Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxy pyrroles

N-alkylation, 4, 236 Pyrrole, 2-formyl-3,4-diiodo-synthesis, 4, 216 Pyrrole, 2-formyl-1-methyl-conformation, 4, 193 Pyrrole, 2-formyl-5-nitro-conformation, 4, 193 Pyrrole, furyl-rotamers, 4, 546 Pyrrole, 2-(2-furyl)-conformation, 4, 32 Pyrrole, 2-halo-reactions, 4, 78 Pyrrole, 3-halo-reactions, 4, 78 Pyrrole, 2-halomethyl-nucleophilic substitution, 4, 274 reactions, 4, 275 Pyrrole, hydroxy-synthesis, 4, 97 Pyrrole, 1-hydroxy-cycloaddition reactions, 4, 303 deoxygenation, 4, 304 synthesis, 4, 126, 363 tautomerism, 4, 35, 197 Pyrrole, 2-hydroxy-reactions, 4, 76 tautomerism, 4, 36, 198... [Pg.815]

Subsequently, the same group reported an efficient AFC reaction of pyrroles having one electron-withdrawing group at the a,p or N-position with alkyl glyoxylates catalyzed by BINOL-Ti" complex 3 (Scheme 6.3). The reactions regioselectively afforded the desired pyrrole-hydroxy acetic acid derivatives 5 or 6 in good yields (up to 96%) and up to 97% ee. [Pg.216]

Hydroxy-THISs react with electron-deficient alkynes to give nonisol-able adducts that extrude carbonyl sulfide, affording pyrroles (23). Compound 16 (X = 0) seems particularly reactive (Scheme 16) (25). The cycloaddition to benzyne yields isoindoles in low- yield. Further cyclo-addition between isoindole and benzyne leads to an iminoanthracene as the main product (Scheme 17). The cycloadducts derived from electron-deficient alkenes are stable (23, 25) unless highly strained. Thus the two adducts, 18a (R = H, R = COOMe) and 18b (R = COOMe, R = H), formed from 7, both extrude furan and COS under the reaction conditions producing the pyrroles (19. R = H or COOMe) (Scheme 18). Similarly, the cycloadduct formed between 16 (X = 0) and dimethylfumarate... [Pg.9]

Again, it is noteworthy that 4-substituted 5-hydrdxythiazoles (24) react like 5-hydroxy-THISs with alkynes to give pyrroles and sometimes with alkenes to give exo-cycloadducts (Scheme 22). In the latter case other processes compete with the cycloaddition, becoming dominant when 24 is treated with azo-compounds, enamines, or heterocumulenes (31). [Pg.11]

The 5-acylamino-THISs react with alkynes in a way already exemplified for 5-hydroxy-THISs. Pyrroles are formed under elimination of isothiocyanate (Scheme 29) (37). 5-Acylamino-THISs are readily bromi-nated in the 4-position (21). [Pg.14]

Pyridazinones may undergo ring contraction to pyrroles, pyrazoles and indoles, the process being induced either by an acid or base. The structure of the final product is strongly dependent on the reaction conditions. For example, 4,5-dichloro-l-phenylpyridazin-6(lFT)-one rearranges thermally to 4-chloro-l-phenylpyrazole-5-carboxylic acid (12S), while in aqueous base the corresponding 4-hydroxy acid (126) is formed (Scheme 40). [Pg.29]

Pyrrole has been condensed under alkaline conditions with formaldehyde to give products of either N- or C-hydroxymethylation (Scheme 22). Although acid-catalyzed hydroxy-methylation is not a practical possibility, by addition of a reducing agent to the reaction mixture overall reductive alkylation can be achieved (Scheme 23). [Pg.54]

Complex reactions occur on the autoxidation of pyrroles (see Section 3.05.1.4) predictably, susceptibility to autoxidation increases with increasing alkyl substitution, llie photosensitized reaction of pyrrole and oxygen yields 5-hydroxy-A -pyrrolin-2-one, probably by way of an intermediate cyclic peroxide (Scheme 28) (76JA802). [Pg.57]

In many cases, substituents linked to a pyrrole, furan or thiophene ring show similar reactivity to those linked to a benzenoid nucleus. This generalization is not true for amino or hydroxyl groups. Hydroxy compounds exist largely, or entirely, in an alternative nonaromatic tautomeric form. Derivatives of this type show little resemblance in their reactions to anilines or phenols. Thienyl- and especially pyrryl- and furyl-methyl halides show enhanced reactivity compared with benzyl halides because the halogen is made more labile by electron release of the type shown below. Hydroxymethyl and aminomethyl groups on heteroaromatic nuclei are activated to nucleophilic attack by a similar effect. [Pg.69]

The 4- and 5-hydroxy-imidazoles, -oxazoles and -thiazoles (499, 501) and 4-hydroxy-pyrazoles, -isoxazoles and -isothiazoles (503) cannot tautomerize to an aromatic carbonyl form. However, tautomerism similar to that which occurs in hydroxy-furans, -thiophenes and -pyrroles is possible (499 500 503 504 501 502), as well as a zwitterionic... [Pg.101]

Phenylacetonitrile reacts with diethyl sulfite to give 3-hydroxy-4,5-diphenylisothia2ole, together with other products (75SST(3)541). Phenylketene reacts with compound (199) to give a mixture of the isothiazolidinone (200) and the pyrrole (201 Scheme 33) (77SST(4)339, 79SST(5)345). [Pg.170]

Pyrrole, 3-hydroxy-geometry, 4, 158 synthesis, 4, 343 tautomerism, 4, 36, 198 Pyrrole, 3-([Pg.816]

Pyrrole-2-carboxamide, N,N-dimethyl-conformation, 4, 194 Pyrrole-3-carboxamide, N,N-dimethyl-conformation, 4, 194 Pyrrolecarboxamides synthesis, 4, 242 Pyrrole-2-carboxamides synthesis, 4, 148, 360 Pyrrolecarboxylhydrazides Curtius degradation, 4, 362 Pyrrole-2-carboxylic acid, l-benzyl-3-hydroxy-ethyl ester... [Pg.817]

Pyrrole-2-carboxylic acid, 4,5-dimethyl-ethyl ester formylation, 4, 217 Pyrrole-2-carboxylic acid, 3-hydroxy-... [Pg.817]

Pyrrole-3,5-dicarboxylic acid, 1-aryl-2-hydroxy-diethyl ester synthesis, 4, 123... [Pg.818]

Selenolo[2,3-b]pyridine-2-carboxylic acid, 3-hydroxy-synthesis, 4, 1034 Selenolopyridines, 4, 1034—1036 H NMR, 4, 1035, 1036 Selenolo[2,3-c]pyridines synthesis, 4, 1035 Selenolo[3,2-b]pyridines deuteriodeprotonation, 4, 1035 synthesis, 4, 1034 Selenolo[3,2-c]pyridines synthesis, 4, 1035 Selenolo[2,3-b]pyrroles ionization potentials, 4, 1046 Selenolo[3,2-b]pyrroles ionization potentials, 4, 1046 Selenolo[3,4-c]pyrroles non-classical... [Pg.840]

The importance of ring size holds also for tautomerism of -pyrrol-5-ones and. d -dihydro-6-pyridones. While the former compounds behave as cyclic 1-methyl-2-alkyl-2-hydroxy-5-pyrrolidones 179) (76) [or, on distillation, as the dehydrated l-methyl-2-alkyl-J -pyrrolones (77)], the latter compounds exist as acyclic N-methylamides of 8-oxo-acids (78) [as shown by infrared spectroscopy (/80)j. The dehydration of 78 during distillation to form l-methyl-2-alkyl-. -dihydro-6-pyridones (79) is achieved only with difficulty. [Pg.272]

The methods outlined, of course, are readily applicable to a wide variety of substituted heterocycles like the carboxyl, hydroxy and mercapto derivatives of pyridines, pyridine 1-oxides, pyrroles, etc. The application to amines and to diaza compounds such as pyrimidine, where the two centers are basic, is obvious except that now 23 takes the role of the neutral compound, 21 and 22 the roles of the tautomeric first conjugate bases, and 20 the role of the second conjugate base. Extensions to molecules with more than two acidic or basic centers, such as aminonicotinic acid, pyrimidinecarboxylic acids, etc., are obvious although they tend to become algebraically cumbersome, involving (for three centers) three measurable Kg s, four Ay s, and fifteen ideal dissociation constants (A ), a total of twenty-two constants of which seven are independent. [Pg.258]

The amino form is usually much more favored in the equilibrium between amino and imino forms than is the hydroxy form in the corresponding keto-enol equilibrium. Grab and XJtzinger suggest that in the case of a-amino- and a-hydroxy-pyrroles, structure 89 increases the mesomeric stabilization and thus offsets the loss of pyrrole resonance energy, but the increase due to structure 90 is not sufficient to offset this loss. Similar reasoning may apply to furans and... [Pg.20]

Hydroxy group of 8-hyd oxy-2-cycloalkyl-2,3,4,6,ll,lla-hexahydro-l//-pyrazino[l,2-i]isoquinoline-l,4-diones was alkylated with allyl bromide, 2-(bromodifluoromethyl)pyridines, l-(bromodifluoromethyl)- and l-(bro-momethyl)benzenes, halomethyl derivatives of different heterocycles (pyridine, pyrazine, pyrazole, pyrrole, thiazole, thiophene) in the presence of CS2CO3 or K2CO3 (98MIP7). Hydroxy group of 8-hydroxy-2-cyclopentyl-... [Pg.313]

Pyrrole Pyridine 4- Hydroxy pyridine Indole Quinoline... [Pg.320]

Anionic polymerization of lactams was shown to proceed according to what is called the activated monomer mechanism. With bischloroformates of hydroxy-terminated poly(tetramethyleneglycol) and poly(styrene glycol) as precursors for a polymeric initiator containing N-acyl lactam ends, block copolymers with n-pyrrol-idone and e-caprolactam were obtained by bulk polymerizations in vacuum at 30 and 80 °C, respectively361. ... [Pg.30]


See other pages where Hydroxy pyrroles is mentioned: [Pg.815]    [Pg.160]    [Pg.815]    [Pg.815]    [Pg.496]    [Pg.815]    [Pg.815]    [Pg.815]    [Pg.35]    [Pg.36]    [Pg.36]    [Pg.126]    [Pg.127]    [Pg.129]    [Pg.149]    [Pg.694]    [Pg.796]    [Pg.796]    [Pg.814]    [Pg.814]    [Pg.876]    [Pg.892]    [Pg.5]    [Pg.116]    [Pg.601]    [Pg.624]    [Pg.274]   
See also in sourсe #XX -- [ Pg.51 , Pg.105 ]

See also in sourсe #XX -- [ Pg.51 , Pg.105 ]

See also in sourсe #XX -- [ Pg.51 , Pg.105 ]

See also in sourсe #XX -- [ Pg.51 , Pg.105 ]

See also in sourсe #XX -- [ Pg.51 , Pg.105 ]

See also in sourсe #XX -- [ Pg.51 , Pg.105 ]




SEARCH



© 2024 chempedia.info