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ABSTRACT
The run-time reconfigurability and high parallelism offered by FP-
GAs make them an attractive choice for implementing hardware
accelerators for ML algorithms. In the quest for designing efficient
FPGA-based hardware accelerators for ML algorithms, the inherent
error-resilience of ML algorithms can be exploited to implement
approximate hardware accelerators to trade the output accuracy
with better overall performance. As multiplication and addition
are the two main arithmetic operations in ML algorithms, most
state-of-the-art approximate accelerators have considered approxi-
mate architectures for these operations. However, these works have
mainly considered the exploration and selection of approximate
operators from an existing set of operators. To this end, we provide
an efficient methodology for synthesizing and implementing novel
approximate operators. Specifically, we propose a novel operator
synthesis approach that supports multiple operator algorithms to
provide new approximate multiplier and adder designs for AI in-
ference applications. We report up to 27% and 25% lower power
than state-of-the-art approximate designs, with equivalent error
behavior, for 8-bit unsigned adders and 4-bit signed multipliers
respectively. Further, we propose a correlation-aware design space
exploration method that can improve the efficacy of randomized
search algorithms in synthesizing novel approximate operators.
CCS CONCEPTS
• Computer systems organization→ Embedded hardware; •
Hardware → Hardware accelerators; Arithmetic and datap-
ath circuits; Circuit optimization.
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Figure 1: An 8-bit approximate adder from [3]. The disabled
elements cannot be used for other operations.

1 INTRODUCTION
The recent developments in the field of Artificial Intelligence (AI)
have made Machine Learning (ML) algorithms an attractive choice
to perform various tasks, such as computer vision and natural lan-
guage processing, for embedded systems at the edge. Recent studies
have shown that state-of-the-art ML algorithms can outperform
human-level output accuracy in many cases [1, 2]. However, these
algorithms’ high computational, memory, and energy requirements
pose a challenge for their deployment on resource-constrained em-
bedded systems at the edge. To this end, one possible option is to
utilize the cloud-based execution of these models. Nonetheless, an
always cloud-based execution has its own associated limitations,
such as the cost, latency, power consumption, and privacy of data
transfer over a network. This motivates the exploration of various
techniques that can enable high-performance and energy-efficient
execution of ML models on the resource-constrained embedded
systems at the edge.

A plethora of recent works have focused on the various optimiza-
tion techniques to reduce the overall computational complexity and
memory footprints of ML models to execute them on resource-
constrained embedded systems. These techniques mainly exploit
the inherent error-resilience of ML models to introduce deliberate
approximations at the various layers of the computation stack. The
inherent error-resilience of an application enables it to produce
acceptable quality outputs despite some approximations (inaccura-
cies) in the processed data and the associated intermediate compu-
tations. For ML algorithms, the commonly explored approximation
techniques are model pruning, quantization of trained parame-
ters, and the utilization of approximate arithmetic modules. As
Multiply-accumulate (MAC) is the most commonly utilized opera-
tion in ML models, such as Deep Neural Networks (DNNs), most
of the related state-of-the-art works have focused on proposing
various Application-specific Integrated Circuit (ASIC)- and Field
Programmable Gate Array (FPGA)-optimized approximate architec-
tures for the multiplication and addition operations [4–13]. How-
ever, most of these works, such as [4–6], have focused on proposing
one or two different architectures for approximate operators. The
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Figure 2: Design Methodology

authors of [10, 13] have focused on presenting libraries of approxi-
mate adders and multipliers having different accuracy-performance
trade-offs. However, all these works follow an application-agnostic
design methodology, and the usefulness of an operator is evaluated
by deploying it in various applications. To this end, some works,
such as [14], have focused on the exploration of the existing libraries
of approximate operators to identify potential feasible operators
that may satisfy the accuracy-performance constraints of an error-
tolerant application. In general, the state-of-the-art approximate
arithmetic operators have two main limitations:

1) These designs do not offer a consistent design methodology
for trading accuracy with performance gains. Therefore, in cases
where existing approximate operators fail to satisfy an application’s
accuracy-performance constraints, the process of defining a new
approximate architecture is explored again.

2) Most of the state-of-art approximate arithmetic operators
follow an application-agnostic design methodology. However, as
presented in [3], such a design methodology can result in approxi-
mate operators that are not feasible for satisfying an application’s
accuracy and performance constraints.

To this end, [3] presents a framework that implements various
versions of an approximate operator by disabling Lookup Tables
(LUTs) and carry chain elements in the corresponding accurate
implementation. A disabled LUT does not contribute to the com-
putation of the final output. For example, Figure 1 presents an
approximate version of an 8-bit unsigned adder according to the
methodology proposed in [3]. As shown in the figure, the disabled
LUTs and the associated carry chain elements are represented using
light gray outlines and fonts. However, in this method, the disabled
elements cannot be utilized for any other operation. For example,
the implementation of the approximate adder, shown in Figure 1, on
Xilinx 7-series FPGA would still require two complete logic slices1.
Furthermore, a disabled carry chain element still contributes to
routing carries, as shown using the red colored arrows in Figure 1.
Therefore, this technique results in an insignificant reduction in the
approximate operator’s critical path delay and power dissipation
compared with the corresponding accurate operator.

To address the aforementioned limitations of state-of-the-art
approximate operator architectures, we present CoOAx, a frame-
work for synthesizing FPGA-based approximate operators. Figure 2
presents an overview of the proposed framework. The proposed
methodology involves circuit-level modeling and novel Design

1A logic slice in Xilinx 7-series FPGA provides 4 LUTs [15].

Space Exploration (DSE) methods for fast design of approximate
arithmetic operators that can leverage the inherent robustness
of error-tolerant applications. We have considered the Multilayer
Perceptron (MLP)-based MNIST classification as an error-resilient
benchmark application and multipliers as an example operator to
discuss our methodology and present our results. However, the
proposed methodology is generic and can be used for designing
any soft logic-based operators for any error-resilient application.
Our proposed implementations utilize the 6-input LUTs and as-
sociated carry chains of modern FPGAs as building blocks. This
article uses the Configurable Logic Blocks (CLB) architecture of
Xilinx FPGAs [15] to present the proposed approximate operator
modeling methodology and the corresponding results. Our novel
contributions include:

(1) A systematic methodology for approximate operators gener-
ation: Our proposed methodology utilizes the 6-input LUTs and
the associated carry chains of FPGAs to implement approximate
operators according to input configuration. For instance, the input
configurations—a binary string—identify the LUTs, in an accurate
operator implementation, that should be truncated (removed) to
realize a corresponding approximate operator. For example, for
an M × N accurate multiplier, utilizing ‘L’ LUTs, our methodology
provides 2𝐿 approximate multipliers with different accuracy and
performance parameters.

(2) An efficient DSE methodology: We utilize various ML mod-
els to propose a correlation-based DSE methodology. Specifically,
we use the correlation between the implemented LUTs and the
performance metrics from a set of characterized designs to report
improvements over randomized search-based methods.

The rest of the article is organized as follows. Section 2 provides
a brief overview of related approximate operators. Section 3 de-
scribes the systematic modeling methodology used for designing
arbitrary approximate multipliers. Section 4 presents the methodol-
ogy adopted for designing ML-based performance estimators. The
proposed DSE approach for designing approximate multipliers is
described in Section 5. In Section 6, the results from the experimen-
tal evaluation of the proposed framework are presented, followed
by a discussion on the scope of related future research in Section 7.

2 APPROXIMATE MULTIPLIERS
The authors of [8] and [9] have proposed 2 × 2 approximate un-
signed multiplier architectures for ASIC-based systems. These ar-
chitectures can be used to implement higher-order approximate
multipliers using the modular design approach. The authors of [10]
have utilized various existing approximate adders and multiplier
architectures to implement a library of 8 × 8 unsigned approximate
multipliers denoted as EvoApprox. In their follow-up work in [11],
this library was extended to incorporate various signed multiplier
designs. The authors of [3, 6, 12, 13] have focused on utilizing the
structure of 6-input LUTs to propose various approximate multi-
plier architectures for FPGA-based systems. The work presented in
[12] has proposed an approximate unsigned 4 × 2 multiplier archi-
tecture. This design completely utilizes all the 6-inputs of a LUT.
The approximate 4 × 2 design is then used to implement 4 × 4 and
other higher-order multipliers. The work presented in [13] proposes
three unsigned approximate multiplier architectures. These designs
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Figure 3: LUT mapping of partial products for 4 × 4 accurate
signed multiplier architecture [17]

are based on the parallel generation of all product bits to reduce the
critical path delay of the implementations. The authors of [6] have
focused on signed operations and have proposed a radix-4 Booth’s
algorithm-based approximate multiplier architecture. The work
presented in [3] has proposed a framework to implement various
FPGA-optimized approximate versions of an accurate operator by
utilizing various ML models and multi-objective optimization tech-
niques to identify approximate operator configurations that satisfy
an application’s accuracy-performance constraints. The framework
implements the various versions of an approximate operator by
disabling LUTs and carry chain elements in the implementation.
The authors of [16] have also proposed a technique to implement
ASIC-based approximate operators for Artificial Neural Networks
(ANNs). In their proposed technique, they have used Cartesian Ge-
netic Programming (CGP) and 2-input logic gates for implementing
approximate operators. However, in this technique, the various
performance parameters, such as critical path delay and energy,
of the approximate operators are not considered while designing
an operator. The accuracy of the application (ANN) is the only
evaluation criterion for selecting an operator.

3 OPERATOR MODELLING
CoOAx proposes a systematic methodology for designing approxi-
mate arithmetic operators from the corresponding accurate imple-
mentations of the operators. In this work, we have used the accurate,
signed multiplier implementation presented in [17] to demonstrate
the proposed approximate operator modeling technique. However,
the proposed methodology for approximation is equally applicable
to other multiplication algorithms and operators. As shown in Fig-
ure 3, the architecture presented in [17] utilizes five different LUT
configurations to generate the signed partial products. In this imple-
mentation, LUT configurations T-V and T-VI are used to compute
and transfer the sign of each partial product row. The generated par-
tial products are added together to compute the final product. Our
proposed approximation methodology is based on the truncation
of LUTs (and the corresponding carry chain cell) in the accurate
implementation to generate approximate designs. For this purpose,
we have utilized an 𝐿 − 𝑏𝑖𝑡 string (denoted as input-configuration)
to address the LUTs in every partial product row. However, LUTs
T-V and T-VI are excluded from this 𝐿 − 𝑏𝑖𝑡 input-configuration
to compute the sign of each approximate partial product row with
high accuracy. For example, to address the LUTs in the two partial
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Figure 4: 4 × 4 approximate multiplier design according to
input configuration ‘1101101101’. 𝑃𝑃02 and 𝑃𝑃04 are truncated
to 0.

product rows of the 4 × 4 multiplier shown in Figure 3, the pro-
posed approximation methodology utilizes a 10 − 𝑏𝑖𝑡 string. The
least significant 5 − 𝑏𝑖𝑡𝑠 in the input-configuration correspond to
the first partial product row, and the most significant 5−𝑏𝑖𝑡𝑠 denote
the second partial product row. A ‘0’ at any location in the L-bit
string represents the truncation of the corresponding LUT. The
truncation of a LUT denotes that the LUT does not compute the
logic associated with it in the accurate implementation, and the cor-
responding output of the LUT (or carry chain cell) is truncated to ‘0’.
For example, Figure 4 shows the generation of approximate partial
products for input-configuration ‘1101101101’. The configuration
shows that truncation of two and one LUTs in the first and second
partial product rows, respectively. For example, the LUT produc-
ing 𝑃𝑃02 is truncated to zero. Similarly, the LUTs T-III (utilized for
computing the input carry) in the second partial product row is
also removed. Compared to the accurate multiplier architecture
presented in Figure 3, the approximate multiplier implementation
in Figure 4 results in saving three LUTs and two carry chain ele-
ments2. Since an accurate 4 × 4 multiplier utilizes 10 LUTs for the
partial product generation, therefore, the proposed approximation
methodology supports 210 approximate multipliers. Similarly, for
an accurate 8 × 8 multiplier utilizing 36-LUTs for partial product
generation, CoOAx’s proposed approximation methodology pro-
vides 236 different approximate multipliers with different accuracy
and implementation performance metrics.

4 ML MODELLING FOR PERFORMANCE
ESTIMATION

Given the operator model described in Section 3, any arbitrary
arithmetic operator implementation in FPGAs can be represented
by the ordered tuple O𝑖 (𝑙0, 𝑙1, ..., 𝑙𝑙 , ..., 𝑙𝐿−1),∀𝑙𝑙 ∈ {0, 1}. The term
𝑙𝑙 represents whether the LUT corresponding to the operator’s
accurate implementation is being used (1) or not(0) and 𝐿 represents
the total number of LUTs of the accurate implementation that
may be removed to implement approximation. So, the accurate
implementation can be represented as O𝐴𝑐 (1, 1, ..., 1). Similarly,
O = {O𝑖 } represents the set of all possible implementations of the

2A carry chain element consists of multiple cells. For example, a carry chain element
in Xilinx 7-series FPGAs is 4 − 𝑏𝑖𝑡 wide [15], whereas it is 8 − 𝑏𝑖𝑡 wide in Xilinx
Ultrascale architecture [18].
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operator. Any operator/application’s behavior can be represented
as a function S. So the output of the operator/application for a
set of inputs can be abstracted as shown in (1). The term 𝐸𝑟𝑟O𝑖

represents the error in the operator/application’s behavior as a
result of using an approximate operator O𝑖 compared to using
the accurate operator O𝐴𝑐 . Similarly, the operator/accelerator’s
hardware performance can be abstracted as a set of functions as
shown in (2).

While (2) represents complex relationships between O𝑖 and the
Power-Performance-Area (PPA) and behavioral accuracy (BEHAV)
metrics, ML-based proxy-functions can be used as estimators for
eachmetric.We represent such estimators for any arbitrary PPA and
BEHAV metric as shown in (3). We used AutoML [19] to explore
across different ML algorithms to find the appropriate ones for
each metric. The selection of such algorithms was based on their
Root Mean Squared Error (RMSE) and R2 score for both training
and test datasets, which is obtained from true characterization of
randomly selected O𝑖 configurations. In addition we generated the
correlation coefficient between the metrics and the LUT instances
of the operator. These coefficients can be represented as shown
in (4).

𝑂𝑢𝑡O𝑖 = S(O𝑖 , 𝐼𝑛𝑝𝑢𝑡𝑠) ; 𝑂𝑢𝑡O𝐴𝑐
= S(O𝐴𝑐 , 𝐼𝑛𝑝𝑢𝑡𝑠)

𝐸𝑟𝑟O𝑖 = 𝑂𝑢𝑡O𝐴𝑐
−𝑂𝑢𝑡O𝑖

(1)

𝑃𝑜𝑤𝑒𝑟 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 : WO𝑖 = H𝑊 (O𝑖 , 𝐼𝑛𝑝𝑢𝑡𝑠)
𝐿𝑈𝑇 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 : RO𝑖 = H𝑅 (O𝑖 )

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑃𝑎𝑡ℎ 𝐷𝑒𝑙𝑎𝑦 : CO𝑖 = H𝐶 (O𝑖 )
𝑃𝑜𝑤𝑒𝑟 𝐷𝑒𝑙𝑎𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 : 𝑃𝐷𝑃O𝑖 = WO𝑖 × CO𝑖

𝑃𝐷𝑃𝐿𝑈𝑇O𝑖 = WO𝑖 × RO𝑖 × CO𝑖

(2)

𝑃𝑃𝐴 𝑀𝑒𝑡𝑟𝑖𝑐 : 𝑃𝑃𝐴O𝑖 = 𝑃𝑀𝐿 (O𝑖 )

𝐵𝐸𝐻𝐴𝑉 𝑀𝑒𝑡𝑟𝑖𝑐 : 𝐵𝐸𝐻𝐴𝑉 O𝑖 = �̂�𝑀𝐿 (O𝑖 )
(3)

𝐶𝑜𝑟𝑟𝑃𝑃𝐴 =

{
𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
O𝑖 ∈O𝑡𝑟𝑎𝑖𝑛

( {𝑃𝑃𝐴(𝑂𝑖 ) } , 𝑙𝑙 )
}

𝐶𝑜𝑟𝑟𝐵𝐸𝐻𝐴𝑉 =

{
𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
O𝑖 ∈O𝑡𝑟𝑎𝑖𝑛

( {𝐵𝐸𝐻𝐴𝑉 (𝑂𝑖 ) } , 𝑙𝑙 )
}

∀ 𝑙𝑙 ∈ {𝑙0, ..., 𝑙𝑙 , ..., 𝑙𝐿−1 }

(4)

5 DSE METHODOLOGY
With the proxy function representation shown in (3), the corre-
sponding unconstrained multi-objective optimization problem can
be represented as shown in (5). In our current work, we used a
randomized search for the DSE problem. This involves generating
random samples of O𝑖 and evaluating them using the estimators
to generate a set of Pseudo Pareto Front (PPF) design points as
candidate solutions for true characterization. The results from the
characterization are again filtered to generate the Validated Pareto-
front (VPF) designs. While a purely randomized search assumes
uniform probability across all (removable) LUTs in the implemen-
tation, we use the correlation values, shown in (4), to generate a
probability distribution across the LUTs, 𝑙𝑙 . Figure 5 shows the
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Figure 5: Comparison of relative correlation coefficient of all
the LUTs across all approximate signed 4×4multipliers using
Baugh-Wooley’s algorithm and proposed operator modelling

relative correlation coefficient of 𝑃𝐷𝑃 × 𝐿𝑈𝑇 (PDPLUT) and the
average absolute relative error (AVG_ABS_REL_ERR) across the
ten removable LUTs of a 4 × 4 signed multiplier. As evident from
the figure, assuming a uniform probability does not account for the
varying impact of each LUT’s usage in the design on the PPA and
BEHAV metrics. We use a weighted sum of the PPA and BEHAV
correlation coefficients for determining the probability distribution,
as shown in (6), while generating the random samples. Varying
the relative weights for 𝐶𝑜𝑟𝑟𝑃𝑃𝐴 and 𝐶𝑜𝑟𝑟𝐵𝐸𝐻𝐴𝑉 allows us to im-
plement varying prioritization of PPA and BEHAV metrics while
generating the candidate design points for characterization.

minimize
O𝑖 ∈O

(𝐵𝐸𝐻𝐴𝑉 O𝑖 , 𝑃𝑃𝐴O𝑖 ) (5)

𝐶𝑜𝑟𝑟𝑆𝑈𝑀 (𝑙𝑙 ) = 𝑤𝑡𝐵 ×𝐶𝑜𝑟𝑟𝐵𝐸𝐻𝐴𝑉 (𝑙𝑙 ) + 𝑤𝑡𝑃 ×𝐶𝑜𝑟𝑟𝑃𝑃𝐴 (𝑙𝑙 )
𝑃𝑟𝑜𝑏 (𝑙𝑙 ) = 𝑠𝑐𝑎𝑙𝑒

𝑀𝑖𝑛𝑀𝑎𝑥
𝐶𝑜𝑟𝑟𝑆𝑈𝑀 (𝑙𝑙 )

𝑤ℎ𝑒𝑟𝑒, 𝑙𝑙 ∈ {𝑙0, ..., 𝑙𝑙 , ..., 𝑙𝐿−1 }
𝑎𝑛𝑑, 𝑤𝑡𝐵 + 𝑤𝑡𝑃 = 1; 𝑤𝑡𝐵, 𝑤𝑡𝑃 ∈ [0, 1]

(6)

6 EXPERIMENT AND RESULTS
6.1 Experimental Setup
We have utilized VHDL to implement the proposed approximate
operator modeling technique. All the presented multipliers have
been synthesized for the 7𝑉𝑋330𝑇 device of the Virtex-7 family
using Xilinx Vivado 19.2. We report design metrics for critical path
delay (CPD)-optimized implementations and use Vivado Simulator
and Power Analyzer tools to calculate the dynamic power. The
benchmark application (MLP) accelerator has been implemented for
the Zynq UltraScale+ MPSoC (𝑥𝑐𝑧𝑢3𝑒𝑔−𝑠𝑏𝑣𝑎484−1−𝑒 device). All
the behavioral models and the multi-objective optimization-based
DSE have been implemented in Python using multiple packages,
such as scikit-learn and PyGMO.

6.2 Approximate Operator Modelling Analysis
6.2.1 Approximate Adders. With the proposed framework, the syn-
thesis of novel approximate adders does not require complex DSE
methods owing to the low LUT utilization for each adder. For in-
stance, an accurate 8-bit unsigned adder uses 8 LUTs and can only
result in 28 approximate designs. We used an exhaustive search
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Figure 6: Pareto-front analysis of signed 4 × 4 multiplier.
(a) Pareto-front with PDPLUT and average absolute relative
error. (b) Comparison of hypervolume and number of design
contributions to the combined Pareto-front.
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Figure 7: Increase in AVG_ABS_REL_ERR and PPA metrics
across all approximate signed 4 × 4multipliers for CoOAx_-
BW and CoOAx_BO compared to AppAxO[3]

for synthesizing novel approximate adders. Compared to AppAxO,
the CoOAx-based 8-bit unsigned adders used up to 2 (66.7%) lesser
carry chains (CCs), 101.14𝑢𝑊 (27.1%) lower power, 0.31𝑛𝑆 (22.5%)
lower CPD. Overall, the CoOAx-based adders result, on average,
246.97(32.09%) lower PDP × CC than AppAxO-based adders. It
must be noted that the same approximate configuration results
in an equivalent error and LUT utilization for both CoOAx and
AppAxO.

6.2.2 Approximate Multipliers. To evaluate the efficacy of the gen-
erated approximate arithmetic operators, Figure 6 presents an accuracy-
performance analysis of 4 × 4 approximate multipliers. For this ex-
periment, our proposed approximate operator modeling technique
utilizes radix-4 Booth’s and Baugh-Wooley’s algorithms [20, 21]
to implement approximate 4 × 4 multipliers denoted as CoOAx-
BO and CoOAx-BW, respectively. These designs are compared with
the 4 × 4 approximate multipliers generated by the AppAxO frame-
work [3]. It should be noted that both the AppAxO framework and

0 10 20 30 40 50 60

0
10
0k

20
0k

30
0k

40
0k

50
0k

All Points(AppAxO) Pareto Points(AppAxO)
All Points(CoOAX-BW) Pareto Points(CoOAX-BW)
All Points(CoOAX-BO) Pareto Points(CoOAX-BO)

AVG_ABS_REL_ERR

PD
PL

UT

(a)

9
18

29

12
M

14
M

16
M

18
M

20
M

22
M

24
M

26
M

AppAxO
CoOAX-BW
CoOAX-BO

Hy
pe

rv
ol

um
e

(b)
Figure 8: Pareto-front analysis of signed 8 × 8multiplier (a)
Pareto-front (b) Comparison of hypervolume and number of
pareto-point contributions

our proposed operator modeling methodology utilize a 𝐿-bit string
to address the LUTs in an accurate 𝑁 × 𝑁 multiplier. Therefore,
each of the three architectures in Figure 6 contributes 1024 distinct
approximate designs. For the analysis, we have used AVG_ABS_-
REL_ERR and PDPLUT as the BEHAV and PPAmetrics, respectively
The analysis presented in Figure 6 utilizes two commonly utilized
metrics, i.e., the total number of non-dominated design points and
the significance of these points, known as the hypervolume indi-
cator [22]. The bar plots in Figure 6(b) show the individual hyper-
volume contribution of the non-dominated design points by each
technique, and the number above the plot represents the number of
contributed non-dominated design points in the combined Pareto
front analysis.

The results in Figure 6 show that compared to the four non-
dominated design points provided by AppAxO, our proposed ap-
proximate operator implementation technique provides 9 and 12
approximate multipliers. Moreover, the hypervolume contribution
of our proposed designs is also more than that of AppAxO’s designs.
The non-dominated accurate multiplier configuration ‘1023’ (binary
value ‘1111111111’) utilizes all LUTs for the partial product gen-
eration and is provided by CoOAx-BW architecture. Furthermore,
compared to Baugh-Wooley’s algorithm-based non-dominated de-
sign points, Booth’s algorithm-based designs have a lower average
absolute relative error. Interestingly, some non-dominated input-
configurations, such as 128 and 512, provided by CoOAx, have uti-
lized only a single LUT for partial product generation. Furthermore,
compared to AppAxO’s non-dominated design points, CoOAx non-
dominated design points provide better coverage of the whole de-
sign space. Figure 7 shows the distribution of the increase in the
AVG_ABS_REL_ERR and the PPA metrics for all 1023 signed 4 × 4
multiplier designs, using the proposed operator modelling, over that
proposed in AppAxO [3]. The CoOAx-BW shows average reduction
of nearly 5.7 𝜇𝑊 of power with marginally higher CPD. The error
and LUT utilization comparison are not shown for CoOAx-BW as
they are same as that in AppAxO. The CoOAx-BO model shows
average reduction in error and CPD with increased average power
dissipation and LUT utilization.



GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Salim Ullah, Siva Satyendra Sahoo, & Akash Kumar
All Points (AppAxO)

All Points (CoOAx-BW)

Pareto Points (AppAxO)

Pareto Points (CoOAx-BW)

(a)

AppAxO

CoOAx-BW

(b)
Figure 9: Pareto-front analysis of signed 8 × 8multiplier. (a)
Pareto-front with PDPLUT and MNIST classification error
(b) Comparison of hypervolume and number of pareto-point
contributions to the combined pareto-front

Figure 8 compares the accuracy-performance trade-offs of vari-
ous 8 × 8 approximate multipliers. In this experiment, each archi-
tecture (CoOAx-BO, CoOAx-BW, and AppAxO) utilizes an identical
36-bit string to identify the LUTs in the corresponding accurate
multiplier implementation. Utilizing the 36-bit string, we generated
10650 configurations (random and patterned) and utilized them
to implement corresponding approximate multipliers using each
technique. The results in Figure 8 show that the CoOAx’s mul-
tiplier implementations mainly contribute to the non-dominated
design points. Compared to the 9 Pareto designs provided by Ap-
pAxO, CoOAx provides 18 and 29 non-dominated design points.
Similar to Figure 6, the non-dominated CoOAx-BO designs have
better output accuracy, and the non-dominated CoOAx-BW designs
offer reduced 𝑃𝐷𝑃 × 𝐿𝑈𝑇 values.

6.3 Application-level Analysis of Approximate
Operators

Figure 9 presents the application-level accuracy-performance anal-
ysis of CoOAx-generated approximate multipliers. To demonstrate
the efficacy of CoOAx’s operator modeling, we have evaluated
the 3071 approximate 8 × 8 multiplier configurations utilized in
AppAxO [3] for MNIST classification. Furthermore, we have consid-
ered CoOAx-BW - and AppAxO-based designs only for the analysis3.
For this experiment, we have implemented a lightweight MLP in
Python to classify the MNIST dataset [23]. The MLP consists of two
hidden layers having 100 and 32 neurons, respectively. We have con-
sidered only the last layer of the MLP to evaluate the impact of var-
ious approximate multipliers on the output accuracy for the 10, 000
testing images dataset. For this purpose, the trained floating-point
weights and the input activations to the last layer are quantized to
8-bit fixed-point representation. The results in Figure 9 compare the
performance (𝑃𝐷𝑃×𝐿𝑈𝑇 ) and accuracy (100−𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) of theMLP.
The results show thatAppAxO-based designs contribute to only four
non-dominated design points, whereas, CoOAx-BW -based designs

3AppAxO’s designs presented in [3] utilize only Baugh-Wooley’s algorithm for approx-
imate multipliers implementation.

Table 1: Comparison of prediction accuracy of XGBoost mod-
els for PPA (PDP x LUT) and BEHAV (AVG_ABS_REL_ERR)
for signed 8 × 8 multipliers using different operator algo-
rithms

Metric
Operator
Model

MSE
(TRAIN)

MSE
(TEST)

R2
(TRAIN)

R2
(TEST)

PPA
AppAxO 65431521.46 182850873.8 0.985 0.948

CoOAx-BW 59016613.75 165053592.9 0.989 0.963
CoOAx-BO 87545742.93 220018017.6 0.982 0.947

BEHAV
AppAxO 0.157 0.245 0.999 0.998

CoOAx-BW 0.157 0.245 0.999 0.998
CoOAx-BO 2.461 3.342 0.891 0.879

result in ten non-dominated design points. An interesting observa-
tion is that three CoOAx-BW non-dominated design points have
configurations where only a single LUT is utilized for partial prod-
uct generation. The significance of the CoOAx’s non-dominated
designs is also more than that of the AppAxO’s designs, as shown by
the respective hypervolume contributions of the points. CoOAx’s
approximate operator modeling technique provides better resource
utilization and performance than AppAxO-generated approximate
operators.

6.4 ML-based Estimator Performance
For the current work, we used XGBoost-based models for the esti-
mation of PPA and BEHAV metrics. 6000 random configurations
were used for generating the modelling data. Table 1 shows the
prediction accuracy metrics (regression) for each of the model used
in operator-level DSE. As seen in the table, for both PPA and BE-
HAV, the CoOAx-BO predictions are the worst, while the AppAxO
and CoOAx-BW models exhibit similar and much better prediction
statistics. The larger Mean Square Error (MSE) values of PDPLUT
can be attributed to the relatively larger magnitude of those values.

6.5 Correlation-aware DSE Analysis
6.5.1 Searching for novel approximate multipliers. Figure 10 shows
the Pareto front analysis of the results obtained from the proposed
correlation-aware DSE method for a signed 8× 8multiplier. The fig-
ure shows three set of design points: the training data obtained from
6000 purely random approximate configurations, the PPF obtained
from the DSE across the three operator models—AppAxO, CoOAx-
BW, CoOAx-BO—and, the VPF obtained from the implementation
of the PPF design configurations. The PPF reports rather optimistic
results and the resulting VPF has lower hypervolume. However,
using the proposed DSE method, we see significant improvement
in the hypervolume with the synthesis and implementation of just
97 additional approximate multiplier designs.

6.5.2 Comparing DSE results with State-of-the-art. As was shown
in Figure 9, adopting the proposed operatormodelling for the results
of AppAxO can lead to improved accuracy-performance trade-offs.
Similarly, Figure 11 shows the Pareto front and hypervolume com-
parison of the implementation results of new design points with
AppAxO and CoOAx (across all operator models). It must be noted
that the AppAxO results correspond to 1927 new design points
suggested from DSE, compared to just 93 newly discovered design
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Figure 10: Pareto-front analysis of signed 8 × 8 multiplier
designs from training and correlation-aware DSE results (a)
Pareto-front (b) Comparison of hypervolume and number of
design points on each pareto-front.

0 10 20 30 40 50 60

0
50
k

10
0k

15
0k

20
0k

25
0k

30
0k

All Points(AppAxO) Pareto Points(AppAxO)
All Points(CoOAx) Pareto Points(CoOAx)

AVG_ABS_REL_ERR

PD
PL
UT

(a)

39

28

15
M

15
.5
M

16
M

16
.5
M

17
M

17
.5
M

AppAxO
CoOAx

Hy
pe

rv
ol

um
e

(b)
Figure 11: Pareto-front analysis of signed 8 × 8 multiplier
designs from training and correlation-aware DSE results
(a) Pareto-front (b) Comparison of hypervolume and number
of pareto-point contributions

points using the correlation-aware randomized search. As can be
seen from the figure, CoOAx clearly performs better than AppAxO,
owing largely to improved operator models and additional operator
algorithms.

7 CONCLUSION
This paper presents our CoOAx framework for synthesizing novel
approximate operators. CoOAx’s operator modeling methodology
utilizes a binary string to specify the 6-input LUTs in an accurate op-
erator implementation. This binary string identifies the LUTs that
should be removed from intermediate computation to implement
various approximate versions of an accurate operator. CoOAx’s DSE
methodology utilizes various ML models and a multi-objective opti-
mization technique to generate configurations that provide efficient
trade-offs between output accuracy and performance. Our experi-
mental results show that compared to the state-of-the-art designs,

the approximate operators generated by CoOAx provide more non-
dominated design points with better hypervolume contribution for
both operator-level designs and for AI inference application. The
proposed correlation-aware search technique improves over purely
randomized search and can be combined with other state-of-the-art
approaches for efficient DSE.
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