Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Slides, glass

If the apparatus has not been used for some time, i should be heated to about 140° to drive off any moisture. After cooling, a few crystals of the substance are placed on the glass slide G. A small cover glass,... [Pg.61]

It is instructive for the student to construct a rough melting point diagram (compare Section 1,13 and Fig. 1,12, 1) for mixtures of cinnamic acid and urea. Weigh out 1 00 g. each of the two finely powdered components, and divide each into ten approximately equal portions on a sheet of clean, smooth paper. Mix 4 portions of cinnamic acid (A) with 1 portion of urea B) intimately with the aid of a spatula on a glass slide, and determine the melting point (the temperature at which the mixture just becomes completely fluid is noted). Repeat the procedure for 3 parts of A and 2 parts oiB 2 parts of A and 3 parts of B and 1 part of A and 4 parts of B. Tabulate your results as follows —... [Pg.230]

In the present work it was studied the dependence of analytical characteristics of the composite SG - polyelectrolyte films obtained by sol-gel technique on the content of non-ionic surfactant in initial sol. Triton X-100 and Tween 20 were examined as surfactants polystyrene sulfonate (PSS), polyvinyl-sulfonic acid (PVSA) or polydimethyl-ammonium chloride (PDMDA) were used as polyelectrolytes. The final films were applied as modificators of glass slides and pyrolytic graphite (PG) electrode surfaces. [Pg.306]

SG sols were synthesized by hydrolysis of tetraethyloxysilane in the presence of polyelectrolyte and surfactant. Poly (vinylsulfonic acid) (PVSA) or poly (styrenesulfonic acid) (PSSA) were used as cation exchangers, Tween-20 or Triton X-100 were used as non- ionic surfactants. Obtained sol was dropped onto the surface of glass slide and dried over night. Template extraction from the composite film was performed in water- ethanol medium. The ion-exchange properties of the films were studied spectrophotometrically using adsorption of cationic dye Rhodamine 6G or Fe(Phen) and potentiometrically by sorption of protons. [Pg.317]

In an attempt to determine the applicability of JKR and DMT theories, Lee [91] measured the no-load contact radius of crosslinked silicone rubber spheres in contact with a glass slide as a function of their radii of curvature (R) and elastic moduli (K). In these experiments, Lee found that a thin layer of silicone gel transferred onto the glass slide. From a plot of versus R, using Eq. 13 of the JKR theory, Lee determined that the work of adhesion was about 70 7 mJ/m". a value in clo.se agreement with that determined by Johnson and coworkers 6 using Eqs. 11 and 16. [Pg.101]

The most common method to measure the compatibility of resins with other substances is to dissolve both materials in a mutually compatible solvent, and to cast a film on a glass slide. After solvent evaporation, a compatible system gives a clear film, while incompatibility results in an opaque film. A more accurate procedure is to melt the resin and the substance under a phase microscope, and compatibility is observed on the film after cooling. [Pg.618]

An interesting approach involved microscopic observation of fretting corrosion a glass slide mounted on the stage of a microscope was used for the bearing surface which pressed against a spherical specimen being vibrated by a solenoid... [Pg.1058]

In a qualitative way, the non uniformity of the beam was demonstrated in the experiment with a glass slide (1.25) the darkening of which varied considerably across the beam. Such an experiment is a quick way to check intensity distribution in an x-ray beam or to locate a region of uniform density for the positioning of a small sample. [Pg.235]

DNA microarrays, or DNA chips consist of thousands of individual DNA sequences arrayed at a high density on a single matrix, usually glass slides or quartz wafers, but sometimes on nylon substrates. Probes with known identity are used to determine complementary binding, thus allowing the analysis of gene expression, DNA sequence variation or protein levels in a highly parallel format. [Pg.526]

Substrates other than free cells were also examined for luminescence activity in the presence of tin and flavonol. For example, glass slides covered with a well-developed but uncharacterized biofllm growth were exposed to 4.5 x 10 H n-butyltin trichloride in ethanol for 60 min. The slides were subsequently rinsed with ethanol and exposed to 1.4 x H... [Pg.88]

Scientists also have learned how to mimic the surface of a butterfly wing. Polystyrene beads and smaller silica nanoparticles are suspended in water and mixed thoroughly using ultrasound. When a glass slide is dipped into the suspension and slowly withdrawn, a thin film forms on the glass surface. This film is a regular array of beads encased in a matrix of nanoparticles. Heating the film destroys the polystyrene beads but leaves the silica web intact. The result is a silica inverse opal film. [Pg.749]

Figure 7.3 shows the two-beam photon-force measurement system using a coaxial illumination photon force measurement system. Two microparticles dispersed in a liquid are optically trapped by two focused near-infrared beams ( 1 pm spot size) of a CW Nd YAG laser under an optical microscope (1064 nm, 1.2 MWcm , lOOX oil-immersion objective, NA = 1.4). The particles are positioned sufficiently far from the surface of a glass slide in order to neglect the interaction between the particles and the substrate. Green and red beams from a green LD laser (532 nm, 21 kWcm ) and a He-Ne laser (632.8 nm, 21 kW cm ) are introduced coaxially into the microscope and slightly focused onto each microparticle as an illumination light (the irradiated area was about 3 pm in diameter). The sizes of the illumination areas for the green and red beams are almost the same as the diameter of the microparticles (see Figure 7.4). The back scattered light from the surface of each microparticle is... Figure 7.3 shows the two-beam photon-force measurement system using a coaxial illumination photon force measurement system. Two microparticles dispersed in a liquid are optically trapped by two focused near-infrared beams ( 1 pm spot size) of a CW Nd YAG laser under an optical microscope (1064 nm, 1.2 MWcm , lOOX oil-immersion objective, NA = 1.4). The particles are positioned sufficiently far from the surface of a glass slide in order to neglect the interaction between the particles and the substrate. Green and red beams from a green LD laser (532 nm, 21 kWcm ) and a He-Ne laser (632.8 nm, 21 kW cm ) are introduced coaxially into the microscope and slightly focused onto each microparticle as an illumination light (the irradiated area was about 3 pm in diameter). The sizes of the illumination areas for the green and red beams are almost the same as the diameter of the microparticles (see Figure 7.4). The back scattered light from the surface of each microparticle is...
Fig. 2.3.8 Lower GARField profiles of a human skin sample sandwiched between two glass slides, recorded immediately after the sample was floated onto the first slide and again approximately 90 min later. Upper increasing the pulse gap T from 150 to 500 ps increases mobility contrast and allows discrimination between the stratum comeum (right) and viable epidermis (left). Again two profiles are shown, recorded approximately 90 min apart. Fig. 2.3.8 Lower GARField profiles of a human skin sample sandwiched between two glass slides, recorded immediately after the sample was floated onto the first slide and again approximately 90 min later. Upper increasing the pulse gap T from 150 to 500 ps increases mobility contrast and allows discrimination between the stratum comeum (right) and viable epidermis (left). Again two profiles are shown, recorded approximately 90 min apart.
Fig. 2.4.5 Profile of a phantom made of three 2-mm thick rubber layers separated by glass slides of 2- and 1-mm thick. The CPMG sequence was executed with the following parameters repetition time = 50 ms, tE = 0.12 ms, number of echoes = 48 and 64 accumulations. The profile was scanned with a spatial resolution of 100 pm in 5 min. Fig. 2.4.5 Profile of a phantom made of three 2-mm thick rubber layers separated by glass slides of 2- and 1-mm thick. The CPMG sequence was executed with the following parameters repetition time = 50 ms, tE = 0.12 ms, number of echoes = 48 and 64 accumulations. The profile was scanned with a spatial resolution of 100 pm in 5 min.

See other pages where Slides, glass is mentioned: [Pg.445]    [Pg.2552]    [Pg.2552]    [Pg.61]    [Pg.76]    [Pg.192]    [Pg.435]    [Pg.355]    [Pg.461]    [Pg.188]    [Pg.600]    [Pg.624]    [Pg.40]    [Pg.765]    [Pg.766]    [Pg.94]    [Pg.88]    [Pg.132]    [Pg.258]    [Pg.238]    [Pg.86]    [Pg.113]    [Pg.406]    [Pg.355]    [Pg.233]    [Pg.439]    [Pg.105]    [Pg.478]    [Pg.479]    [Pg.119]    [Pg.311]    [Pg.1212]    [Pg.979]    [Pg.328]    [Pg.873]    [Pg.111]   
See also in sourсe #XX -- [ Pg.293 , Pg.297 ]

See also in sourсe #XX -- [ Pg.135 , Pg.199 , Pg.204 , Pg.215 , Pg.341 , Pg.350 , Pg.364 , Pg.366 , Pg.370 , Pg.379 , Pg.380 , Pg.381 ]




SEARCH



Conductive glass slides

Fibrinogen glass slide

Glass slide group

Glass slide microscope

Glass slide nitrocellulose coated

Glass slides modification with

Glass-slide holder

Glass-slide microarrays

INDEX glass slide

Low-e glass slide

Microscopic images, analysis glass slide

Silanting of Glass Slides

© 2024 chempedia.info