
On direct debugging of aligned ontologies?

Kostyantyn Shchekotykhin, Philipp Fleiss, Patrick Rodler, and Gerhard Friedrich

Alpen-Adria Universität, Klagenfurt, 9020 Austria
firstname.lastname@aau.at

Abstract. Modern ontology debugging methods allow efficient identification and
localization of faulty axioms defined by a user while developing an ontology.
However, in many use cases such as ontology alignment the ontologies might in-
clude many conflict sets, i.e. sets of axioms preserving the faults, thus making
the ontology diagnosis infeasible. In this paper we present a debugging approach
based on a direct computation of diagnoses that omits calculation of conflict sets.
The proposed algorithm is able to identify diagnoses for an ontology which in-
cludes a large number of faults and for which application of standard diagnosis
methods fails. The evaluation results show that the approach is practicable and is
able to identify a fault in adequate time.

1 Motivation and algorithm details
Ontology development and maintenance relies on an ability of users to express their
knowledge in form of logical axioms. However, the knowledge acquisition process
might be problematic since a user can make a mistake in an axiom being modified or
a correctly specified axiom can trigger a hidden bug in an ontology. These bugs might
be of a different nature and result in violation of such requirements as consistency of
an ontology or satisfiability of its classes. In such scenarios as ontology matching the
complexity of faults might be very high because multiple disagreements between onto-
logical definitions and/or modeling problems can be triggered by aliments at once.

Ontology debuggers simplify the development by allowing their users specification
of requirements to the intended (target) ontology. In addition, a user can provide B
set of background (correct) axioms and sets of positive P and negative N test cases.
A positive test case is a set of axioms that must be entailed by the intended ontology,
whereas a negative test case must not. If any of the requirements or test cases are broken,
i.e. an ontologyO is faulty, then the tuple 〈O,B, P,N〉 is a diagnosis problem instance.
For a given problem instance a debugging tool computes a set of axioms D ⊆ O called
diagnosis. An expert should remove or modify at least all axioms of a diagnosis in order
to be able to formulate the target ontology Ot.

Nevertheless, in real-world scenarios debugging tools can return a set of alternative
diagnoses D. The reason is the practical impossibility for a user to specify such a set
of requirements and test cases, prior to a debugging session, providing all information
required for identification of the target diagnosis Dt, i.e. the diagnosis which appli-
cation allows formulation of the intended ontology. Diagnosis discrimination methods
allow their users to reduce the number of diagnoses to be considered. An interactive
algorithm suggested in [4] identifies the target diagnosis by asking an oracle a sequence
of questions: whether some axiom is entailed by the target ontology or not. A general
? This research is funded by Austrian Science Fund (Project V-Know, contract 19996).

interactive ontology diagnosis algorithm can be described as follows: (1) Generate a set
of diagnoses D including at most n diagnoses. (2) Compute a set of queries and select
the best one using a predefined measure. (3) Ask the oracle and, depending on the an-
swer, add the query either to P or to N . (4) Update the set of diagnoses D and remove
the ones that do not comply with the newly acquired test case. (5) Update the tree and
repeat from Step 1 if the tree contains open nodes. (6) Return the set of diagnoses D.
The resulting set D includes only diagnoses that are not differentiable in terms of their
entailments, but have some syntactical differences. The preferred target diagnosis Dt,
in this case, should be selected by the user using some ontology editor such as Protégé.

Most of the debugging approaches, including [4], follow the standard model-based
diagnosis approach [3] and compute diagnoses using conflict sets CS, i.e. irreducible
sets of axioms ax i ∈ O that preserve violation of at least one requirement. The com-
putation of one conflict set can be done within a polynomial number of calls to the
reasoner, e.g. by QUICKXPLAIN algorithm [2]. To identify a diagnosis of cardinality
|D| = m the hitting set algorithm suggested in [3] requires computation of m conflict
sets. In some practical scenarios, such ontology matching, the number of conflict sets
m can be large, thus making the ontology debugging practically infeasible.

In this paper we present two algorithms INV-HS-TREE and INV-QUICKXPLAIN,
which inverse the standard model-based approach to ontology debugging and compute
diagnoses directly, rather than by means of conflict sets (see [5] for a detailed descrip-
tion of the algorithms). The main function of the latter algorithm splits recursively the
initial diagnosis problem instance into two sub-problems by partitioning the axioms of
a given faulty ontology into two subsets. In many cases SPLIT simply partitions the set
of axioms into two sets of equal cardinality. The algorithm continues to divide diagno-
sis problems until it identifies a set D′ such that O \ D′ fulfills all the requirements,
but O \ D′

i, where D′
i are partitions of D′, not. In further iterations the algorithm min-

imizes the D′ by splitting it into sub-problems of the form D′ = D ∪ O∆, where O∆
contains only one axiom. In the case when D′ is a diagnosis and D is not, the algorithm
decides thatO∆ is a subset of the sought diagnosis. Just as the original algorithm, INV-
QUICKXPLAIN always terminates and returns either a diagnosis D or “no diagnosis”.

In order to enumerate all possible diagnoses we modified the HS-TREE algorithm [3]
to accept diagnoses as node labels instead of conflict sets. The INV-HS-TREE algorithm
constructs a directed tree from root to the leaves, where each node nd is labeled either
with a diagnosis D(nd) or X (closed) or × (pruned). The latter two labels indicate that
the node cannot be extended. Each edge outgoing from the open node nd is labeled
with an element s ∈ D(nd). HS(nd) is a set of edge labels on the path from the root
to the node nd. Initially the algorithm creates an empty root node and adds it to the
queue, thus, implementing a breadth-first search strategy. Until the queue is empty, the
algorithm retrieves the first node nd from the queue and labels it with either:
1. × if there is a node nd′, labeled with either X or ×, such that H(nd′) ⊆ H(nd)

(pruning non-minimal paths), or
2. D(nd′) if a node nd′ exists such that its label D(nd′) ∩H(nd) = ∅ (reuse), or
3. D if D is a diagnosis for the diagnosis problem instance 〈O,B ∪H(nd), P,N〉

computed by INV-QUICKXPLAIN (compute), or
4. X (closed).

The leaf nodes of a complete tree are either pruned (×) or closed (X) nodes.
In the diagnosis discrimination settings the ontology debugger acquires new knowl-

edge that can invalidate some of the diagnoses labeling the tree nodes. During the tree

update INV-HS-TREE searches for the nodes with invalid labels, removes its label and
places it to the list of open nodes. Moreover, the algorithm removes all the nodes of
a subtree originating from this node. After all nodes with invalid labels are cleaned-
up, the algorithm attempts to reconstruct the tree by reusing the remaining valid min-
imal diagnoses (rule 2, INV-HS-TREE). Such aggressive pruning of the tree is feasi-
ble since a) the tree never contains more than n nodes that were computed with INV-
QUICKXPLAIN and b) computation of a possible modification to the minimal diag-
nosis, that can restore its validness, requires invocation of INV-QUICKXPLAIN and,
therefore, as hard as computation of a new diagnosis. Note also, that in a common diag-
nosis discrimination setting n is often set to a small number, e.g. 10, in order to achieve
good responsiveness of the system. In the direct approach this setting limits the num-
ber of calls to INV-QUICKXPLAIN to n and results in a small size of the search tree.
The latter is another advantage of the direct method as it requires much less memory in
comparison to a debugger based on original HS-TREE.

2 Evaluation
We evaluated the direct ontology debugging technique using aligned ontologies gen-
erated in the framework of OAEI 2011 [1]. These ontologies represent a real-world
scenario in which a user generated ontology alignments by means of (semi-)automatic
tools. All ontologies used in the experiments are available online, together with detailed
evaluation results1.

In the first experiment we applied the debugging technique to the set of aligned on-
tologies resulting from “Conference” set of problems, which is characterized by lower
precision and recall of the applied systems (the best F-measure 0.65) in comparison, for
instance, to the “Anatomy” problem (average F-measure 0.8). The Conference test suite
includes 286 ontology alignments generated by 14 ontology matching systems includ-
ing: a) 140 ontologies are consistent and coherent; b) 122 ontologies are incoherent;
c) 26 ontologies are inconsistent; and in 8 cases a reasoner was unable to classify in
two hours2. Note that only two systems CODI and MaasMtch out of 14 were able to
generate consistent and coherent alignments. This observation confirms the importance
of high-performance ontology debugging methods.

The 146 ontologies of the cases b) and c) were analyzed with both HS-TREE and
INV-HS-TREE. The results of the experiment show that for 133 ontologies out of 146
both approaches were able to compute the required amount of diagnoses. HT-TREE
required 49, 61 and 80 sec. on average to find 1, 9 and 30 leading minimal diagnoses.
The direct algorithm required less time and returned the requested number of diagnoses
on average in 27, 52 and 72 sec. respectively. In the 13 cases HS-TREE was unable to
find all requested diagnoses in each experiment. Within 2 hours the algorithm calculated
only 1 diagnosis for csa-conference-ekaw and for ldoa-conference-confof it
was able to find 1 and 9 diagnoses, whereas INV-HS-TREE required 9 sec. for 1, 40
sec. for 9 and 107 sec. for 30 diagnoses on average.

Moreover, in the first experiment we evaluated the efficiency of the interactive di-
rect debugging approach applied to the cases listed in Table 1. We selected the target
diagnosis randomly among all diagnoses of the following diagnosis problem instance
〈Mf ,Oi ∪ Oj ∪Mt, ∅, ∅〉, where Mf and Mt are the sets of false and true positive

1 http://code.google.com/p/rmbd/wiki/DirectDiagnosis
2 Core-i7 (3930K) 3.2Ghz, 32GB RAM running Ubuntu 11.04, Java 6 and HetmiT 1.3.6.

Matcher Ontology 1 Ontology 2 Time (sec) #Query React (sec) #CC CC (ms)
ldoa conference confof 11.6 6 1.4 430 3
ldoa cmt ekaw 48.5 21 2.2 603 16
mappso confof ekaw 9.9 5 1.8 341 7
optima conference ekaw 16.7 5 2.5 553 8
optima confof ekaw 23.9 20 1.1 313 14
ldoa conference ekaw 56.6 35 1.4 253 53
csa conference ekaw 6.7 2 2.7 499 3
mappso conference ekaw 27.4 13 1.8 274 28
ldoa cmt edas 24.7 22 1.1 303 8
csa conference edas 18.4 6 2.7 419 5
csa edas iasted 1744.6 3 349.2 1021 1333
ldoa ekaw iasted 23871.4 10 1885.9 287 72607
mappso edas iasted 18400.2 5 2028.2 723 17844

Table 1. Diagnosis discrimination using direct ontology debugging and Entropy scoring function.
React time required to compute 9 diagnoses and a query, #CC number of consistency checks,
CC gives average time needed for one consistency check.

alignments computed from the set of correct alignments Mc, provided by the organiz-
ers of OAEI 2011, and the set Mij generated by a ontology matching system. In the
experiment the used the Entropy scoring function [4] with prior fault probabilities of
axioms corresponding to aliments set to 1 − v, where v is the confidence value of the
matcher for an axiom. All axioms of Oi and Oj were assumed to be correct and were
assigned small probabilities. The results presented in Table 1 were computed for the
diagnosis problem instance 〈Mij ,Oi ∪ Oj , ∅, ∅〉. The experiment shows that the sys-
tem was able to identify the target diagnosis efficiently with small reaction times. The
system’s performance decreased only in the cases when a reasoner required much time
to verify the consistency of an ontology.

In the second scenario we applied the direct method to unsatisfiable and classifiable
within 2 hours ontologies, generated for the Anatomy problem. The source ontologies
O1 and O2 include 11545 and 4838 axioms correspondingly, whereas the size of the
alignments varies between 1147 and 1461 axioms. The target diagnosis selection pro-
cess was performed in the same way as in the first experiment. The results of the exper-
iment show that the target diagnosis can be computed within 40 second in an average
case. Moreover, INV-HS-TREE slightly outperformed HS-TREE.

References

1. Euzenat, J., Ferrara, A., van Hage, W.R., Hollink, L., Meilicke, C., Nikolov, A., Ritze, D.,
Scharffe, F., Shvaiko, P., Stuckenschmidt, H., Sváb-Zamazal, O., dos Santos, C.T.: Final re-
sults of the Ontology Alignment Evaluation Initiative 2011. In: Proceedings of the 6th Inter-
national Workshop on Ontology Matching. pp. 1–29. CEUR-WS.org (2011)

2. Junker, U.: QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained
Problems. In: Proc. 19th National Conference on Artificial Intelligence. pp. 167–172 (2004)

3. Reiter, R.: A Theory of Diagnosis from First Principles. Artificial Intelligence 32(1), 57–95
(1987)

4. Shchekotykhin, K., Friedrich, G., Fleiss, P., Rodler, P.: Interactive ontology debugging : two
query strategies for efficient fault localization. Web Semantics: Science, Services and Agents
on the World Wide Web 12-13, 88–103 (2012)

5. Shchekotykhin, K., Friedrich, G., Fleiss, P., Rodler, P.: Direct computation of diagnoses for
ontology debugging. arXiv 1–16 (2012) http://arxiv.org/abs/1209.0997

	On direct debugging of aligned ontologies

