Job Shop Scheduling via Disjunctive Boolean
Formulas

Guillermo De Ita, Yolanda Moyao, Juan Carlos Pérez, Joste Pérez

Universidad Auténoma de Puebla, México
deita@ccc.inaoep.mx, ymoyao@cs.buap.mx, jeancarlopv@hotmail.com,
d.josue.pl@gmail.com

Abstract. Given a project formed by a serie of tasks, we present a
method which allow us to build the working teams to perform the project.
The teams are formed by employees and according to the ability of them
for satisfying the logical requirements of the tasks. The leader of the
project determines for each task, logical contraints indicating the differ-
ent employees who can perform the task. Each employee has associated a
cost for participating in a task, so that we have different ways to perform
the total project and with different costs.

We present a method for processing the logical constraints associated to
each task. Our method builds all the possible working teams and also
it shows the cost associated with each working team. The method also
finds the working team with minimum cost for doing the total project.
Keywords: Satisfiability Problem, Job Shop Problem, Working Teams,
Disjunctive Forms

1 Introduction

During the seventies, computer scientists discovered the scheduling as a tool for
improving the performance of computer systems. Furthermore, scheduling pro-
blems have been investigated and classified with respect to their computational
complexity. During the last few years, new and interesting versions of scheduling
problems have been formulated in connection with flexible manufacturing and
logic proposals [1].

Scheduling is the problem of allocating limited resources to tasks (activities)
over time. Scheduling is also considered as a decision-making process that has
as a goal the optimization of one or more objectives.

The commonly used Critical Path Method (CPM), assumes that unlimited
resources are available, and that activities requiring a common resource can be
carried out in parallel [7]. But when the resources are limited and have to be
shared during the performance of the project, then an important problem is the
allocation of those scarce resources for competing activities in order to minimize
overall project duration.

Here, we consider scenarios where a set of tasks are performed through spe-
cialized equipment or by specialized employees. We consider equipment or spe-
cialized personnel such as the common resources to be used in order to accom-
plish the project.

41

In this article, we consider the Job-Shop problem without restrictions of the
time windows tasks. So, we want to schedule a set of m tasks, and where the
tasks share common resources, in this case, a resource means an employee who
must participate in a working team for performing each task. Then, different sets
of conflicting taks are formed dinamically according with the order of performing
of the previous tasks and the employees performing those tasks.

This version of the Job-Shop problem continues being a NP-hard problem
since the possibilities of permutations of conflicting employees performing the
tasks. In this class of instances, the explosive number of permutations for exe-
cuting the tasks depend on the number of subteams involved in each task. We
present here, a novel method for solving this class of Job-shop problem, our
method is based in the description of each task through disjunctive forms.

We are interested in computing all the different working teams that can be
formed to develop a project in large corporative companies. The leader of the
project determines the logical constraints for each task in the project. Such
contrainsts are translated to disjunctive forms. Thus, the constraints for any
task in the project will be associated with a disjunctive form.

Joining all disjunctive forms of the tasks in the project, a new conjunctive
boolean formula X' is formed. And in this case, the set SAT(X) (the set of
satisfied assignments of) determines the different working teams that can
be formed to develop the project effectively. While #SAT(X) (the number of
satisfied assignments) give us how many different teams can be formed to develop
the project.

We have designed a method to build the set SAT(X). Thus, we find the
working teams which can perform the project and also, we determine the working
team with minimum cost, assuming that the participation of each employee in
a task has a fixed cost. This kind of automatization will help to the companies
to save money and time, by making the working team selection process more
efficient, transparent and dynamic.

2 Notation and Preliminaries

Let P = {P1,...,P,} be a set of n projects. One project:P; = (t1,--.,tim;)
formed by a set of m tasks . Each project P; € P is performing by a working
team, and each working team is a set of employees.

Each project P; € P consists of a series of consecutive and interdependent
tasks: (i1, ..., tim,;). There is an order among the tasks of a project given by the
interdependency of them, in such a way that certain tasks cannot begin until all
the tasks they depend on are completed.

A dependency graph or precedence graph (DAG) G; = (T, E(G;)) is built
for representing each project P; € P. The nodes in G; represent tasks and we
join the last task of the project with a special node labeled as P;. Each edge
(v,w) € E(G;) meaning that the task w depends directly on the task v. The
precedence constraints between tasks are represented on this DAG through the
edges. Then, an edge represents a precedence relationship between its tasks.

42

Fig. 1. A DAG for a project

We denote by t;; the k-th task from the project P;. Usually, in a DAG
three nodes are common, the initial task (or sometimes the initial tasks), a node
representing when an error has been peformed (the Error node), and the final
task, in our figure, it is represented by the End label node. The duration of
each task is known, and the task requires a set of employees throughout its
performance.

Let X = {1,229, ...,z,} be a set of n boolean variables, each variable z; € X
represents an employee from a company. A literal is either a variable or a negated
variable. The bar over the variable, T for instance, will denote a negated variable.
Sometimes, we also use — as the negated operator. Let L = {z1, -1, ..., Tpn, "Tpn }
be the set of literals over a set of variables X, and let L and T be two constants
that represent the false and true values, respectively. |A| denotes as usual, the
number of elements of a set A. We use v(l) to indicate the variable involved by
the literal [.

The disjunction of different literals is called a clause. While the conjunction
of different literals is called a phrase.

For k € N, a k— clause (k—phrase) is a clause (phrase)consisting of exactly
k literals. A variable x € X appears in a clause or a phrase c if x or T is an
element of ¢. Let v(c) = {z € X : x appears in c}.

A conjunctive form (CF) is a conjunction of clauses. A k-CF is a CF con-
taining only k-clauses. A disjunctive form (DF) is a disjunction of phrases. A
k-DF is a DF containing only k-phrases.

An assignment s for a boolean formula F' is a boolean function s : v(F) —
{0,1}. An assignment can be considered also as a set of non complementary
pairs of literals. If [€ s, being s an assignment, then s turns [true and [false.

Considering both a clause ¢ and an assignment s as a set of literals, c¢ is
satisfied by s if and only if ¢ N's # (), and if for all [€ ¢, | € s then s falsifies c.
Assuming also a phrase p as a set of literals, p is satisfied by an assignment s if

43

and only if for all literal [€ p then [€ s. Then, considering p and s as a set of
literals; if p C s then the phrase p is satisfied by s.

A CF X is satisfied by an assignment s if each clause in X is satisfied by s
and X' is contradicted if it is not satisfied. A DF' X is satisfied by an assignment
s if any phrase in X' is satisfied by s and Y is contradicted if all phrase in DF
is not satisfied by s. We call s a model of X if s is a satisfied assignment of X.

If F represents a literal, a clause, an assignment, a CF or a DF then v(F)
will denote the set of variables contained in F. For example, if F' = {—z1,z2} or
F = -1 V x9, then v(F) = {x1, z2}.

Let X be a boolean formula, SAT(X) is the set of models that X has over
v(X). X is a contradiction or unsatisfiable if SAT(X) = (. Let #SAT(X) =
|SAT(X)| be the cardinality of SAT(X). The SAT problem consists in deter-
mining if X' has a model. The #SAT counting problem consists of counting
the number of models of X defined over v(X). The SAT problem is a classic
NP-complete problem.

3 Defining a Job Shop Model

A Job-shop scheduling problem can be formulated as a set of n jobs (multi-
project) P ={Py,..., P,} to be scheduled on m machines, or by m employees.
Each job (or project) P; is formed by n; consecutive tasks P; = (t;1, ..., tin,), SO
there is a sequential order among the tasks in the same project. The task (¢;x)
represents the k-th task of the job P;.

Each task ¢;; has associated a processing time w;;, and each project P; must
be achieved before a due time dt;. Let s;; be the start time for scheduling the
task ¢;;. For i = 1,...,n, the total time that a project P; needs for completing
all its tasks is its completion time and it is denoted as C'T;, While T'D; denotes
the total tardiness spent by A; in order to achieve the last task P; [4].

Let Cpqr be the makespan (total completion time of the multi-project sys-
tem), and TD be the total tardiness of the system. The multi-objective opti-
mization problem consists roughly in finding a schedule of the n projects that
minimizes the makespan and the total tardiness [6]. Both objectives can be
formulated as minimizing the following functions:

f1 = Crge = Maz{sin;, + wim;|i €[1...n]}
fo=TD =" [maz(0, Sim; + Wim; — dt;)]

Corporate companies developing projects have to select in a dynamic way the
different working teams to solve the requirements of a project. These companies
have a finite staff formed by ”"n” employees which we will denote by the set:
X ={z1,....zn}

In practical sceneries, each project P; € P could be accomplished in different
ways, that is, each task in the project can be realized by different employees
(working teams). And different costs are allocated according to the participation
of employees for performing a determined task.

44

The supervisor or leader of a project P may specify how different employees
can form a team to do a determined task. So, a logical formula Fj is associated
to each task ¢; € P. F; indicates the employees who must participate, who must
not participate and who is not relevat to participate for performing the task ;.

Project managers propose the staff selection to form working teams based on
the restrictions given for each task. Such restrictions are formed according to the
capabilities of employees and the requirements that must be accomplished in the
project. For example, a kind of restriction could be that two employees have the
same abilities, or that two specific employees can not work in cooperative way
with each other, etc. In general, a logical formula is established for determining
the relationship among employees doing a determined task.

The project manager defines such restrictions (capabilities or requirements)for
each task in the project. For example, we can identify the following cases that
model constraints between a pair of employees.

Case 1: (z;). It indicates that it is mandatory that the employee x; participate
in the current task.

Case 2: (z;Vx;). The clause is unsatisfiable when z; = 0 and z; = 0, indicating
that either of the employees x; or ; must participate in the team, or that both
can be on the same team.

Case 3: (z; V ;). The clause is unsatisfiable when z; = 0Az; = 1. It indicates
that if z; is on the team, then z; should be on the same team. In the same way,
if ; is not in the team then z; must not be in it.

Case 4: (—x; V —z;). The clause is unsatisfiable if z; = 1 A z; = 1 indicating
that either z; or z; employees should not participate in the team, both of them
should not. Thus, we must avoid having both employees in the same team.

Lemma 1. Let F' be a propositional formula then F' can be translated in a logical
equivalent formula expressed in disjunctive form. [3]

According to the previous lemma, the logical constraints given by the leader
of the project can be rewritten as disjunctive forms. Then, we associate with
each task ¢; of a project P a disjunctive form DF(¢;) which denotes the different
working teams which can perform the task ;.

Each disjunctive form DF(¢;) can be codified via vector of n positions of 1,0
and -1 according to the position of each employee he may either participate, not
participate, or he must not participate, in the current working team.

The set of vectors, one for each disjunction from DF'(¢;) conform the rows
of a matrix M;. Thus, each task ¢; has associated a matrix M; containing the
different subteams which can perform the corresponding task.

If we join (with the conjunction operator) the m disjunctive forms, then a
new propositional formula X = DF(t;) A DF(t2) A ... A DF(ty,) is formed. X
will be a conjunction of disjunctive forms. Furthermore, any assignment that
satisfies X' represents a way to form a proper working team that will execute the
total project.

45

We also assume that the participation of an employee in a subteam to perform
a task has a fixed cost and then, a total cost is formed according to the working
team which can develop the total project.

Therefore SAT(X) contains all the possible teams that can be formed to
implement the project effectively. We present in the following section, how to
build the set SAT(X), and also how to determine the model of X' with minimum
cost.

4 A Logical Procedure to Form Working Teams

A particular example of Schedulling for the optimization of resources is to min-
imize costs. Given just one project P=(ty,...,tn,), where each task ¢; € P has
associated a set of boolean constraints, we can build a boolean formula X whose
models represent the teams which can develop the total project. Each working
team is represented by a model of X.

In those models of X' the logical value 1 indicates that a particular employee
must be a component of the working team, the value 0 expresses that the cor-
responding employee may not be a part of the working team. We also use the
value -1 to indicate that the respective employee must not participate in that
working team.

The constraints indicating which employees would develop a task ¢; € P are
translated in a disjuntive form DF(¢;). Such DF (t;) expresses the different ways
to perform the task ¢;, so the formula includes the different subteams wich can
perform the task. Each disjunctive form DF'(¢;) is encoded through a row of a
matrix of constraints, denoted as M3i.

Now, we present a method to build the models which satisfy all the con-
straints to do the project. First, we present in table 1, the multiplicative patterns
used when two consecutive tasks ¢; and ¢;41 are considered to be performed by
the same employee.

The first three rows of the table 1 codify the result obtained when the par-
ticipation of an employee is necessary in a task and then he is necessary in the
total project. Similarly, if an employee must not participate in a task (value -1)
consequently he/she will not participate in the project at all (rows 4,5 and 6 in
the table 1). On the other hand, the symbol L is used when two constraints can
not be both satisfied, e.g. when an employee must participate in a task but he
has not participate in the following tasks.

Procedure: Building Models for Disjunctive Forms.

Step 1: Let M; be a matrix containing the dijunctive forms to perform the
task t;. Let Costs[i] = w;,¢ = 1,...,n be a vector of weights, each weight w;
represents the cost of the participation of the employee z; in the project.

Step 2: We apply a special matrix multiplication on the m matrix-tasks, as:

MP = My x (Ma)T % ... % (M,,)T (1)

46

Table 1. multiplicative patterns

1x1=1
1x0=1
0x1=1
0x0=0
—1x0=-1
0x—1=-1
1x—1=1
—1x1=1

Where M7 is the transpose matrix from M. When a row versus column matrix
multiplication is done, the multiplicative patterns on table 1 are applied.

Step 3: The matrix multiplication in equation (1) is done in iterative way
and the rows containing the symbol 1 are removed in each resulting submatrix.
Since such rows represent unsatisfiable constraints.

Step 4: After obtaining the final matrix M P without unsatisfiable rows,
we associate to each row in M P a cost which represent the charge that the
corresponding working team requests to perform on the total project. If a row
r, € M P is represented by a binary vector: (by,ba, ..., b,) then the cost of that
working team will be:

Cost(ry) = D (bi=1)er, Wi

Then we will have an equal number of costs as rows there exist in the matrix
MP.

Step 5: The resulting rows for matrix M P, are sorted in descending order
with respect to the estimated costs, and the row M P with minimum cost will
be selected as the working team for carry out the total project.

A simple example illustrates the way in which our method works.

Ezxample 1. Let t1,12 and t3 be three tasks forming a project P. The constraints
which determine how the different employees of the company can perform each
task are:

t1 = (1 A—xg) A (22 Vas) V ((x2 ® z5) A 3)
to = (mxy ATz Axg) V(21 A T2 AT5)
ts = ((z2 AN xs) V(1 Axg)) Aay
A vector of costs is given according to the salary of each employee:
Ty T2 T3 T4 Ts
250 400 550 320 500

By translating the constraints defined by the leader of the project as disjunc-
tive forms, we obtain the following disjunctive constraints:

Costs =

47

t1 = (x1 A —xg Ax2) V (2271 AN H VAN $3> V (:c2 A =5 A xg) V (~z2 A x5 A T3)
to = (mzy A3 Axg) V (T1 A xo ATs)
i3 = (1'2 N Xy /\1‘5) V (—|,ZL'1 N X3 /\1'4)

And then, such constraints are codified via the matrix M7, My and M3, defined
as:

110-10
101-10
M=1o110 -1
0-110 -1
~10110
MQ_[l 1001}
01011
Mi”[—louo}

Considering the multiplicative patterns mentioned in table 1, we obtain the
fist resulting matrix M; x M.

MP;

T 1 % % x %

M, _11\412 1 1 0-11
110-10 0 1 1 % % % %
1 01-10]|x 1 0|7 1 1 1-11
0110 -1 1 0 -1 1 11 -1
0-110 -1 0 1 1 L % % %
-1 -111 1

1 1L % % %

The symbol “*’ represents a pattern which can be substituted by 1 or 0 as in
fact, it doesn’t matter what its value is, because the row is unsatisfiable.

Now, keeping only the rows that satisfy the constraints of the project, we
form a new matrix that is multiplied by M7 .

MP
T 1 1 0 L =
MP; Ojggi 1 1L % *x x
1 1 0-11 10 1 1 1 L =
1 1 1-11]x 01 |~ -1 1 L-11
-1 1 11 -1 11 -1 1 11 -1
-1 -111 1 10 -1 L * % x
-1 -111 1
1 L % x x

48

And as the final matrix must not contain unsatisfied rows, we reduce the
final matrix to:

MP
-1 1 11-1
-1 -1111

And finally, we compute the costs associated to the rows of MP, according
to the cost given by the participation of each employee in the project.

X1 X9 X3 Xy X5
-11 1 1 —-1=1270
-1-11 1 1=1370

So, we conclude that the project can be carried out by means of the following
working team:

(z2 Axg Axy) and (23 A zg A T5).

And the working team with minimum cost is (z3 A 3 A x4).

In sum, the proposed heuristic, starts by solving the problem of creating
the teams that can meet all the project tasks P, searching for the one with the
minimal cost. This approach to the problem is very similar to the constraint
satisfaction problems [13] which works with graphs and not with disjunctive
forms like the one we have just proposed.

5 Conclusions

Nowaday, most companies have to form working teams in order to effectively do
a project. The task of a project manager is to consolidate the staff and to create
teams that can achieve concrete results, under certain types of restrictions. Such
restrictions are concerning with empathy, capabilities, abilities and knowledge
among the employees who have to accomplish the project. These relations or
restrictions are often complex for the project manager and he must take the
best decision.

Our proposal for forming the working teams, is based on processing disjuntive
forms specifying the employees who could participate and those who must not,
for performing specific tasks. The satisfiability assignments resulting from the
boolean formula represent the different ways to perform the total project.

We present a method for processing the disjunctive forms linked to each
task. Our method can also determine which working team is associated to the
minimum cost, taking into consideration that the participation of each employee
in each task has a specific cost.

References

1. Brucker P., Scheduling Algorithms, Springer-Verlag, 2007.

49

w

10.

11.

12.

13.

. De Ita G., Polynomial Classes of Boolean Formulas for Computing the Degree of

Belief, Advances in Artificial Intelligence LNAI 3315,pp.430-440,2004.

. Gallier J.H., Logic for Computer Science, John Wiley & Sons, 1987.
. Garrido A., Salido A., Barber F., Lépez M.A., Heuristic Methods for Solving

Job-Shop Scheduling Problems, (2000), citeseer.ist.psu.edu/402791.html

. Johnsonbaugh Richard, 1993, Matemdticas Discretas, Editorial Prentice Hall. 4ta

edicién.

. Melab N., Mezmaz M., Talbi E.-G., Parallel cooperative meta-heuristics on the

computational grid. A case study: the bi-objective Flow-Shop problem, Science
Direct Parallel Computing 32, (2006), pp.643-659

. Patterson J.H. A comparison of exact approaches for solving the multiple con-

strained resource project scheduling problem, Management Science, Vol. 30,
(1984), pp. 854-867.

. Fred S. Roberts, Graph Theory and Its Applications to Problems of Society, Edit.

SIAM Collection, 1978.

. Germina K.A., Hameed S.K., On signed paths, signed cycles and their energies,

Applied Mathematical Sciences, Vol. 4:(70), 2010, pp. 3455-3466.

Kota P. S., Subramanya M.S., Note on path signed graphs, Notes on Number
Theory and Discrete Mathematics 15:(4), 2009, pp. 1-6

Roth, D., On the hardness of approximate reasoning, Artificial Intelligence 82,pp
273-302,1996.

Vadhan, S. P., The complexity of Counting in Sparse, Regular, and Planar Graphs,
SIAM Journal on Computing,pp. 398-427, V31, N2, 2001.

David Poole, Alan Mackworth, Randy Goebel, Computational Intelligence A Log-
ical Approach, Ozford University Press,pp 147-150.

50

