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Abstract. We study the minimal generators (mingens) in multi-relational
data mining. The mingens in formal concept analysis are the minimal
subsets of attributes that induce the formal concepts. An intent for a
formal concept is called a closed pattern. In contrast to the wide atten-
tion to closed patterns, the mingens have been paid little attention in
Multi-Relational Data Mining (MRDM) field. We introduce an idea of
non redundant mingens in MRDM. The notion of mingens in MRDM is
led by θ-subsumption relation among patterns, and is useful to grasp the
structure and information in the concepts.

1 Introduction

Formal Concept Analysis (FCA) [1] is an important tool for data analysis and
knowledge discovery [2]. A formal concept is determined by its extent and its
intent. The intent of a formal concept is the closure of the attributes, itemsets,
or patterns that form a maximum characterization of the formal concept. Mining
the closed patterns [3, 4] has attracted a lot of attentions because it reduces the
number of patterns by selecting only representative patterns of their equivalent
patterns in the sense that they produce the same extent.

While a closure is the maximal pattern presenting a concept, a minimal gen-
erator (mingen) [5] is a minimal pattern. The mingens play an important role
in many contexts, e.g., database design (as key sets), graph theory (as minimal
transversals), and data mining (as minimal premises of association rules). Dong
et al. study the mingens and define Succinct System of Mingens (SSMG) [6]
which removes redundant mingens. In this paper, we state that SSMGs of a for-
mal context for relational patterns have further redundancy and propose a novel
concept of non redundant mingens based on θ-subsumption of Multi-Relational
Data Mining (MRDM) [7].

Sections 2 and 3 introduce FCA and MRDM. Section 4 describes about min-
gens. Section 5 provides a definition of minimal generators consisted of relational
patterns. Then section 6 reports experimental results on compactness.



a b c d e g h i

t1 × × × × × × × ×
t2 × × × ×
t3 × × × × × ×
t4 × × × × ×
t5 × × × × × ×

Fig. 1. A context that involves relations
between objects and attributes.

Fig. 2. A concept lattice for the context
of Fig. 1.

2 Formal Concept Analysis

We review the basis of Formal Concept Analysis. Start with an arbitrary relation,
I ⊆ G×M , between G, a set of objects, and M , a set of attributes, and define

A 7→ AI ={m ∈M | (g,m) ∈ I for all g ∈ A} for A ⊆ G,

B 7→ BI ={g ∈ G | (g,m) ∈ I for all m ∈ B} for B ⊆M.

A triple K = (G,M, I) is called a formal context.

Definition 1 (formal concept). A pair (X,Y ) is called a formal concept of
a formal context K = (G,M, I), if it satisfies

X ⊆ G,Y ⊆M,XI = Y,X = Y I . 2

When we define an order by (X1, Y1) ≤ (X2, Y2) ⇐⇒ X1 ⊆ X2 (⇔ Y2 ⊆ Y1),
among formal concepts of a formal context K, it forms a complete lattice. We
call it the concept lattice of K.

Example 1. A Fig. 1 shows a formal context where each object has a set of
attributes. A pair (t1t2t3, cdg) (set brackets are omitted) is a formal concept,
where t1t2t

I
3 = cdg and cdgI = t1t2t3. Fig. 2 shows the concept lattice. Each

concept is labeled by its intent. ut

3 Multi-Relational Data Mining

While propositional data mining algorithms look for patterns in a single data
table, MRDM algorithms look for relational patterns, represented by logical
formulae, that involve multiple tables (relations).

Example 2. A Database Rfam in Fig. 3 includes four relations on families, where
grandfather(x) meaning x is someone’s grandfather, parent(x, y) meaning x is a
parent of y, male(x) for male x, and female(x) for female x. Then a pattern, such
as grandfather(X)← parent(X,Y ), parent(Y, Z), female(Z), can be found. ut
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Fig. 3. The family DB Rfam, including grandfather, parent, male and female.

4 Succinct System of Mingens

The mingens are defined bellow.

Definition 2 (mingens). A set P ⊆M is called a mingen for a formal concept
(X,Y ) of a formal context K = (G,M, I) if P I = X but for every proper subset
P ′ ⊂ P, P ′I 6= X. ut

Example 3. In Fig. 1, bc, bg, ch, ci, gh, and gi are mingens for a formal concept
(t1t3t5, bcghi). ut

In the above example, the closed itemset bcghi has six mingens, where b, h and
i always appear together in each object and thus can be exchanged each other,
and similarly for c and g. An SSMG is a representative of each equivalence class,
which is defined bellow. A criterion which selects a representative is left to users,
because dependence between items is not defined.

Definition 3 (C-equivalence). X, Y ⊆ M are C-equivalent for a formal
concept C of a formal context K = (G,M, I), denoted X≈CY , if they satisfy
either following condition.

1. There is a concept C ′ ≥ C such that both X and Y are mingens of C ′.
2. There are subsets Z,Z ′,M ⊆ M such that X = W ∪ Z, Y = W ∪ Z ′, and

Z≈CZ
′. ut

Definition 4 (SSMG). Given an order v on M , a succinct system of mingens
(SSMG) by the order v for a formal concept C of a formal context K consists
of elements satisfied either following condition.

1. If C is a maximal formal concept in the sense of the concept lattice except
(G, ∅), an SSMG for C holds the following conditions.
– It is a mingen for C.
– It is minimal in the sense of v among all mingens in a C-equivalence

class for C.
2. Otherwise, a mingen in a C-equivalence class is an SSMG for C if it does

not include any mingen which is not an SSMG for C ′ ≥ C. ut

The definition of SSMGs in [6] uses the alphabetic lexicographic order for v
above. Since the alphabetic order is linear, there is a unique SSMG for an equiv-
alence class. Our extended definition allows a partial order and then there are
more than one SSMGs.



Table 1. Attributes by expressed formulae.

a = gf(A)← m(A).
b = gf(A)← p(A,B), f(B).
c = gf(A)← p(A,B), p(B,C), f(C).
d = gf(A)← p(A,B), p(B,C), p(C,D), f(D).
e = gf(A)← p(A,B), p(B,C), p(C,D),m(D).
f = gf(A)← p(A,B), f(B), p(B,C), f(C)
g = gf(A)← p(A,B), f(B), p(B,C), f(C), p(C,D),m(D).
h = gf(A)← p(A,B), p(B,C), f(C), p(C,D), p(D,E),m(E).
i = gf(A)← p(A,B), p(B,C), p(C,D), f(D), p(B,E), p(E,F ),m(F ).

a b c d e f g h i

gf(01) × × × × × × × × ×
gf(07) × × × × × × × × ×
gf(12) × × × × × × ×
gf(19) × × × × × ×
gf(20) × × × ×

Fig. 4. K′
fam = (G,M, I) w.r.t Rfam

Table 2. Formal concepts of K′
fam

(G, ac)
(gf(01)gf(07)gf(12)gf(19), aceh)
(gf(01)gf(07)gf(12)gf(20), abcf)
(gf(01)gf(07)gf(19), acdehi)
(gf(01)gf(07)gf(12), abcefgh)
(gf(01)gf(07),M)

5 Mingens of MRDM

Though SSMGs remove redundant patterns, a simple application of SSMGs to
relational patterns does not remove all of redundancy. Mapix [8, 9], a miner in
MRDM, enumerates patterns consisted of property items [8] which are restricted
sets of literals. Though a search space of MRDM has no limit as long as adding
literals, that of Mapix restricts into a meaningful form by modes of predicates.

We construct a formal context K′ = (G,M, I) of property items produced by
Mapix, which we call a formal relational context, where G is a set of instances
of a target (key) relation (e.g., grandfather relation in Fig. 3), M is a set of
property items (e.g., in Table 1), and I is relation among G and M , which
indicates whether an instance satisfies a property item (e.g., K′

fam in Fig. 4).
The notion of the formal relational context was discussed in [10]. Then we can
also compute formal concepts and SSMGs of the formal relational context K′.

Logical Mingens We reduce further redundancy of SSMGs in relational pat-
terns by θ-subsumption relation, i.e. C θ-subsumes D, denoted by C � D, if
Cθ ⊆ D, for a substitution θ, where C and D are clauses.

Definition 5 (LMG). A mingen for a formal concept C of a formal relational
context K′ is called a logical mingen (LMG) for C of K′, if it satisfies the fol-
lowing conditions.

– It is an SSMG by θ-subsumption order (�).
– It is a minimal in the sense of � in among all SSMG in C-equivalence class.

ut



Table 3. LMG Miner : the algorithm for enumerating LMG

LMG Miner(K′, supmin):

input K′ : A formal relational context;
supmin : A support threshold;

output LMG : logical mingens;

1. let LMG := ∅;
2. let I := {all attributes associated with property items};
3. let LC := {items occurring in all transactions};
4. call DFS(H := ∅, T := I − LC,LC);
5. return LMG;

DFS(H,T, LC) :

1. if sup(H) < supmin return;
2. for each x ∈ T
3. if sup(H ∪ {x}) = sup(H) let T := T − {x}, LC := LC ∪ {x};
4. if (H : LC, sup(H)) construct a new concept with sup(H)
5. for each p ∈ LC do if p � H then p is removed from LC;
6. add (H : LC, sup(H)) to LMG;
7. else remove clutter; // see [6] for details
8. for each x ∈ T
9. let Hx := H ∪ {x} and Tx := {y ∈ T | y > x};
10. call DFS(Hx, Tx, LC);

Note that the definition above uses the θ-subsumption twice, for the selection of
mingens and for the selection of SSMG.

Example 4. Table 2 shows formal concepts in a formal context K′
fam. SSMG for

D = (gf(01)gf(07)gf(12), abcefgh) is g, fe, fh, and LMG for D is only fe. ut

The Mining Algorithm The algorithm in Table 3 follows the depth-first
search framework using a set-enumeration tree (SE-tree) [11]. A node v, in-
cluding a head H and a tail T , has a search space for all itemsets Z = H ∪ T ′,
where T ′ is a nonempty subset of T . For the node labelled by ab in the SE-tree
for {a, b, c, d}, we have H = ab and T = cd, and its search space consists of
abc, abd and abcd. A local closure of H, LC(H) = {x ∈ H ∪ T | HI = HxI}, is
a closure w.r.t ancestor nodes. For all ancestor nodes v′ of v with head H ′ and
tail T ′, LC(H ′) is a proper subset of LC(H). Hence H is considered as the local
mingen for LC(H).

6 Experimental Results and Conclusion

We have done experiments on two data sets and compared between the num-
ber of patterns, the first one was with Rfam in Fig. 3 and the latter was with



Table 4. Patterns on Rfam.

supmin(%) 80 60 40 20

Mapix 17 109 1063 4601
SSMG 12 21 39 -
LMG 6 13 22 -

Table 5. Patterns on Mutagenesis-Bonds.

supmin(%) 90 80 70 60 50 40 30 20 10

Mapix 336 360 614 721 721 925 1467 2948 6630
SSMG 9 9 13 16 16 19 31 67 149
LMG 6 6 9 12 12 14 25 58 137

Mutagenesis-Bonds. Tables 4 and 5 show the number of patterns generated by
Mapix, SSMG, and LMG. In both data sets, though SSMG and LMG had large
reduction of patterns compared with Mapix, LMG reduces patterns even more
than SSMG. Because of a complex structure of Rfam, SSMG and LMG fault the
computation with supmin = 20%.

We still need revise of the algorithm for scalability. We also need examine
the efficacy in the intuitive sense, such as readability.
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