs con-
trolled by super-peers which form their own DHT and are
responsible for routing lookups to the correct group.

Virtual nodes pose a different solution, with each physical
network node balancing its load independently by hosting a
varying number of virtual overlay nodes, each with its own
set of keys and links [15, 18]. Similar to virtual nodes, node
movements within the identifier space achieve load balance
by adjusting the data that each node stores [5, 11]. Nodes
with low load choose new nodeIDs that are close to nodes
with high load, thus taking over some of their load but cre-
ating a large amount of churn.

DHTs for mobile ad hoc networks (MANETs) pose addi-
tional challenges since each overlay hop represents multiple
underlay hops on DHT nodes, underlay routing to unknown
destinations often results in broadcast messages, nodes’ mo-
bility causes frequent changes in “good” routes, and high
node churn due to short uptimes (and dwindling resources)
requires highly dynamic protocols for overlay maintenance
and data persistence. Among the first DHTs suggested for
MANETs were Ekta [23] which uses underlay routing in-
formation to choose links (PNS) and make overlay routing
decisions (PRS), MADPatry [34] which uses landmark nodes
to form location-based node clusters that share nodeID pre-
fixes (PIS with node movements), and CHR [1] in which
geographic clusters act as nodes using geographic routing
as in GHT [25]. Basically, DHTs in MANETs employ some
combination of cross-layer PIS [22, 14, 30, 33], PRS [19], and
PNS [7], using network layer (i.e. underlay) information to
augment overlay decisions. Many of these overlays can be
considered hierarchical [22, 30, 33, 34], in part due to their
clustered structures.

While proximity-awareness plays a central role in the de-
velopment of DHTs for wireless networks, the treatment of
nodes’ heterogeneity also effects the robustness of the final
system, especially when considering nodes’ power availabil-
ity and connectivity. The numerous mentioned DHT sub-
strates handle node heterogeneity differently - ignoring it
completely or incorporating it in a flat or hierarchical man-
ner - but there exists limited work comparing these vari-
ous approaches. Furthermore, little has been done to treat
nodes with varying resource availabilities in DHTs with mo-
bile nodes on a finer scale than strong or week, as in the
Chord extension RBFM [27].

3. MOBILE NODE RESOURCE MODEL
Coordinates. We assume that each node x has suffi-

ciently correct two dimensional virtual (not necessarily ge-
ographical) network coordinates (x1, x2), such as used in
Vivaldi [8] for determining latencies. The physical distance

dphy(x, y) :=
√

(x1 − y1)2 + (x2 + y2)2 between two nodes
x and y and should reflect round trip times, the number of
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underlay hops, or some other meaningful distance between
nodes.

Resources. We model our analysis and simulations after
nodes with varying power availability - from smartphones
with very limited power to servers with an inexhaustible
power source - but the proposed protocol need not be re-
stricted to this use case. It only requires that each node x
has a resource availability that can be expressed as an in-
teger value xR ∈ {0, 1, . . . , lmax} for some fixed maximum
level lmax. We assume that xR = 0 is the lowest possible
resource level (but still operational) while xR = lmax im-
plies unbounded resources. Note that resource levels must
be globally defined so that a given resource level on differing
node types is comparable. If we consider power availability
with lmax = 3, that could mean that a handheld operating
on battery power may have resource level two when fully
charged, but a cell phone with a weaker battery may only
reach a resource level one when fully charged.

For our simulation, we use a Zipf distribution for nodes’
resource levels, reflecting trends for node lifetime found in
peer-to-peer networks, where node lifetime tends to follow
a heavy-tailed Pareto distribution [6, 28] (the continuous
counterpart of the Zipf distribution). The probability that a
random node has resource level ` ∈ {0, 1, . . . , lmax} depends
on the power m of the Zipf-distribution:

p` := P (xR = `) =
1

(`+ 1)m
· 1∑lmax

j=0 1/(j + 1)m
. (1)

Failures. For our simulation, we assume that failures are
due to nodes’ resources being depleted by node activity.
Each send and receive activity drains a node’s resources
until the node fails (based on nodes with varying power
availability). We use asymmetrical drain patterns, with a
send costing more than a receive, but constant drain for all
but the top level, which is not drained at all. The selected
resource and drain values are abstract and serve as a bench-
mark to compare the protocols as opposed to assessing the
real word battery runtimes. To provide results with as few
dependencies as possible, we take a simplistic approach to
churn in our evaluation, with nodes drained until they fail
but no additional nodes added. The system runs until it has
been reduced to half of the original nodes.

DHT Foundation. All of the approaches we use are
based on Chord [29] mainly because Chord has a rather sim-
plistic structure that adapts well to location awareness [16]
and is the basis of the location aware DHash++. Analogous
to Chord, we use consistent hashing [17] to distribute keys to
nodes. Each node x chooses a random (or hashed) nodeID
xID from the binary key space 0 . . . 2m − 1, which is viewed
as a ring with key values increasing in a clockwise direction.
These completely random nodeIDs ensure a scalable key dis-
tribution. Each node positions itself at its nodeID on the key
ring and establishes links to its immediate predecessor and
successor as well as a successor list with its r nearest succes-
sors, making repairs possible after unexpected node failures.
Each node x maintains a simple key range x.srange, which
spans the keys between its predecessor y’s key (exclusive)
and its own key, or x.srange = (yID, xID]. Thus, each key
κ is assigned to the first node whose nodeID is equal to or
succeeds κ on the key ring, or that node whose simple key
range contains κ. The asymmetric key distance from a node
x (or key) to a node y (or key) via their nodeIDs is:

Level 3
Level 2

Level 1
Level 0

Figure 1: All resource levels shown on top key ring.
Nodes within hierarchical layers below: upper layers
form DHash++ overlays, links between layers, and
leaf nodes assigned to upper level predecessors.

Key Distance 1. The key distance from x to y is the clock-
wise distance on the key ring from xID to yID: dkey(x, y) :=
yID − xID mod 2m.

4. HIERARCHICAL OVERLAY
We call our hierarchical approach Hierarchical Resource

Management (HRM), where nodes are separated into dif-
ferent levels and maintain links within and between those
levels. The lowest level, consisting of the weakest nodes,
functions as a leaf level where each leaf node maintains a
parent node from some upper level. Each level is linked
together to form a location aware DHash++ [9], with the
number of shortcut links determined by the given hierarchy
level. Thus, the higher a node’s resource availability, the
more links it is expected to maintain, so that weaker nodes’
maintenance loads are significantly reduced despite their ad-
ditional load as parent nodes. We assume that all nodes play
similarly important roles in data storage and retrieval, thus,
we do not address heterogeneous data distribution or the
necessary replication protocols in this paper.

In the following we refer to bottom level nodes with re-
source level = 0, upper level nodes with resource level > 0,
top level nodes with resource level = lmax, and lower level
nodes with resource level < lmax. In addition to each node’s
links to its predecessor and first r successors, we have three
additional types of links: leaf-parent links between bottom
and upper level nodes; inter-level links which connect each
upper level node with its immediate successor in each of the
lmax − 1 upper levels; and level fingers which provide each
upper level node shortcuts within its own resource level.

4.1 Links.
Each node is responsible for the keys in its simple key

range, but we also consider an upper level node’s upper key
range which contains all of its leaf nodes’ nodeIDs and is
integral to successful routing. For this, each node maintains
upper level successor and predecessor nodes, i.e. the first
successor and predecessor nodes from any upper level. Then
a node x’s upper key range x.urange consists of all keys
between xID and its upper level successor’s key. Note that
x.srange and x.urange overlap only in xID.
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x
,i

xID
xID + 2i−1

xID + 2i

p3

p4

p1

p2

Level xR

xID

All levels
ProspectiveLinks[xR][i]

NodeID Physical Distance

p2ID 0.4
p3ID 0.9
p4ID 0.9
p1ID 1.7

Figure 2: Key ring at right shown for node x with all nodes not in level xR as hollow circles and at left with
level xR nodes only: six nodes in Bx,i, four of which x knows in its xR prospective links list (squares). A level
finger is established to p2, the known node with the best physical distance to x in level xR.

Leaf Links. Each bottom level node x (xr = 0) main-
tains a link to its parent node π(x), which is the first upper
node preceding x in the keyspace. Thus, leaf nodes have par-
ents from varying resource levels. Leaf nodes have neither
inter-level links nor level fingers.

Inter-level Links. Each upper level node x establishes
a link x.I[`] to its direct successor x.I[`].node in each of the
upper levels `.

Level Fingers. In DHash++, each node x with nodeID
xID chooses one link - or finger - x.F [i] per finger interval
Bx,i := [xID +2i−1, xID +2i) for i ∈ {1, 2, . . . ,m}. The cor-
responding node that x.F [i] points to is notated x.F [i].node.
In our protocol, a node x only choses fingers within the same
resource level, i.e. (x.F [i].node)R = xR. Furthermore, the
number of fingers that a lower level node establishes varies
from level to level.

A level 1 node x has as few fingers as necessary, establish-
ing level fingers only to nodes which are closer successors
in the keyspace than x’s closest higher level inter-level link.
That means:

dkey(x, x.F [i].node) < dkey(x, x.I.closestHigher). (2)

Where x.I.closestHigher is the closest of x’s higher level
inter-level links, x.I.closestLevel is x.I.closestHigher’s re-
source level, and x.I.closestInt is the finger interval in which
x.I.closestHigher is found:

x.I.closestLevel := argmax
`:xR<`≤lmax

dkey(x, x.I[`].node)

x.I.closestHigher := x.I[x.I.closestLevel].node

x.I.closestInt := j : x.I.closestHigher ∈ Bx,j .

Meanwhile, level lmax and lmax−1 nodes maintain fingers
for each finger interval Bx,i := [xID + 2i−1, xID + 2i) for
i ∈ {1, 2, . . . ,m}. Nodes in additional levels ` with 1 < ` <
lmax− 1 maintain sets of fingers of varying sizes, depending
on `. We let x.F interval ∈ {1, 2, . . . ,m} be the furthest
finger interval in which a node x maintains a finger and
x.Fkey = xID + 2Finterval−1 its corresponding key value.
For example, given five levels (lmax = 4), we might have:

x.F interval =





x.I.closestInt, xR = 1

m− 1, xR = 2

m, xR ∈ {3, 4}.
Thus, each upper level node x maintains a finger table with
(at most) one finger for each finger interval Bx,i with i ∈
{1, 2, . . . , x.F interval}. Note that the fewer links a level
maintains, the less maintenance load is incurred and the

faster messages are passed on to other (higher) levels. Lookups
are thus routed quickly out of the bottom layers and dis-
persed between the upper layers.

Level fingers are chosen in a location aware fashion as in
DHash++. Nodes’ coordinates and resource levels are pig-
gybacked on network messages, providing node information
to other nodes at minimal overhead. Thus, an upper level
node x choses for x.F [i] that known node with resource level
xR in the finger interval Bx,i which has the smallest physical
distance to x. For this, x maintains a set of lmax prospective
links lists, one for each resource level, with the `th prospec-
tive links list containing a list of the closest (in terms of
physical distance) k nodes in Bx,i for each i ∈ {1, 2, . . . ,m}
from level ` which are known to x. At most k nodes in Bx,i

are saved via their resource levels, nodeIDs, and physical
distances, so we have at most k ·m · lmax saved nodes.

When x receives a message that originated at sender y,
x uses y’s coordinates to determine dphy(x, y) and update
its level yR prospective links list accordingly (see Figure 3).
An ith-finger request is sent to the closest entry in x’s level
xR prospective links list for Bx,i, if it contains an entry (see
Figure 2). Otherwise, the first successor of key xID+2i−1 in
resource level xR is contacted (see Figure 3), which requires
level-specific lookup forwarding (see Routing). Upon node
x’s receipt of a finger request response from node y, if yR =
xR and y ∈ Bx,i with i ≤ x.F interval, then y is assigned to
x.F [i]. If a given finger interval contains no level xR node,
then this finger entry remains empty.

Note that while node x only links level fingers to nodes
in level xR, maintaining prospective links lists for multiple
levels causes little overhead while easing a node’s transition
between resource levels. The prospective links list entries
are continually updated with fresh node information to au-
tomatically adapt the network to changing coordinates and
are deleted once used for a finger request to ensure their
freshness. Simulations have shown that k = 1 is benefi-
cial in networks with high churn, reducing the use of failed
prospective links and minimizing the lists’ overhead.

Figure 1 shows the basic overlay stucture. The connected
key ring on which each node establishes its predecessor and
successor is shown on top, and the individual levels are
shown below with the bottom level nodes assigned to their
upper level predecessors (i.e. parents). Inter-level links are
shown for three nodes only and level fingers were omitted.

4.2 Node Joins and Failures.
To join the DHT, a node x must have valid network co-

ordinates, choose a nodeID and resource level, and contact
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procedure maintainFinger(finger)
lookupKey = myKey + getOffset(finger)
myLevelList = prospLinkList(myLevel)
if myLevelList.size(finger) > 0 thenlevel

listEntry = myList.getClosestEntry(finger)
lookupKey = listEntry.key
myList.removeUsedEntry(listEntry)

end if
sendLookup(lookupKey)

end procedure

procedure suggestProspectiveLink(nodeInfo)
finger = getFingerInterval(nodeInfo.key)
dist = getPhysicalDist(nodeInfo.coordinates)
level = nodeInfo.resourceLevel
if pLList(level).contains(finger, nodeInfo.key) then

pLList(level).update(finger, dist, nodeInfo)
else if pLList(level).size(finger) < k or dist <

pLList(level).farthestLinkDist(finger) then
pLList(level).addNode(finger, dist, nodeInfo)
while pLList(level).size(finger) > k do

pLList(level).removeFarthestLink(finger)
end while

end if
end procedure

Figure 3: Maintaining fingers 1 to m − 1; Updating
prospective links lists (pLList) with ≤ k entries

one participating node. Once x has established links to its
immediate predecessor p and successor s on the key ring,
s sends its successor lists to x, which x uses to initialize
its own list, and corresponding keys are transfered from s
to x. Once x has completed the basic join in the overlay,
it must also perform either a leaf join or upper level join
(see below). The node x continually updates its prospective
links lists and periodically performs finger maintenance (see
Figure 3) to establish and maintain its fingers.

The basic reaction to node failures is as in Chord, with
failed nodes also removed from the inter-level list, prospec-
tive link lists, and potentially the parent link or leaf list once
their failure is noticed. An upper level node leaves gracefully
by sending messages to each of its leaf nodes and its upper
level predecessor informing them of their new parents/leaf
nodes. Otherwise, if a leaf node’s parent has fails unexpect-
edly, the leaf node must perform a leaf join to reestablish a
parent (see below).

Upper Level Joins and Failures. The upper level join
serves two purposes: establishing the upper level successor
and predecessor nodes (from any upper level) and transfer-
ring the responsibility for leaf nodes. Node x uses an upper
level bootstrap node to send an upper level join message,
which is routed along the upper level nodes to x’s upper
level predecessor y, for which xID ∈ y.urange. Node y re-
sponds to x with its own upper level successor z and the
list of y’s leaf nodes which are now in x.urange. Then y
informs each of these leaf nodes of their new parent node x
and removes them from its leaf list.

If an upper level node’s resource level is reduced to the

lowest level, it becomes a leaf node and forfeits its role as
parent node by transferring its leaf nodes to its upper level
predecessor y. Leaf nodes ignore finger and inter-link re-
quests, upper and leaf join requests, and upper stabilize
requests. If it is observed that a node has left the upper
levels, it must be removed from inter-level list, prospective
link lists, upper level successor and predecessor links, and
parent links (but not from successor and predecessor links).

Leaf Joins and Failures. Nodes with resource level 0
perform leaf joins to establish a live parent node. Recall that
a node x’s parent is the first preceding upper level node on
the key ring. The message is forwarded to an upper level
bootstrap node and then routed to the upper level node
whose upper level key range contains xID. This parent node
responds and and enters x into its leaf list.

Maintenance. Given the dynamics of mobile networks,
maintenance is integral for detecting and addressing network
changes. Inter-level links and level fingers are maintained
similar to in RBFM with varying maintenance intervals and
are automatically adapted when nodes change resource lev-
els. Thus, each link is maintained at an interval that depend
on the link’s node’s resource level: Bottom level links are
maintained according to a reference interval tref and higher
level links at varying multiples of tref for each resource level.

However, leaf and parent links as well as upper level suc-
cessor and predecessor links are maintained analogously to
direct successor and predecessor links, using direct mainte-
nance messages at a fixed interval.

4.3 Lookup Routing.
Routing of lookups is not performed in a strictly greedy

fashion like Chord, but rather in a series of greedy steps.
Let κ be the message’s destination key. Now recall that a
message is destined for the node whose simple key range
contains κ. One negligible piece of information is added to
messages: the key of the last upper level node that handled
the message (only needed for high churn scenarios). Once
a node x has determined that κ /∈ x.srange, its routing
behavior depends on its resource level as follows:

Leaf Nodes. If a message originates at a leaf node x, it
is forwarded to the parent node. Otherwise, if x receives a
messages for which its parent node was not the last upper
level node to have handled the message, it forwards the mes-
sage to its parent node. Otherwise, it forwards the message
to its successor node y if κ ∈ y.srange or else to the closest
preceding node from its successor list.

Upper Level Nodes. An upper level node x routes
greedily to the closest preceding node in a resource level
≥ xR using both its finger table and inter-level list. For
lower level nodes with restricted finger tables, this means
that messages to ’distant’ destinations are routed to upward.
For top level nodes, this means that messages are routed to
the closest top level predecessor of κ.

If there is no closer predecessor node with resource level
≥ xR, then the message is routed back down the hierarchy by
choosing the highest possible inter-level link preceding κ. If
there are no such links, then κ ∈ x.urange and the message
is delivered directly to the node y with κ ∈ y.srange: y
is either x’s upper level successor (whose simple key range
overlaps x.srange) or one of x’s leaf nodes.

Level Routing. Finger requests and inter-level link re-
quests use level sensitive overlay routing. These requests
are not necessarily delivered to the node x for which κ ∈

9



 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

Chord

RBFM
:Q90

HRM
4

HRM
2:0-123

w/RBFM
:L90

HRM
2:0-123

HRM
2:01-23

li
fe

ti
m

e
 i
n
 s

e
c
o
n
d
s

Level 0
Level 1
Level 2
Level 3

Figure 4: Mean node lifetimes per resource level
until half of the system nodes have failed due to
resource drain. Level 3 is also total system lifetime.

x.srange, but rather to the first successor of κ in a given
level `. A node y considers itself the request’s destination if
yR = ` and κ is between the sending node’s nodeID and yID.
If not, y forwards to its level ` inter-level link if it succeeds
κ, or to its closest known preceding link in level `.

Lookup Hop Length Theorem 1. Given a network with
N nodes, the expected upper bound for the number of over-
lay hops required for a lookup from any node to the successor
node of any key is O(log(N)) hops.

Proof. To show that routing terminates and find an up-
per bound on the routing hops, we consider the farthest
possible lookup route. Since it takes at most one hop to
route from a leaf to a parent node, we assume that each
message originates at an upper level node. Furthermore,
since it takes at most one hop to reach the node y with
κ ∈ y.srange from κ’s upper level predecessor, we need only
determine the number of hops necessary to reach κ’s upper
level predecessor.

If the originating node, its successor, or its upper level
successor are the destination, then we are done. Otherwise,
the message is passed upwards until it reaches the first level
in which the destination key is a predecessor of the current
node x’s x.Fkey, i.e. dkey(x, κ) < dkey(x, x.Fkey). The
message is passed up at most lmax−1 levels, from the bottom
to the top level.

So assume that κ is a predecessor of x.Fkey and will thus
be routed within level λ := xR on level fingers until it has
reached either the destination node or the closest prede-
cessor node within level xR. Then, as shown in [27], the
routing complexity within level xR is at most O(log(x.N)),
where x.N is the number of nodes in level xR between x and
x.Fkey. Let y be κ’s closest predecessor node in this level.

Assuming the message has not reached its destination,
the message is passed at most once to each of the other
upper levels and routed analogously (starting at higher levels
first). So we have a total of lmax−1 remaining hops between
other upper levels. However, since we know that y is the
closest predecessor node to κ in level λ, we can use the
expected number of network nodes between any two level λ
nodes (some constant c) as an upper bound on the number
of nodes on which remain to route over in each level. Thus,
we expect at most O(log(c)) routing hops in each remaining
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Figure 5: With node failures: The percentage of de-
livered application messages and percentage of total
lookup hops resolved per resource level.

level ` > 0, ` 6= λ, giving us an expected total of at most:

2 + 2(lmax − 1)+O(log(x.N)) + (lmax − 2)O(log(c))

≤2 · lmax + ĉ+O(log(N))

=O(log(N))

for with some constant ĉ.

Note that our simulation results did show an increase in
routing hops compared with Chord (1-2 hops), as expected
due to the maximum 2·lmax hops up and down the hierarchy.

5. EVALUATION
In order to assess the various approaches’ capabilities to

store and retrieve data, we observe node and network life-
times, the ratio of successfully delivered lookups, and the
ratio of forwarded lookup hops per resource level. Addi-
tionally, as a reflection of each approach’s suitability to mo-
bile scenarios, we compare the average physical distance of
lookup routing hops. We use two simulation configurations,
one without node failures and one in which nodes’ resources
are drained upon message send and receives, terminating the
simulation once half of the nodes have failed (as described in
Section 3). We consider here only systems with four resource
availability levels (lmax = 3), leaving considerations about
the ideal number of resource levels for future work. We
compared the HRM overlay with Chord, RBFM, and three
two-tier hierarchical overlays based on Chord, RBFM, and
HRM. We found the variations caused by different RBFM
finger maintenance intervals and stretch constants insignifi-
cant compared to the variations between approaches, so we
chose to use fixed RBFM configurations.

5.1 Setup
The simulations were performed in OmNET++ using the

OverSim overlay framework [4], using and extending the
functionality of the existing Chord implementation. The
results are based on 10000 nodes with random coordinates
divided into four resource availability levels based on the
power two Zipf distribution from (3). The base measure-
ment time was 10000 seconds, but the simulations with node
failures were terminated once half of the nodes failed. Nodes
started with resource values 800, 200, and 100 for levels 2,
1, and 0 (level 3 nodes are not drained due to their inex-
haustible resources) and drained by 0.2 and 0.1 resource
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Figure 6: Without node failures: Percentage of to-
tal lookup hops resolved per resource level. Each
approach delivered more than 99% of lookups.

units for every sent and received message, respectively. In
addition to maintenance messages (including stabilize mes-
sages every 20 seconds to node successors and parent nodes),
dummy application lookups were sent from each node to a
random key every 30 seconds. The application lookups were
observed for the number of hops, hop distances, and success-
ful delivery. The lower the rate of delivery, the less reliable
the DHT stores and retrieves data.

5.2 Hybrid hierarchical DHT
The three different two-tier configurations we simulated

in order to compare HRM with classical two-tier approaches
consist of parent and leaf nodes. Nodes from each of the four
resource availability levels are assigned to either a super peer
or a leaf peer hierarchical layer. For HRM2:0-123, level 0
nodes are assigned to the leaf layer and level 1,2, and 3 nodes
to the super peer layer. Within the super peer layer, nodes
are unaware of their varying resource levels and choose their
fingers based only on physical distance. Similarly, HRM2:01-
23 assigns level 0 and 1 nodes to the leaf layer and level 2
and 3 nodes to the super peer layer.

In order to add additional resource awareness, we combine
HRM with RBFM to obtain a hybrid solution: in HRM2:0-
123 with RBFM nodes are again arranged with level 0 nodes
in the leaf layer and level 1,2, and 3 nodes in the super peer
layer. However, here the super nodes are aware of their dif-
ferent resource levels and choose fingers in a resource and
location aware fashion as in RBFM. Thus, the upper level
nodes build a simple RBFM overlay on which the bottom
level nodes are hung as leaf nodes. The two-tier simula-
tions were configured with linear finger maintenance and for
HRM2:0-123 with RBFM using the stretch constant c = 90.

5.3 Results
Further simulation configurations include: a relatively in-

frequent finger maintenance period of 120 seconds for Chord
for reduced load, an RBFM overlay with quadratic finger
maintenance and stretch constant 90 (RBFM:Q90) (see [27]),
and HRM as suggested in this paper with four hierarchical
levels and linear finger maintenance (HRM4) with finger in-
tervals (as described in Section 4):

x.F interval =

{
x.I.closestInt, xR = 1

m, xR ∈ {2, 3}.
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Figure 7: Mean physical distance and standard de-
viation per lookup routing hop.

The lifetimes of each of the systems before half of its nodes
fail, as shown in Figure 4, vary strongly. Despite a very infre-
quent finger maintenance interval for Chord, set here inten-
tionally to 240 seconds to reduce maintenance load, it cannot
compare to the alternative approaches. Note that these re-
sults depend on the varying maintenance loads which we do
not further discuss for the sake of brevity, but which produce
a major portion of network load. Note that while HRM4
performs significantly better than RBFM, the two-tier ap-
proaches perform even better, most likely due to the higher
average hop length of lookups in HRM (approximately one
hop more per lookup). While Figure 4 demonstrates how
well the traditional two tier approaches prolong node life-
times, Figure 5 shows that these two-tier approaches’ perfor-
mance suffers given high failure rates, reducing the success
rate of lookups to under 65%. Considering only the node
and network lifetimes together with the percentage of de-
livered lookups, RBFM and HRM4 clearly outperform the
other approaches, with HRM4 providing the longer lifetimes.

Figures 5 and 6 also provide an overview of the lookup
hop load distribution among the resource levels with and
without node failures. Only successful lookups are included
in these figures. Figure 6 clearly shows how strongly each
approach prefers a single resource level for its lookup hops
and demonstrates how important it is to design an overlay
with the nodes’ resource availabilities in mind. For exam-
ple, RBFM’s lookup hop distribution is more suitable for
networks in which top level nodes can handle unlimited load
while HRM4 is more suitable for systems with strong nodes
in level 2 that should be used to reduce top level load.

Average lookup lengths ranged from 6.5 to 8.5 hops, with
the hierarchical approaches tending to have around one hop
more than the other approaches, presumably from the final
and/or initial hops to and from leaf nodes. Note the high
load on level 1 nodes for the two-tier approach HRM2:0-123
in Figure 6. We infer that this causes a high rate of node
movement between the super peer and leaf layers, trigger-
ing HRM2:0-123’s low deliverabiliy rate. Similarly, HRM4
distributes more load to level 2 nodes at the cost of their av-
erage lifetimes (relative to the other levels) as seen in Figure
4.

The average physical distance of single lookup hops shown
in Figure 7 reflects what we expect of the approaches’ rout-
ing hops’ distances: while RBFM:Q90 has a large pool of
nodes from which to choose links with strong and physically
close nodes, HRM4’s nodes have less choice for their links
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which are drawn from specific (less populated) hierarchical
layers. HRM4 actually performs only slightly more location-
aware than the completely location-naive Chord - reducing
its usability for mobile network scenarios with ad hoc rout-
ing where location-awareness is integral: multi-tiered hierar-
chical approaches for MANETs require additional location-
awareness such as PIS or PRS. On the other hand, level
2 and 3 nodes in HRM2:01-23 choose links from these two
upper levels based only on distance, providing upper nodes
with physically close links. Thus, depending on the tol-
erable lookup failure rate and desired distribution of load
between the upper level nodes, HRM2:01-23 and RBFM are
best suited for systems where the physical routing distance
plays a central role.

6. FUTURE WORK
Several novel and established location and resource aware

overlay protocols were compared in this paper using two
very specific scenarios. While the multi-tiered hierarchical
approach HRM4 provided the best combination of node life-
time and lookup deliverability, its location-awareness is not
suitable for MANETs without the further integration of PIS
or PRS (proximity-aware identifier/route selection). RBFM
demonstrated the most stable behavior with respect to node
lifetime, lookup deliverability, and location-awareness, of-
ten outperforming two-tiered approaches. The two-tier ap-
proaches performed well on many measures, but failed to
provide the robustness required for a system with high churn
rates. Thus, the improvement of these approaches’ robust-
ness could provide promising resource and location aware
alternatives. The evaluation’s observations build a foun-
dation for future work with more complicated and realistic
scenarios, for example with upper bounds on the permissible
load per time unit for varying resource levels, or the devel-
opment of protocol-specific replication geared toward each
approach’s specific strengths and weaknesses.
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