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ABSTRACT

The problem of discovering of frequent market baskets and
association rules has been considered widely in literatures
of data mining. In this study, by using the algebraic repre-
sentation of market basket model, we propose a concept of
logical constraints of items in an effort to detect the logical
relationships hidden among them. Via the relationships of
the propositional logics and logical constraints of items we
propose also the concept of the complexity of customers. As
a result we show that every set of customers can be charac-
terized by a logical constraint and can be divided into dif-
ferent blocks that are characterized by quite simple logical
constraints. In the natural way the complexity of a customer
set is defined as the number of the blocks it contains.

Keywords

Market basket model, frequent product, propositional logics,
lattice

1. INTRODUCTION
Great efforts have been made to discover the information

hidden in the sets of market baskets and in the sets of cus-
tomer transactions. The studies of customer market bas-
kets (MB) and mining the association rules are important
in various applications, for example, in decision making and
strategy determination of retail economy ([1]). Therefore
discovering of large itemsets and association rules attracts
the interest of researchers (see [8,10]). One can notice that
in their studies the researchers deal with the set of items
(e.g. bread, milk,....) purchased by customers, but did not
consider the quantity of each item. It would be interesting
also if we know that 70% of customers buy bread and milk,
but only 50% of customers buy 1 kg bread and 2 litter milk,
while 1% of customers buy 10 kg bread and 1 litter milk.
Similar example can be found for association rules. The
reasons for quantitative analysis of transactions are evident.

In the previous studies (see [5, 6]) we have introduced a
quantitative analysis of transactions. We are interested not
only in the statement ”90% of customers who buy bread and
milk also buy butter”, but in the fact ”90% of customers who
buy 1 kg bread and 2 litter milk also buy 0,5 kg butter”. By
dealing with the quantity of items our approach is somehow
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different of those in other studies (see [1]) and is suitable for
a quantitative analysis of transactions.

Similarly to [5, 6], instead of itemsets we use market bas-

kets or transactions. In the following we establish the rela-
tionships between the structure of the set of market baskets
and propositional logics. In Section 2 we recall the algebraic
approach in analysing the structure of the set of market bas-
kets which was defined in [6]. In Section 3 the concept of the
constraints of market baskets is defined and we show that
every set of market baskets can be characterized by some
logical constraint. In Section 4 we introduce the concept of
complexity of the sets of market baskets, which we call by
the complexity of the customer sets. All these are done via
the relationship between the structure of the set of market
baskets and propositional logics which are defined in this
section.

2. A GENERALIZATION OF THE MARKET

BASKET MODEL
In this section we recall the concepts and results that

are established in [5, 6]. For a finite set of items P =
{p1, p2, ..., pn} we consider a market basket (MB) as a tube
α = (α[1], α[2], ..., α[n]), where α[i] ∈ N is the quantity of pi
in the basket α. The set of all MBs is denoted by Ω. For
α, β ∈ Ω where α = (α[1], α[2], ..., α[n]), β = (β[1], β[2], ...,
β[n]) we write α ≤ β if for all i = 1, 2, ..., n we have α[i] ≤
β[i]. 〈Ω,≤〉 is a lattice with the natural partial order ≤
(see [4]). For a set A ⊆ Ω we denote

U(A) = {α ∈ Ω|∀β ∈ A : β ≤ α} and

L(A) = {α ∈ Ω|∀β ∈ A : α ≤ β}.

We denote also by sup(A) and inf(A) the smallest, and the
biggest MB in U(A) and L(A), respectively.

For a set A ⊆ Ω and α ∈ Ω we denote by

suppA(α) =
|{β ∈ A|α ≤ β}|

|A|

the support of α in A. In word, suppA(α) denotes the rate
of all market baskets that exceeds the given threshold (in
the form of a sample market basket) α to A. The support
of an market basket is a statistical index by which one can
estimate the ”vogue” of α in the given group of customers A.
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Naturally, the market baskets of more support attract better
the attention of the shop managers. Some semantic interpre-
tations are needed to avoid the possible misunderstandings:
If pi (the name of i-th item) is, for example, bread, then αi

is the quantity of bread in the basket (of the customer) α.
For α, β ∈ Ω where α = (α[1], α[2], ..., α[n]) and β = (β[1],
β[2], ..., β[n]) we write γ = α∪β if γ[i] = max{α[i], β[i]} for
all i = 1, 2, ..., n. We call α −→ β an association rule of β
to α. By the confidence of α −→ β in a set of MBs A we
mean the rate

confA(α −→ β) =
suppA(α ∪ β)

suppA(α)

For a set A ⊆ Ω, α ∈ Ω and 0 ≤ ε ≤ 1, α is ε-frequent MB,
if suppA(α) ≥ ε. The set of all ε-frequent MBs is denoted by
Φε

A. In our setting the Apriori Principle is stated as follows:

Apriori Principle: For a set A ⊆ Ω, α, β ∈ Ω and 0 ≤ ε ≤
1, if α ≤ β and β is ε-frequent then α is ε-frequent.
The following example was considered in [5]:

Example 1: Consider a set of items P = {a, b, c} and a
set of transactions A = {α, β, γ, δ}, where α = (2, 1, 0),
β = (1, 1, 1), γ = (1, 0, 1), δ = (2, 2, 0). One can see that

for σ = (1, 1, 0), η = (1, 2, 0) we have suppA(σ) =
3

4
and

suppA(η) =
1

4
. For the threshold ε =

1

2
the ε-frequent MBs

of A are:

Φ
1

2

A = {(2, 1, 0), (1, 0, 1), (1, 1, 0), (2, 0, 0),
(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 0)}.

Let us denote
ΦA,k = {α ∈ Ω|∃α1, α2, ..., αk ∈ A : α ≤ {α1, α2, ..., αk}}

One can remark that if k ≤ l then ΦA,k ⊇ ΦA,l and Φε
A =

ΦA,k where k = ⌈ε|A|⌉ denotes the smallest integer that is
greater or equal to ε|A|. We have Theorem 1 and Theorem
2 (see [5, 6] for the proof):

Theorem 1: For a set of items P = {p1, p2, ..., pn}, a set
of MBs A ⊆ Ω and a threshold 0 ≤ ε ≤ 1 an MB α ∈ Ω
is ε-frequent iff there exist α1, α2, ..., αk ∈ A such that α ∈
L({α1, α2, ..., αk}) where k = ⌈ε|A|⌉.

By Theorem 1 in [5] we have proposed an algorithm that
creates all ε-frequent MBs of a given set of transactions A

in O
((

|A|
k

)

. (m+ 1)n
)

running time.

Algorithm 1: (Creating all ε-frequent MBs of a given set
of transactions A)

Input: Set of items P , Set of MBs A ⊆ Ω and a threshold
0 ≤ ε ≤ 1.
Output: Φε

A.

Theorem 2: (Explicit representation of large MBs) For a
set of items P = {p1, p2, ..., pn}, a set of MBs A ⊆ Ω and

a threshold 0 ≤ ε ≤ 1 there exist α1, α2, ..., αs ∈ Ω where

s =
(

|A|
⌈ε|A|⌉

)

such that

Φε
A =

s
⋃

i=1

L(αi).

We should remark that αi ≤ αj iff L(αi) ⊆ L(αj). For a set
of MBs A and a given threshold ε the basic ε- frequent set

of MBs of A is the set of MBs α1, α2, ..., αs for which

i. Φε
A =

⋃s

i=1
L(αi).

ii. ∀i, j : 0 ≤ i, j ≤ s we have αi � αj and αj � αi

For a given A, ε the basic ε- frequent set of MBs of A is
unique, which we denote by Sε

A. We have:

Theorem 3: For a set of items P , a threshold 0 ≤ ε ≤ 1
every set of MBs A ⊆ Ω has an unique basic ε- frequent set
of MBs Sε

A.

An algorithm that creates the basic ε- frequent set of MBs

O
((

|A|
k

)

.m.n
)

in running time for a given set of MBs A ⊆ Ω

and a given threshold ε is proposed in [5]:

Algorithm 2: (Creating the basic ε- frequent set of MBs
Sε
A)

Input: Set of items P , Set of MBs A ⊆ Ω and a threshold
0 ≤ ε ≤ 1.
Output:Sε

A

One can remark that in the case of large amount of transac-
tions A the basic ε - frequent set of MBs Sε

A can be generated
much more quickly than the set of all ε-frequent set of MBs
Φε

A.

Example 2: We continue the Example 1. For the set of
transactions A Algorithm 2 generates the basic 1

2
- frequent

set of MBs S
1

2

A = {ρ, θ} where ρ = (2, 1, 0), θ = (1, 0, 1).
It means that the family of 1

2
- frequent set of MBs of A is

Φ
1

2

A = L(ρ) ∪ L(θ).

As shown in [5, 6] we can find all associations with given
confidence. For a set of items P , a set of MBs A ⊆ Ω and a
threshold 0 ≤ ε ≤ 1 an association α −→ β is ε-confident if
confA(α −→ β) ≥ ε. The set of all ε-confident associations
of A is denoted by Cε

A. We have:

Theorem 4: For a set of products P , a set of MBs A ⊆ Ω
and 0 ≤ ε ≤ 1 an association α −→ β is ε-confident iff
|U(α ∪ β) ∩ A|

|U(α) ∩A|
≥ ε.

A natural question for cross marketing, store layout, ...(see,
for example, [1]) is to find all association rules with a given
confidence. In our generalized model the following theorem
shows in a sense an explicit representation of all association
rules. More exactly, we show for a given MB α which set
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of MBs β may be associated to α with a given threshold of
confidence.

For MBs ρ, σ where ρ ≤ σ, let us denote

M(ρ, σ) = {η ∈ Ω|ρ ∪ η ≤ σ}

It should be remarked that M(ρ, σ) can be represented ex-
plicitly. If ρ = (ρ1, ρ2, ..., ρs), σ = (σ1, σ2, ..., σs) then η =
(η1, η2, ..., ηs) ∈ M(ρ, σ) if and only if max (ρi, ηi) = σi for
all i = 1, 2, ..., s, i.e. ηi = σi in the case ρi � σi and ηi ≤ σi

in the case ρi = σi.

Theorem 5: (Explicit representation of association rules)
For a set of items P = {p1, p2, ..., pn}, a set of MBs A ⊆
Ω, an MB α ∈ Ω and a threshold 0 ≤ ε ≤ 1 there exist
α1, α2, ..., αk ∈ Ω such that ∀β ∈ Ω : α −→ β is ε-confident
association rule if and only if β ∈

⋃k

i=1
M(α, αi).

It was showed in [5] that Theorem 5 in a sense gives an ex-
plicit presentation for association rules and by the following
algorithm one can find all ε-confident association rules for
given left side.

Algorithm 3: (Creating all ε- confident association rules
α −→ β for given α)

Input: A set of items P , a set of MBs A ⊆ Ω, a threshold
0 ≤ ε ≤ 1 and an MB α.
Output:

⋃k

i=1
M(α, αi).

Example 3: We continue the Example 1. For the set of
MBs A (see Example 1), the MB σ = (1, 1, 0) and thresh-
old ε = 1

2
we should find all MB η such that σ −→ η

is ε- confident association rule. We can see U(σ) ∩ A =
{(2, 1, 0), (1, 1, 1), (2, 2, 0)} and s := ⌈ε|U(α) ∩ A|⌉ = 2. By
step 2 in Algorithm 3 we have k = 4 and α1 = (1, 1, 0),
α2 = (2, 1, 0). The set of all MBs η such that σ −→ η is 1

2
-

confident association rule is

M(σ, α1) ∪M(σ, α2) = {(1, 1, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 0), (2, 1, 0), (2, 0, 0)}

As a result we can see that besides the trivial association
rules of the form σ −→ σ

′

, where σ
′

≤ σ we got non-trivial
association rules σ −→ (2, 1, 0) and σ −→ (2, 0, 0). In words,
in the set of customers A more than 50% of customers that
buy a and b also buy 2 a and 1 b items, as well more than
50% of customers who buy a and b also buy 2 a items.

3. LOGICAL CONSTRAINTS OF MARKET

BASKETS
In this section we propose a concept of constraints of MBs

which we call the logical constraints of MBs. The reason for
our attempt is clear: The constraint (¬α) where α means
the meat certainly holds with high support for the vegetarian
customer groups, while the constraint (α ∧ β) −→ γ seem-
ingly gains high support from the householder customers, if
α, β and γ means milk, egg and flour respectively. In the
same way one can easily see that γ −→ α∨β holds commonly
for any customer groups.
Let us construct the logical constraints of MBs. For a set
of items P = {p1, p2, ..., pn} let Ω be the set of all MBs

over P . We define the logical constraints of MBs (for short,
constraint) as follows:

1. All α ∈ Ω are constraints. In this case π(α) = U(α) =
{β ∈ Ω|α ≤ β} ⊆ Ω.

2. If α is a constraint then (¬α) is a constraint and π(¬α) =
(π(α))c where by Ac we denote Ω \ A for A ⊆ Ω

3. If α, β are constraints then

(α ∨ β) is a constraint and π(α ∨ β) = π(α) ∪ π(β).

(α ∧ β) is a constraint and π(α ∧ β) = π(α) ∩ π(β).

4. All constraints are constructed as in 1., 2. and 3.

As usual, the parentheses are omitted where it causes no
confusion. We call π(α) the set of supporting market baskets

of α. Two constraints α, β are equivalent, noted by α ≡ β,
if π(α) = π(β). A constraint is tautology if π(α) = Ω. The
set of all constraints is denoted by C(Ω).
The following properties of propositions in propositional cal-
culus hold also for the constraints:

1. If α, β, γ ∈ GI(Ω) are constraints then

α ∨ β ≡ β ∨ α,
α ∧ β ≡ β ∧ α
α ∨ (β ∨ γ) ≡ (α ∨ β) ∨ γ,
α ∧ (β ∧ γ) ≡ (α ∧ β) ∧ γ

2. If α ∈ GI(Ω) is a constraint then ¬(¬α) ≡ α.

3. If α, β are constraints then

¬(α ∧ β) ≡ ¬α ∨ ¬β and

¬(α ∨ β) ≡ ¬α ∧ ¬β

4. For α, β ∈ GI(Ω) the notation α → β is used also for
¬α ∨ β.

The above identities are always true. We call these identities
the logical identities. It is easy to see that for a given A in
the same way we can define πA(α) = π(α) ∩ A, which we
call the relative set of supporting MBs of α. Similarly we say
that two constraints α, β are relatively equivalent (in A),
noted by α ≡A β, if πA(α) = πA(β). It is easy to verify the
following theorem:

Theorem 6:

1. For any finite set of MBs A ⊆ Ω there is a constraint
α∗
A ∈ GI(Ω) such that π(α∗

A) = A.

2. For all β, γ ∈ GI(Ω), β ≡A γ if and only if β ∧ α∗
A ≡

γ ∧ α∗
A.

Proof:

1) For any finite set of MBs A ⊆ Ω we find the constraint
α∗
A ∈ GI(Ω) such that π(α∗

A) = A. If P = {p1, p2, ..., pn},
ρ = (ρ[1], ρ[2], ..., ρ[n]) ∈ Ω then let

ρ
+

i = (ρ[1], ρ[2], ..., ρ[i] + 1, ..., ρ[n]).

One can see that

{ρ} = π(ρ) \
n
⋃

i=1

π(ρ+i ) = π(ρ ∧
n
∧

i=1

¬(ρ+i )).
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Let

α
∗
A =

∨

ρ∈A

[ρ ∧

n
∧

i=1

¬(ρ+i )]

We have A = π(α∗
A).

2) The assertion is proved easily by using the definitions. We
have β ≡A γ ⇐⇒ πA(β) = πA(γ) ⇐⇒ π(β)∩A = π(γ)∩A

⇐⇒ β ∧ α∗
A ≡ γ ∧ α∗

A.
The proof is completed.

One can remark that there are two trivial cases: The first
is the case, when α∗

A is tautology. In this case ≡A coincides
with ≡. This coincidence does not hold in general. We call
a set of customers (transactions) complete if αA is tautology.
The second one is the case when α∗

A is tautologically false.
For β ∈ GI(Ω) we denote βA = β ∧ α∗

A.

Example 4: We continue the Example 1. Let P = {a, b, c}
and a set of transactions A = {α, β, γ, δ}, where α = (2, 1, 0),
β = (1, 1, 1), γ = (1, 0, 1), δ = (2, 2, 0). If a = ”Flour”, b =
”Egg”, c = ”Milk”, which can be identified by a = (1, 0, 0),
b = (0, 1, 0), and c = (0, 0, 1), respectively, then

π(a) = U((1, 0, 0)) = {(x, y, z)|x ≥ 1},
πA(a) = {α, β, γ, δ}
π(b) = U((0, 1, 0)) = {(x, y, z)|y ≥ 1},
πA(b) = {α, β, δ}
π(c) = U((0, 0, 1)) = {(x, y, z)|z ≥ 1}
πA(c) = {β, γ}

In this case the constraint a∧b → c that may be interpreted
as F lour∧Egg → Milk, characterises those customers, who
if buy Flour and Egg then must buy Milk. It is easy to see
that the set of supporting MBs of this constraint is π(a∧b →
c) = {(x, y, z)|x = 0 or y = 0 or z ≥ 1}. One also can see
that in this case πA(a∧ b → c) = π(a∧ b → c)∩A = {β, γ},
i.e. (a ∧ b → c) ≡A c.

It is easily to see that the properties of propositions in
propositional calculus (see [9]) hold also for the constraints
in the given set of customers, but the converse is not always
true. Although one can verify the following for α, β ∈ GI(Ω)
and an arbitrary set of customers A:

1. (α ∨ β)A ≡A βA ∨ αA.

2. (α ∧ β)A ≡A βA ∧ αA.

3. (¬α)A ≡A ¬(αA).

One should distinguish ≡A and ≡.

4. THE COMPLEXITY OF THE CUSTOMER

SETS
In this section we propose a criteria for the complexity of the
customer sets. The practical aspect of this attempt is clear:
every shop manager want have the answer to the question
how complex is their customer set. One can remark that the
set of customers that contains only one customer is simple.
An other simple customer set is the case when the transac-
tions of the customer in the set (that may be a large mass)
are ”similar” in some way. In our version the concept of
complexity may be understood as following.

Let P = {p1, p2, ..., pn} be a a finite set of items and Ω be the
set of MBs over P . We recall that U(α) = {β ∈ Ω|α ≤ β}
for α ∈ Ω. We call a set B ⊆ Ω a block of customers if there
are α1, α2, . . . , αm ∈ Ω, β1, β2, . . . , βn ∈ Ω such that

B =
m
⋂

k=1

U(αk) \
n
⋃

k=1

U(βk)

The block is denoted by [α1, α2, . . . , αm|β1, β2, . . . , βn]. We
have the following simple theorem:

Theorem 7: Let P = {p1, p2, ..., pn} be a a finite set of
items and Ω be the set of all MBs over P .

1. Every γ ∈ Ω is a block, i.e. there are α1, α2, . . . , αm ∈
Ω, β1, β2, . . . , βn ∈ Ω such that {γ} = [α1, α2, . . . , αm|
β1, β2, . . . , βn].

2. Every A ⊆ Ω is union of some blocks, i.e. there are
0 ≤ k, αk

1 , α
k
2 , . . . , α

k
mk

∈ Ω, βk
1 , β

k
2 , . . . , β

k
nk

∈ Ω such
that

A =

k
⋃

i=1

[αi
1, α

i
2, . . . , α

i
mi

|βi
1, β

i
2, . . . , β

i
ni
]

We denote

c(A) = min{k|∃Bi blocks, i = 1, . . . , k : A =
k
⋃

i=1

Bi}

We call c(A) the complexity of A. If A =
⋃k

i=1
Bi where

k = c(A) then we say that A =
⋃k

i=1
Bi is a minimal repre-

sentation of A by blocks. We should notice that a set A ⊆ Ω
may have different minimal representations, even if we does
not take in account of the permutation of blocks. Let us
consider an example:

Example 5: (Following the Example 4) As considered in
Example 4 let α = (2, 1, 0), β = (1, 1, 1), γ = (1, 0, 1) and
let θ = (1, 1, 2), λ = (1, 0, 2). One can verify

{γ} = U(γ) \ {U((2, 0, 1)) ∪ U(β) ∪ U(λ)}

and

{β, γ} = U(γ) \ {U((2, 0, 1)) ∪ U((2, 1, 1)) ∪ U(θ) ∪ U(λ)}

Thus we have c({β, γ}) = c({γ}) = 1. One can verify also
that c({α, γ}) = 2.
We have also c({γ, θ, λ}) = 2 and one can verify that:

{γ, θ, λ} = [γ|β, λ] ∪ [λ|(1, 2, 2), (1, 0, 3)]
= [γ|β, (1, 0, 3)] ∪ [θ|(1, 2, 2), (1, 1, 3)]

We use propositional logics in finding the blocks of a given
set of MBs. In propositional logics a full conjunctive clause

is an expression of the form
∧n

k=1
xk in which xk are all vari-

ables in either positive or negative form. A full disjunctive

normal form (full DNF) is a disjunction of full conjunctive
clauses. It is well known in propositional logics that all
logical formulas can be transformed into full DNF(see, for
example, [9]). More exactly, if α is a constraint of items
(which is namely a logical formula) then by using simple
transformations we can find the full DNF of α:

α =
n
∨

i=1

[

mi
∧

k=1

β
i
k ∧

ni
∧

k=1

(¬γi
k)]
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where for all β ∈ Ω, β appear in every clause of α in either
positive or negative form. One can verify that

U([

mi
∧

k=1

β
i
k ∧

ni
∧

k=1

(¬γi
k)]) = [βi

1, . . . , β
i
mi

|γi
1, . . . , γ

i
ni
]

is a block. By this in fact we have proved the following
theorem.

Theorem 8:

1. There is an algorithm by that for any constraint of
MBs α we can find the system of full customer blocks
of U(α), i.e. we can find

{[αi
1, α

i
2, . . . , α

i
mi

|βi
1, β

i
2, . . . , β

i
ni
]|i = 1, 2, . . . , n}

where αi
1, α

i
2, . . . , α

i
mi

, βi
1, β

i
2, . . . , β

i
ni

are all MBs that
appear in α, such that

U(α) =

k
⋃

i=1

[αi
1, α

i
2, . . . , α

i
mi

|βi
1, β

i
2, . . . , β

i
ni
]

2. The decomposition of U(α) into full customer blocks
is unique.

3. The minimal representations of U(α) can be obtained
by decomposition of U(α) into full customer blocks
and by combining some full customer blocks into one
to reduce the number of blocks.

4. The complexity of U(α) does not exceed the number
of full clauses in the full DNF of α.

Proof:

1. The algorithm that is well known in propositional logics
(see [9]) converts a constraint of MBs α into full DNF. By
this algorithm we can find the system of full customer blocks
of U(α).
2. This is a result in propositional logics (see [9]).
3. If

U(α) =
k
⋃

i=1

[αi
1, α

i
2, . . . , α

i
mi

|βi
1, β

i
2, . . . , β

i
ni
]

is a minimal representations of U(α) where, for example,
some block [αi

1, α
i
2, . . . , α

i
mi

|βi
1, β

i
2, . . . , β

i
ni
] is not full. Then

using the equivalence X ≡ (X ∧ a) ∨ (X ∧ ¬a) we can in-
sert into the block the missing item a. In result we have
the decomposition of U(α) into full customer blocks, which,
accordingly to 2., is unique. The reverse transformation con-
verts the full DNF of α into the given minimal representation
of U(α).
4. The proof is evident by definition of the complexity. The
complexity of U(α) is the number of clauses in the minimal
representation of α that does not exceed the number of full
clauses in the full DNF of α.

Let us consider an example:

Example 6: (Following the Example 4) Let a = ”Flour”, b
= ”Egg”, c = ”Milk”, which can be identified by a = (1, 0, 0),
b = (0, 1, 0) and c = (0, 0, 1), respectively. The constraint
α = (a ∧ b → c)(¬b → (a ∨ c)) characterises the set of all
those customers, who if buy flour and egg then buy also

milk, and if do not buy egg, then would buy flour or milk.
Let us denote this set of customers by A, i.e. A = U(α). By
using simple transformations we have the full DNF of α:
α = (a∧ b ∧ c) ∨ (¬a ∧ b ∧ c) ∨ (¬a ∧ b ∧ ¬c) ∨ (¬a ∧ ¬b ∧ c)
∨(a ∧ ¬b ∧ c) ∨ (a ∧ ¬b ∧ ¬c)

The full customer blocks of A = U(α) is

A = U(α) = [a, b, c] ∪ [b, c|a] ∪
[a, b|c] ∪ [c|a, b] ∪ [a, c|b] ∪ [a|b, c]

One can remark that:

α = c ∨ (¬a ∧ b) ∨ (a ∧ ¬b)

Thus one of the minimal representations of A = U(α) is

A = U(α) = [c|] ∪ [a|b] ∪ [b|a]

This means that A can be characterized as the union of three
blocks of customers: the first block contains those customers
who buy milk, the second block contains all customers who
buy flour but do not buy eggs, and the third one is the block
of all customers who buy eggs but do not buy flour. One
can see that the complexity of A is 3 and the structure of A
is clear.

5. CONCLUSION
In this short paper by using the logical structure of the

market baskets we have introduced the concept of constraints
of market baskets. We showed that every set of market bas-
kets can be characterized by some constraints. The rela-
tionships between the structure of the set of market baskets
and propositional logics are discovered. Similarly to the well
known methods and results in propositional logics we showed
that every set of customers can be represented, in different
ways, as union of some blocks, and the number of these
blocks can be considered as a complexity of the given set of
customers.

In fact, the shop managers have to deal with large amounts
of itemsets, as well as with the large amounts of market bas-
kets. Finding the efficient algorithms to discover the logical
constraints of market baskets is always the problem of prac-
tical value.

One should remark that in the last part of this paper we
define the complexity for really the set of market baskets,
not for the set of customers, although we call it by the com-

plexity of the customer sets. The difference is evident: some
customers may buy the same market basket. In this sense
the analysis of the customer sets requires more research.
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