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Abstract. The optimization is essential for any high-performance querying system. 
Several optimization techniques were developed and successfully implemented for 
relational databases. However, these techniques should be re-examined and revised 
for distributed heterogeneous systems of information resources supporting diverse 
querying paradigms. We introduce cost models for approximate query evaluation 
in the context of generalized algebraic operations supporting both exact and 
similarity queries. The proposed cost models are suitable for approximate 
evaluation and trade-off between computational performance and the quality of 
results. We present a rationale for our approach and elaborate our cost model for 
key operations and algorithms. 
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Introduction 

The presence of high-level declarative query languages was considered as one of major 
strengths of database management systems since early 70-ies and became an inherent 
feature of the relational database model and its variations are implemented in the 
industrial SQL-based systems.  

Providing highly expressive declarative means for query specification, these 
languages both require and enable sophisticated optimization. In contrast with low-
level imperative object-oriented programming languages, which allow only moderate 
code improvements with local optimization, declarative languages depend dramatically 
on the quality of the optimizer. 

Formally, the task of a query optimizer is to choose an algebraic expression of 
minimal execution cost among several equivalent expressions. In other words, any 
high-quality optimizer is inevitably a cost-based one and, hence, the cost model is one 
of the critical core components of the optimizer. 

The abstract concept of cost may include several different measures of query 
execution performance. Usually the most important is execution time (either CPU or 
elapsed), amount of I/O, or, in a distributed mobile environment, the battery energy. 
However, the actual interpretation of cost is not essential for the optimization process.  

There are many optimization techniques based on cost models, but in general 
almost all cost models were prepared for exact query evaluation algorithms. 
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In broad modern contexts, such as distributed heterogeneous systems, real-time 
business analytics and distributed mobile environments an approximate query 
evaluation becomes a must. Indeed, it does not make any sense to use exact query 
evaluation in uncertain context or for similarity-based queries, where “top k” approach 
is the best. Approximate query evaluation is ultimately needed to provide timeliness for 
business analytics or save energy in a mobile device. 

As the query evaluation is approximate, the quality of the output may decrease. 
Our main objective is to provide a cost model capable to support trade-off between the 
cost of evaluation and the quality of results. Based on our cost model, the query 
optimizer can either provide best possible quality for a given cost, or minimize the cost 
providing at least required quality of the query output. 

We start from naïve exact cost models and proceed with detailed analysis of 
approximate operations. We define models for a number of operations including “top k” 
operations for single and multiple arguments. 

In this research we consider query processing in a heterogeneous environment of 
autonomous information resources. In this type of environments data statistics might be 
unavailable, hence simple cost models are needed for both of exact and approximate 
querying. 

1. Cost Model Specification 

In this paper we discuss query processing in a heterogeneous environment of 
autonomous information resources where all objects have scores which represent their 
relevance, similarity, quality and so on. Each operation takes as an input a stream of 
objects with scores and pushes into the output another stream of objects with their 
scores. 

Further the specification of the cost model that supports the concept of operation 
result quality is presented and is followed by brief discussion of main operations and 
corresponding algorithms which are analyzed in this paper. 

Operation cost model depends on 4 basic parameters: data size; data quality; data 
order; and the amount of resources needed for operation execution (operation cost).  

On the one hand in traditional cost models the operation cost (amount of resources 
for its evaluation) can be estimated based on the size of arguments, order of objects in 
an argument. On the other hand, when we talk about approximate algorithms, the 
operation behavior depends on the quality of the arguments, the size of the arguments, 
order of objects in the arguments, and the amount of resources allocated for operation 
execution. 

Thus, an operation cost model is defined as follows: 
opcost(resources, sizein,orderin)=(qualityout,sizeout,orderout), where  
• opcost is the operation cost function, opcost connects the values of the input 

and output parameters; 
• resources are resources allocated for the operation processing or the operation 

cost; 
• sizein is the operation  input arguments size; 
• orderin is the operation  input arguments order; 
• qualityout is the operation execution relative result quality, the relative quality 

of the result of the corresponding subquery; 
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• sizeout the result size; 
• orderout the result order; 
• resources, sizein, orderin, qualityout, sizeout, orderout are objects with attributes 

which represent different measures of the corresponding parameter of the cost 
model and are discussed in details below. 

Let us note that sizein and orderin are vectors of objects that describe all arguments 
of the operation. 

The equation describes the cost model and binds all its variables and parameters. 
Thus, substituting in the equation the values of the variables, we can express and 
evaluate the remaining parameters of the cost model. 

Apart from the basic cost model equations there are some restrictions on the cost 
models of the specific operations: 

resourcesmin≤resources≤resourcesmax
 

qualitymin≤quality≤qualitymax
 

If the operation has resourcesmax resources available, the result has the best 
possible quality with given arguments, that is relative qualityout=qualitymax. 

If the operation has resourcesmin resources available, the result has the worst 
possible relative quality (qualityout=qualitymin) with given arguments. In this case the 
algorithm spends the least possible amount of resources for operation execution. 

Our cost models suggest the estimation of the unknown parameters. We assume 
that objects are not ordered in an input or output data if no information about order is 
available. The value of the quality and size parameters are estimated based on the 
history of the previous queries and collected statistics. 

Further we discuss how to measure resources and data characteristics in our cost 
models. 

1.1. Resources 

Resources needed for a particular operation processing can be measured and evaluated 
in different ways. For example the operation processing cost can be estimated by its 
execution time. However, this approach restricts the proposed cost model to a specific 
query processing system. 

In this research we evaluate the cost of operations in terms of the number of disk 
accesses, sequential accesses, executions of external operations, and so on. It is 
important to note that in this case, the cost model is more general. In this case the 
proposed cost model can be tuned depending on the specific characteristics of the query 
processing engine. 

There are several characteristics and measure resources: 

• sa the number sequential accesses to read objects from pipe; 
• dsa the number of sequential disk accesses to read objects; 
• ma the number of random memory accesses; 
• da the number of random disk accesses; 
• pred the number of predicate evaluations; 
• ha the number of hash table accesses. 

 
The operation cost or the amount of resources needed for its execution will be 

evaluated in terms of these measures. The cost of each parameter in terms of time (Tsa, 
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Tdsa, Tma, Tda, Tpred), which depends on the system configuration, will be estimated 
based on the experiments and available statistics. Thus the operation cost can be simply 
evaluated: 

time = sa*Tsa+dsa*Tdsa+ma*Tma+da*Tda+pred*Tpred+ha*Tha 

1.2. Size 

The size of the input data, as well as the result sizes can be evaluated at least in two 
different ways: size, which data occupy in memory (size), and the number of objects, 
semantic units, which the operation processes (cardinality). These characteristics 
influence the behavior of algorithms that implement operations. 

1.3. Quality 

We distinguish absolute and relative quality which operations produce. 
The absolute quality shows how the produced result suites to the user expectations. 

To measure the absolute quality we need to obtain the actual relevance scores which 
are usually not know in advance and sometimes at all. 

The relative quality shows how the limited, approximate implementation of an 
operation changes the absolute quality of the result. In our cost models we operate with 
relative quality of the operations and queries. The most important property of the 
relative quality of a query is its monotony on the amount of resources allocated for its 
processing. The monotony of the relative quality depends on its definition and 
algorithms implementing approximate operations. 

1.4. Order 

The order of objects in the input data influences the operation execution cost. At this 
phase of work, the order of objects is defined as the order of their scores in a data set. 
The cost models depend on the fact whether the objects in the input data are naturally 
ordered according to their scores. 

2. Operations and Algorithms 

We consider three operations in this paper. Exact and approximate algorithms 
implementing them are discussed in this section and corresponding cost models are 
developed and analyzed further. 

2.1. Top k 

Top k operation takes as an input the stream of objects with scores and returns to the 
output the stream of best k objects according to their input scores. The naïve exact 
algorithm orders objects according to their scores if needed and returns k first of them. 
An approximate top k algorithm reads objects sequentially, while free time for 
operation execution is available, and pastes them into the sorted list of already 
processed objects. When the resources are over first k objects are set to be the result. 
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2.2. Fusion 

Binary fusion operation processes two input streams of objects with scores and returns 
stream of received objects with newly generated aggregated scores. The naïve exact 
algorithm implementing fusion is based on nested loops. 

2.3. Aggregation 

The aggregation operation is the same as defined in [7]. The operation takes as an input 
two streams, where objects are naturally ordered according to their scores, and returns 
to the output best k objects according to the aggregated scores based on the input ones. 
The naïve exact algorithm is a simple combination of fusion and top k operation. 
However, effective and optimal algorithms for aggregation operation were developed 
in [7]: FA (Fagin’s Algorithm) and NRA (No Random Access Algorithm). Because the 
input streams are coming from two independent sources and random accesses in the 
first algorithm can be expensive and sometimes impossible, they have been removed 
from the implementation of algorithms and replaced with sorted accesses. 

3. Cost Models for Exact Algorithms  

Let's describe a basic cost models for different operations in case when the relative 
quality of the arguments and the result of the operation as the best possible and is not 
regulated from the outside. 

Actually cost models depend on algorithms implementing this operations rather 
than operations themselves. Here we describe cost models for natural exact operation 
algorithms discussed in section 3. 

All restrictions will be defined based on the cost model described by the equation: 
opcost(resources,sizein,orderin)=(qualityout,sizeout,orderout). 

3.1. Top k 

For exact top k operation the cost model can be defined as follows: 
cardinalityout=min{k, cardinalityin} 
orderout=true 
cardinalityin≥cardinalityout 
sizein≥sizeout 
if orderin=false then 
 sa=cardinalityin 
 ma=C*cardinalityin*ln(k) 
if orderin=true then 
 sa=cardinalityout 

3.2. Fusion 

Here we consider the binary fusion operation. In this case sizein,orderin represent two-
dimensional vectors, since the fusion operation takes two arguments. For fusion 
operation (based on nested loop algorithm) we have the following cost model: 
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sa=∑cardinalityin 
dsa=∑cardinalityin 
da=∏cardinalityin 
cardinalityout≤∑cardinalityin 

3.3. Aggregation 

First of all we describe the intermediary parameters which can help us to construct 
formulas: 

 
• t – estimated size of a table, which shows all objects with already read 

scores; 
• ns – estimated number of scores needed to fill the table of size t; 
• ks – estimated number of scores needed to fill the table of size k. 

 
We assume independence of scores and uniform distribution and use expectation 

for evaluate these parameters. 
 
orderin=true 
cardinalityout=min{k, cardinalityin} 
orderout=true 
cardinalityin≥cardinalityout 
sizein≥sizeout 

3.3.1. FA 

time = cardinalityinTsa+(tlog t+4t)Tma+tTha 
Summands include sorted access, sort, input/output and calculation of aggregate 

score as well as search for a place to insert a score just obtained from stream 
respectively. 

After evaluation and substitution of intermediary parameters we obtain the 
following: 

time=((3/4ln(cardinalityin)+3/2)Tma+3/4Tha)k+Tmacardinalityin+1/4cardinalityin 
Tha+1/4cardinalityin(ln(cardinalityin)–2)Tma+cardinalityinTsa 

3.3.2. NRA 

time=cardinalityinTsa+((ns-ks)/2tlog t+2t(2+t))Tma+tTha 
Summands include sorted access, sort, input/output and calculation of worst case 

score and best case score as well as search for a place to insert a score just obtained 
from stream respectively. 

After evaluation and substitution of intermediary parameters we obtain the 
following (cin  denotes as cardinalityin below): 

time=(45/32-9/64ln(cin))Tmak2+((3/4cin+3-3/64cin(ln(cin)–2)+3/16cin(3/4ln(cin)–
3/2)Tma+3/4Tha)k+(1/2cin(2+1/4cin)+3/64cin

 2(ln(cin)–2)Tma+cinTsa+1/4cinTha  
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4. Cost Models for Approximate Algorithms  

4.1. Aggregation 

Now we add the specific resource t0 – time operation execution. The problem is to 
estimate the result quality. 

We create approximate model based on exact one. Let’s k’ denote the number of 
correct object returned by approximate algorithm. We express it in terms of t0. Hence 
we get number of scores which system can find for the given time. Then we consider 
ratio between k’ and k which means the accuracy of result. 

qualityout=k’/k 

For FA we obtain the following: k’=(t0-Tmacardinalityin-1/4cardinalityinTha-
1/4cardinalityin(ln(cardinalityin)–2)Tma-cardinalityinTsa)/((3/4ln(cardinalityin)+3/2)Tma+ 
3/4Tha). 

We will not give the inverse formula for NRA here because of the limits of paper 
size. 

4.2. Top k 

For approximate algorithm implementing top k operation we have: 
cardinalityout=min{k,cardinalityin} 
orderout=true 
cardinalityin≥cardinalityout 
sizein≥sizeout 
Let us estimate sizemin<sizeout<sizemax, resourcesmin<resourcesout<resourcesmax, 

qualityout
min<qualityout<qualityout

max of the operation processing result: 
cardinalitymin=cardinalityout=cardinalitymax=min{k,cardinalityin}, 
sizemin=sizeout=sizemax, 
if orderin=true then  
 samin=sa=samax=cardinalityout 
 qualityout

min=qualityout=qualityout
max=1 

if orderin=false then 
 samin=cardinalityout 
 samax=cardinalityin 
 sa=S 
 mamin=0 
 mamax=C*cardinalityin*ln(k) 
 ma=C*S*ln(k) 
 qualityout

max=1 
 qualityout

min=0 
 qualityout=S/cardinalityin (in case when object scores are distributed uniform) 
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5. Related Work 

The query optimization became both required and enabled since the advent of high-
level declarative query languages, mostly in the context of the relational database 
model.  

A brief overview of classical query optimization techniques can be found in [11]. 
The optimization techniques for distributed systems are summarized in [10]. An 
optimizer for distributed heterogeneous systems is proposed in [15]. 

The cost models proposed in this research are designed similar to those needed to 
traditional optimizers.  

The optimization strategy based on algebraic equivalences between similarity 
based operations that serve as rewrite rules is outlined in [4]. Optimization rules based 
on similarity based algebraic framework properties and equivalence laws are also 
discussed in [1, 14, 5, 12]. 

It is important to mention that the lack of algebraic equivalences pushes the 
research to the development of optimization techniques based on performance/quality 
tradeoffs and approximate algorithms. 

The approximate query evaluation techniques were considered in the context of 
very large data warehouses and mobile networks [2, 6, 3, 8]. The approximation is 
typically based on sampling, wavelets, or synopsis. 

Handling of time constraints on complex SQL queries is proposed in [7]. The 
authors distinguish approximate (based on sampling) and partial (top k) query 
evaluation. 

The quality and performance trade-offs for stream processing are discussed in 
[16, 9]. 

Cost models based on estimation of operation selectivity and cardinality are 
introduced in [1] for the selected set of operations: union, intersection, and difference; 
joins; merge; subtract; select; and map. Optimization rules based on the query tree 
reconstruction are derived from the previous analysis. 

A sampling-based method to estimate the cardinality of rank-aware operators is 
developed for costing plans [12]. 

A novel multi-criteria query optimization techniques for performing query 
optimization in databases, such as multimedia and web databases, which rely on 
imperfect access mechanisms and top-k predicates are proposed in [13]. The size and 
quality factors are introduced into the cost model and optimization algorithms. 

6. Conclusion 

In this paper we presented several cost models for both exact and approximate query 
evaluation algorithms in distributed heterogeneous systems. The more resource we use, 
the more accurate the result is and vice versa. Our models convert these intuitive 
observations into clear and distinct formulas. It provides formalism for trade-off 
between quality and performance.  

In the future we are going to conduct experiments in order to estimate the accuracy 
of our cost models. 
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