Reasoning about Lava effusion: from
Geographical Information Systems to Answer
Set Programming*

Isabella Cattinelli', Maria Luisa Damiani? and Andrea Nucita?

L M?AG - Dipartimento di Scienze dell’Informazione
Universita degli studi di Milano. Milan, 1-20135 Italy
isabella@mag.dsi.unimi.it
http://mag.dsi.unimi.it/

2 Dipartimento d’Informatica e Comunicazione
Universita degli studi di Milano. Milan, [-20135 Italy
<damiani,nucita>@dico.unimi.it
http://www.dico.unimi.it/

Abstract. This article describes our implementation in Answer Set Pro-
gramming of a reasoning system that models the flow of lava in volcanic
eruptions. Our system can be employed in the validation of evacuation
plans. To demonstrate the feasibility of such approach, we adopt a sim-
plified yet realistic model of how lava flows, and apply it to altitude data
from the Etna volcano.

1 Introduction

This article reports on our experience of applying Answer Set Programming
(ASP) to reasoning about geographical data. We adopt the framework outlined
by [Osorio & Zepeda, 2004], which, to the best of our knowledge, was the first
work addressing this issue. We consider the problem of generating and validating
an evacuation plan for a community living near an active volcano that now
is erupting. Planning in Answer Set Programming is by now well-studied and
understood; it can be found, e.g., in [Baral, 2003], which we adopted for our
experiments. The novel question for ASP we would like to answer here is the
following: can the lava flowing from the eruption cross the evacuation path under
some circumstances (which we have no control on)?

Using ASP for the implementation of a system that generates and validates
evacuation plans brings obvious benefits in terms of adapting the code to the
fast-changing conditions. Another goal of this work is to apply Answer Set Pro-
gramming solvers in realistic scenario and check their performance and usability
vis-a-vis ad hoc solutions written using imperative languages. However, we hope

* Work supported by i) MIUR COFIN project Rappresentazione e gestione di dati
spaziali e geografici in WEB. and ii) the Information Society Technologies pro-
gramme of the European Commission, Future and Emerging Technologies under
the IST-2001-37004 WASP and IST-2001-33058 PANDA projects.

that our solution will soon be of practical interest for emergency management
and we are reaching out to geologists and risks managers. Indeed, the data used
in the experiments here described come from an extensive set of data collected
on the Etna volcano in Sicily, for which a wealth of present and historical data
is available.

The available data are, essentially, of geographical nature. Each instance we
consider consists of

— an integer matrix describing the orography of the considered area,

— the point where the eruption is located,

the point where the community that needs to be evacuated is, and

— some parameter about the lava front: its height and the length it can go.

We see the motion of the lava front (which we will call lava motion) in
terms of a partially-constrained, non-deterministic visit of the surrounding. The
question we would like to address is the following: will the lava ever reach the
considered evacuation point?

Of course, to answer such a question we need, beside the instance, a model of
how the lava moves, which is described in Section 3. Our model of how the lava
flows on the ground, which is illustrated in Section 4, is somewhat simplified
w.r.t. those currently used in lava flow simulation and control; however, it is
detailed enough to constitute a valid proof-of-concept that ASP can be applied
to this context.

The only other work that addresses ASP in the context of GIS is that of
[Osorio & Zepeda, 2004] from which we have taken the general framework and
motivations for our work. One key point in Osorio and Zepeda’s approach is to
split the representation of the geography and of the lava flow from the represen-
tation of the planning activity needed to draw up evacuation plans.

To avoid the inherent complexity of reasoning with geographical data within
ASP, Osorio and Zepeda adopt Constraint Logic Programming for the geograph-
ical part, and ASP for the planning part. To give an overall semantics to this
combination, they propose the notion of semantic content, by which each module
is given an external semantics, which will be combined with that of the other
model externally. This approach has several practical advantages, but it comes
at the cost of introducing an external semantics and study its compositional
properties.

Our approach is to develop both the above modules into one ASP program.
Therefore, the answer sets of the resulting program are the semantics of the
system. Whether this approach is realistic, it is subject of experimentation and
benchmark on realistic instances which will be outlined in the final part of the
article, with preliminary but encouraging results.

2 Answer Set Programming

In this paper we describe Answer Set Programs starting with the DATALOG™
syntax which is now standard for deductive databases and more restricted than

traditional logic programming; for a broader introduction and historical perspec-
tive, the reader may refer to the overview by [Marek & Truszczyriski, 1999 for a
through introduction and discussion. In the following, we will implicitly consider
the ground version of DATALOG™ programs. A rule p is defined as usual, and
can be seen as composed of a conclusion head(p), and a set of conditions body(p).
The latter can be divided into positive conditions pos(p) each one of the form A,
and negative conditions neg(p), each one of the form not A. In what follows, IT
will denote a generic logic program. For the sake of simplicity, we assume that
no two rules in I7 with the same conclusion have the bodies in subset relation.

The answer sets semantics for logic programs has been introduced by Gelfond
and Lifschitz, first as stable models semantics in [Gelfond & Lifschitz, 1988] and
later [Gelfond & Lifschitz, 1991] extended to handle explicit negation. Gelfond
and Lifschitz take logic programs as sets of inference rules (more precisely, default
inference rules). Alternatively, one can see a program as a set of constraints on
the solution of a problem, where each answer set represents a solution compatible
with the constraints expressed by the program. Consider for instance the simple
program {q < notp. p < not q.}: the first rule is read as “assuming that p is
false, we can conclude that ¢ is true.” This program has two answer sets. In the
first one, q is true while p is false; in the second one, p is true while ¢ is false.

A subset M of the Herbrand base By of a DATALOG™ program [is an
answer set of IT, if M coincides with the least model of the reduct IT* of IT with
respect to M. This reduct is obtained by deleting from IT all rules containing a
condition not a, for some a in M, and by deleting all negative conditions from
the other rules. Answer sets are minimal supported models, and form an anti-
chain. Whenever a program has no answer sets, we will say that the program is
inconsistent. Correspondingly, checking for consistency means checking for the
existence of answer sets. In this article, Answer Set computation is used for
model checking purposes, i.e., the construction of the answer set will correspond
to the attempt to prove that one possible lava path indeed can reach the point
of interest. Inconsistency of the program makes us conclude that the point of
interest is safe from lava flow. To the contrary, each answer set will contain
a description of the path the lava can follow to reach the point of interest.
Such description can be passed on to human experts that can validate it or
raise/decrease the estimate of its likelihood.

3 A model of the Eruption domain

In spite of the dangerousness of the volcanic region, there are numerous towns
and important economic activities located nearby and even along the flanks of
the volcano, so that a hazard map would be definitely needed. Nevertheless, the
only hazard map that have been realized so far for the Mount Etna goes back
to twenty years ago and is based on incomplete knowledge of past eruptions.
The concept of risk here concerns specifically the impact of eruptions on human
activities. For instance, the risk in a desert area in presence of a violent eruption is
null. However, risk evaluation directly depends on hazard. The hazard is intended

as the probability that an area has to be affected by a certain natural event (e.g.
lava flows or ash fall), regardless of the influence on human activities. Hence, in
the proximity of a crater the hazard is very high, while the risk is null, because
of the absence of human activities. Nevertheless, the hazard maps are crucial
tools for the risk evaluation in the case of natural disasters.

In the last years, Computer Science played a crucial role in monitoring, ana-
lyzing and diffusing data about volcanoes activities and it became essential for
building hazard maps. Nevertheless, a computer system is always based on math-
ematical or statistical models, and needs suitable collections of historic data to
be tested. Unfortunately, such data are not always available for volcanoes since
often a new lava emission covers the paths of the previous lava flows.

3.1 The Mount Etna Case

Mount Etna represents an important testing case, thanks to the large quantity
of data on historic eruptions, with reliable informations starting as far back
as 693 B.C.! Moreover, the continuous activity of this volcano is an important
requirement for the testing of the hazard models, and makes mount Etna a very
rare case in the world.

4 Models of volcanic activity in literature

Many approaches have been proposed for the assessment of the volcanic hazard.
The challenging model that we have chosen as basis for the experimentation has
been developed by [Felpeto et al., 2001] and applied so far only to the Lanzarote
volcano (Canary islands).

In [Felpeto et al., 2001], a maximum slope model is proposed for the simula-
tion of the lava flow. The rationale of that model is that the topography plays
the major role on determining the path that the lava flow will follow. We will
discuss this model in detail in the next section.

In [Felpeto et al., 2000] the authors identify the major hazard factors in
Tenerife (Canary islands) as the lava flow (related to the basalt-effusive erup-
tions) and the ash fall (due to the salic-explosive eruptions). To generate the
probability map corresponding to an effusive eruption, the authors simulate
the area covered by the lava flow with the maximum slope model proposed
in [Felpeto et al., 2001]. For the evaluation of the effect of a plinian eruption,
with the related fall out of ash, an advection-diffusion model has been applied
[Armienti et al., 1988]. The authors then use the informations provided by the
application of those models for building the so-called hazard zonation map.

4.1 Felpeto et al. Lava flow model

Since in the case of mount Etna the eruptions are basically of basaltic-effusive
type, we referred to the model in [Felpeto et al., 2001] for the simulation of the
lava flows. According to that model, hazard maps are built simulating the paths

of the lava flows, with an algorithm that assumes that the topography mainly
determines the path of the lava.

The data are represented as a DEM (Digital Elevation Model), in which the
only attribute of a cell is the altitude over the sea level. Then, given a lava
emission point (which belongs to one of the cell of the DEM), the algorithm
returns a possible path of the lava flow. The procedure is repeated and every
path is stored into a matrix, at the same resolution level of the DEM, in which
the value of each cell represents how many times it has been invaded by the lava.

Hence, the determination of the probability of each point being covered by
lava is obtained by computing several random paths by means of a Monte Carlo
algorithm as discussed below. Moreover, the algorithm considers two basic as-
sumptions:

— the paths cannot propagate upward, and
— the higher the slope, the higher the probability of the path passing there.

Let us consider a cell (say ¢ = 0) where the lava flow is located. The prob-
ability that the flow enters one of the eight surrounding cells (i = 1,2,...,8)
is:

AYY
= 8
Zj:l Ahj
where Ah; is the difference in height between the cell where the flow is and
each of the neighboring ones. In these differences a corrective factor is added
to the value of the starting cell. This corrective factor takes into account the

possibility of the lava flow of crossing small topographic barriers. Hence, Ah; is
evaluated as follows.

(1)

%

Ah; = ho + he — hi if (ho 4 he — h; > 0) (2)
Ah; =0 if (ho +he —h; <0)

Equations (1) and (2) ensure that the probability that the lava flow propa-
gates up-wards is null. The selection of the cell in which the flow will propagate is
obtained by a Monte Carlo algorithm. Hence, given a random number 0 <t <1
and the sums S; = Z;zl P;, i=1,...,8, the cell i will be covered by the lava
flow if:

S, 1 <t<S;, i=1,..8
So =0 (3)

The algorithm then terminates in the following three cases:

— the height of the cell covered by the lava is lower than the ones of the eight
surrounding cells

— a fixed number of cells covered by the lava flow (that is the maximum flow
length) is reached

— the cell covered by the lava is in the edge of the map.

5 The available data and the input format

Data pertaining Mount Etna have been acquired from different sources. For
what concerns the Digital Elevation Model, it is based on the topographic data
provided by a national volcanology research group (GNV-CNR). We used that
high resolution DEM to obtain the morphological constraint of the lava flow
simulation. In order to make data acceptable as input for the ASP program, we
extracted several portions of the DEM, which is represented in a matrix form,
and rewritten them as lists of points defined as follows:

pli,hy). i=1,...n (4)

where ¢ represents a number indicating the cell of the DEM, h; represents
the altitude of cell 7, and n is the total number of cells of the considered portion
of the DEM. In the experiments we considered 12 maps grouped in three types,
depending on the total number of included cells. That is we made maps with 16,
64 and 256 cells and we used four maps of each type.

6 The ASP implementation

Let us describe the ASP program which computes the lava paths. The program,
called Lava Motion, has been proposed in [Cattinelli, 2004] as a realistic bench-
mark for evaluating the performance of ASP solvers. At this point, however, we
will show only the code, and the timings, for Smodels [ASP solvers] which we
initially adopted for the development.

At each time T, the lava flows to a new point, according to the given flow
model. For the sake of simplicity, we have first implemented the simplest flow
model, which is sometimes called water behavior: among all reachable areas, lava
will flow toward the one with the steepest negative descent. The selection of which
point in the map will be reached next is operated by the steepest_descent
predicate, which constitutes the heart of Lava Motion program.

The ternary relation steepest_descent(From, To, T), with its obvious
meaning, is defined having the following computation steps in mind. First, se-
lect all areas that are adjacent to the From point. Then, discard from the set
those areas that are not reachable by the lava flow, because their average height
cannot be exceeded by the front. Among all reachable points, the one whose aver-
age height is the lowest is selected. Since aggregate predicates are not currently
supported by Smodels syntax, we had to introduce the no_steepest_descent
predicate to compute the minimum height.

Intuitively, no_steepest_descent (From, To, T) will be true if there are
other areas, reachable from From, which have a lower height than To. So, the
area(s) for which no_steepest_descent (From, To, T) is false will be the one(s)
for which steepest_descent (From, To, T) is true.

In order to avoid to compute paths containing cycles, we restricted lava
movement imposing that an area cannot be flooded at time T if it was previ-
ously flooded. Therefore, when selecting the steepest descent, previously-visited

areas are not taken into account. Lava will go on flowing until it reaches a local
minimum, where it stops.

% Lava Simulation v.10 of 12/4/03
A
% typical call: lparse mat_nxn startpoint.sm data.sm lava0.3.sm | smodels
%%% Problem data may be found in files ’mat_nxn’ %%%

% - size of the matrix e.g. const n=10.

% - number of start points e.g. const n_start_points=4.
% - front height e.g. const front height=5.

% - height values e.g. p(P, H) -> point P

% has average height H
%%h% In file "startpoint.sm" you can find

YA

% - start point e.g. const start_point=7.

h

%h% In file "data.sm" you can find

A

% - length of lava path e.g. const 1=10.

% - query e.g. :- not flooded(5, 1)

% (will the lava reach point 57)

%% end data %ht%

%h% domains %%k

point(l..n*n).

time(0..1).

% lava starts flowing at time O on point P.
flows(start_point, 0).

% WATER-LIKE MODEL: At time T, lava flows on point To if it was previously
% flowing on point From and the descent between the two points is the steepest.
flows(To, T) :- flows(From, T-1),

time(T),

adj (From, To),

steepest_descent (From, To, T),

not other_flows(To, T).

other_flows(P, T) :- flows(From, T-1),
adj(From, P),
adj(From, P1),
time(T),

P !=P1,
flows(P1, T).

% flooded(P, T) if P was already reached by the lava in time T1, previous to T.
flooded(P, T) :- point(P),

time(T),

time(T1),

flows(P, T1),

T1 < T.

% tha lava is running down the volcano
running(T) :- flows(P, T), point(P), time(T).

% the lava has stopped in point P
stops(P, T) :- point(P), time(T), flows(P, T-1), not running(T).
stops(P, T) :- point(P), time(T), stops(P, T-1).

% the descent between P and A is maximum for P if it is
% greater than the one between P and each adjacent Al.
steepest_descent (From, To, T) :- adj(From, To),

p(From, HF),

p(To, HT),

HT <= HF + front_height,

time(T),

not flooded(To, T),

not no_steepest_descent (From, To, T).

no_steepest_descent (From, To, T) :- adj(From, To),
adj(From, To_other),
p(To, HT),
p(To_other, HTO),
HTO < HT,
not flooded(To_other, T),
time(T).

% P is adjacent to P1 if it is immediately above, or below,
% or right, or left of P1, respectively.

adj(P, P1) :- point(P), point(P1), P1 = P - n.

adj(P, P1) :- point(P), point(P1), P1 = P + n.

adj(P, P1) :- not at_fringe_dx(P), point(P), point(P1), P1 =P 1.
adj(P, P1) :- not at_fringe_sx(P), point(P), point(P1), P1 =P 1.
adj(P, P1) :- not at_fringe_dx(P), point(P), point(P1), P1 =P - n + 1.
adj(P, P1) :- not at_fringe_sx(P), point(P), point(P1), P1 =P - n - 1.
adj(P, P1) :- not at_fringe_dx(P), point(P), point(P1), P1 =P + n + 1.
adj(P, P1) :- not at_fringe_sx(P), point(P), point(P1), P1 =P + n - 1.

at_fringe_dx(P) :- P mod n == 0, point(P).
at_fringe_sx(P) :- P mod n == 1, point(P).
% end of program

Let’s focus on the other_flows predicate. In an earlier version, it was defined
as:

other_flows(P, T) :- time(T),
point (P),
point(P1),
P !=P1,
flows(P1, T).

So, other_flows was instantiated on all points P of the input matrix, thus pro-
ducing a huge number of ground rules. It is easy to observe, however, that lava,
starting from point P, can only flow to one of the eight zones that are adjacent to
P, and not to every point. Therefore, the size of the instantiation (and thus the
problem’s complexity) can be relevantly reduced by restricting the instantiation
of other_flows only to the eight points that can actually be reached at that
time. This restrinction proved to be efficient, reducing computation times up to
60%.

6.1 A variant: variable front height

Besides the above ASP implementation, we developed another ASP program,
let’s call it Lava Motion Linear Front — LF, that differs from the previous one
only in the definition of the front height. While in fact the original version of
Lava Motion considers the front height as a constant, in Lava Motion LF the
front increases linearly with the length of the lava path. More precisely, given a
maximum value the front height can take (be it maz_front), at time T the height
is maz_front x T'/maz_path_length.

The new program has the same structure as the one above, except for the
following parts:

% front height range. max_front is a constant defined in file ’mat_nxn’

front_r(0..max_front) .

% The front height at time O is O.

front_h(0, 0).

% at time T, the front height is = max_front * T / max_step.
front_h(N, T) :- time(T), T > O,
V = max_front * T,

N=V/1,
front_r(N).

% the new steepest_descent predicate differs from the original
% one only when obtaining the present front height

steepest_descent (From, To, T)

7 Benchmarking

:- adj(From, To),

p(From, HF),

p(To, HT),

front_h(N, T),

front_r(N),

HT <= HF + N,

time(T),

not flooded(To, T),

not no_steepest_descent (From, To, T).

Table 1 shows execution times for solver Smodels when invoked on Lava Motion
LF. CPU times are reported in seconds as the sum of user and system time using
time UNIX command. The values recorded in the table include time required by
the grounder, LPARSE. The tests were run on a Pentium IV, 512 MB of RAM,
with Red Hat Linux 9.0 operating system.

We considered four 4 x4 matrices, four 8 x8 matrices and four 16x 16 matrices:
in table 1 we record the average time values for each matrix type. We fixed the
length of lava path to realistic values according to the dimension of the matrix.

Instance Solver
Matrix|Path Length||Smodels
4x4 4 0.30
4x4 8 0.59
8x8 4 1.88
8x8 8 3.44
8x8 16 7.02
16x16 4 10.42
16x16 16 36.64

Table 1. Lava Motion LF Results

The complexity key parameters are the matrix dimension and the length of
the lava path. In particular, performances dramatically get worse while passing
from a small to a bigger matrix. For a 4x4 matrix, in fact, Smodels requires less

than one second to find a model, while on a 16x16 map the time spent by the
solver is more than 30 times greater. The path length is relevant, too: doubling
this parameter causes the increase in the required time by a factor of about 1.8
to 2.

Times recorded for the base version, Lava Motion, are pretty close to the ones
collected in Table 1: passing from a constant front height to a linear growing one,
even though this means adding new predicates for computing the height of the
lava front to the program, does not seem to affect Smodels performances.

The comparison between times shown in Table 1 and execution times for
the older version of Lava Motion points out that, even thought for small input
matrices time saving is minimal, the optimization introduced in the final program
causes, on bigger instances, a reduction of computation times of about 60%.

8 Conclusions

The ASP program presented above and the results shown in Table 1 are perhaps
too preliminary to conclude that ASP can successfully address lava motion prob-
lems. However, we would like to stress that both the lava motion model and the
geographical data are comparable with those used in the current GIS literature,
so the present times are relevant. Moreover, we are only at the beginning of the
process that will lead us to simplify and optimize our ASP program. If opti-
mization leads us to execution in reasonable times even for large maps, we will
develop the evacuation planner and use our program for verifying the computed
plans, or even existing ones already available from monitoring and emergency
organizations.

References

[Alferes & Pereira, 2002] J. J. Alferes and L. M. Pereira, 2002. Logic Programming
Updating - A Guided Approach, Computational Logic: Logic
Programming and Beyond, Essays in Honor of Robert A.
Kowalski, Part II, LNAT 2408, Springer-Verlag, Berlin, pp.
382-412.

[Armienti et al., 1988] P. Armienti, G. Macedonio, and M.T. Pareschi, 1988. A nu-
merical model for simulation of Tephra transport and depo-
sition: applications to May 18 Mount St. Helen Eruption. J.
Geophys. Res. Vol. 93, pp. 6463-6376.

[Baral, 2003] C. Baral, 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge Press.
[Cattinelli, 2004] I. Cattinelli, 2004. Nuovi benchmark per la valutazione

di risolutori per l’Answer Set Programming. Graduation
Project in Informatics (in Italian), University of Milan. Ta-
bles and interpretation of the results are available from
http://mag.usr.dsi.unimi.it/

[Costantini et al., 2003] S. Costantini, B. Intrigila and A. Provetti, 2003. Coherence of
Updates in Answer Set Programming. In Brewka and Peppas
(eds.) Proc. of NRAC03 Workshop.

10

[Felpeto et al., 2000]

[Felpeto et al., 2001]

V. Arania, A. Felpeto, M. Astiz, A. Garcia, R. Ortiz and
R. Abella, 2000. Zonation of the main volcanic hazards (lava
flows and ash fall) in Tenerife, Canary Islands. A proposal for
a surveillance network. Journal of Volcanology and Geother-
mal Research, Vol. 103, pp. 377-391.

A. Felpeto, V. Arana, R. Ortiz, M. Astiz and A. Garcia, 2001.
Assessment and Modeling of Lava Flow Hazard on Lanzarote
(Canary Islands). Natural Hazards, 23, pp. 247-257.

[Gelfond & Lifschitz, 1988] M. Gelfond, and V. Lifschitz, 1988 The stable model se-

mantics for logic programming. Proc. of 5th ILPS conference,
pp. 1070-1080.

[Gelfond & Lifschitz, 1991] M. Gelfond, and V. Lifschitz. Classical negation in logic

programs and disjunctive databases. New Generation Com-
puting, pp. 365-387.

[Marek & Truszczyniski, 1999] W. Marek, and M. Truszczyniski. Stable models and an

[Niemel4 et al., 2000]

[Osorio & Zepeda, 2004]

[ASP solvers|

alternative logic programming paradigm, The Logic Program-
ming Paradigm: a 25-Year Perspective, Springer-Verlag, pp.
375-398.

I. Niemela, P. Simons, and T. Syrjanen, 2000. Smodels: a
system for answer set programming. Proc. of the 8th Interna-
tional Workshop on Non-Monotonic Reasoning.

M. Osorio and C. Zepeda, 2004. Towards the use of Semantic
Contents in ASP for planning and Diagnostic in GIS. Proc.
of MICAIO4 Conference, Springer LNAI

Web location of the most known ASP solvers:

CCALC: http://www.cs.utezas. edu/users/mcain/cc
Cmodels: http://www.cs.utexas.edu/users/tag/cmodels.html
DeReS: http://www.cs.engr.uky.edu/~lpnmr/DeReS.html
DLV: hitp://www.dbai.tuwien.ac.at/proj/dlv/

NoMoRe: http://www.cs.uni-potsdam.de/~linke/nomore/
SMODELS: http://www.tcs.hut.fi/Software/smodels/

11

