Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium catalyst precursors

The best known rhodium catalyst precursor for hydroformylation is undoubtedly RhH(PPh3)3CO, first reported by Vaska in 1963,167 but its activity for hydroformylation was discovered by Wilkinson and co-workers a few years later.168-171 The chemistry reported in the late 1960s and early 1970s is still... [Pg.155]

Thus, two quite different forms of rhodium catalyst precursor can give the same rhodium species under the carbonylation reaction conditions. [Pg.258]

Here, an example is given for the reduction of itaconic acid (51) with a rhodium catalyst precursor (52) and a phosphine ligand (53) (Scheme 20.18). The... [Pg.595]

The Rh(II)-catalysed intramolecular C-H insertion of diazoacetamide in water has been studied.49 This study assessed the factors governing the preferential intramolecular C-H insertion versus O-H insertion with the solvent. The hydrophobic/hydrophilic nature of the amide substituent appeared to be the most significant contribution driving the reaction towards C-H insertion. The nature of the rhodium catalyst precursor also modifies the reaction outcome [Rh2(OAc)4 enhancing the O-H insertion],... [Pg.162]

Scheme 1.20 Preparation of rhodium catalyst precursors via RhClj. Scheme 1.20 Preparation of rhodium catalyst precursors via RhClj.
A chiral catalyst of this type was generated by the reaction of a chiral phos-phoramidite with a Zn template and final encapsulation of a common rhodium catalyst precursor (Scheme 4.126) [34c]. [Pg.376]

In addition to rhodium(III) oxide, cobalt(II) acetylacetonate or dicobalt octacarbonyl has been used by the submitters as catalyst precursors for the hydroformylation of cyclohexene. The results are given in Table I. [Pg.13]

Laine and co-workers have studied the mechanism involved in rhodium-catalysed benzaldehyde hydrogenation, using [Rh6(CO)i6] as catalyst precursor. Following kinetic arguments, the authors proposed cluster catalysis with a limiting step corresponding to the break of metal-metal bond and/or isomerisation of the cluster formation [22]. [Pg.429]

Study of the mechanism of the rhodium-catalyzed hydroamination of ethylene with secondary amines indicated that the piperidine complex trans-RhCl(C2H4)(piperidine)2 can serve as a catalyst precursor [109, 110]. [Pg.98]

Yoshida and Otsuka found that platinum(O) complexes [PtLj] (26) (a L = PEtj b L = P Prj) and rhodium hydrido complexes such as [RhHLj] (L = P Prs 33, PEts), [RhiHidr-NJlPCyslJ (34), tram-[RhH(N2)(PPh Bu2)J, and [RhH(P Bu3)J, all of which carry electron-donating alkylphosphine ligands, can catalyze the water gas shift reaction under fairly mild conditions (100-150°C CO 20 kg/cm ) (Eq. 6.32) [23, 60]. Among these complexes, [RhH(P Pr3)3] (33) was the most active catalyst precursor. Several complexes were isolated from or detected in the reaction mixture... [Pg.193]

The synthesis, aggregation behavior, and catalytic activity of Rh complexes of Xantphos derivatives (129) with surface-active pendant groups have been described.416 The complex [HRh(CO)(TPPTS)3] was used as a catalyst precursor in the hydroformylation of 1-butene, 1-octene, and styrene under biphasic reaction conditions 417 The two-phase hydroformylation of buta-1,3-diene with [HRh(CO)(TPPTS)3], with excess TPPPS, gives high yields of C5-monoaldehydes.418 The coordination behavior of the catalytic species HRh(130)(CO)2] was studied by HP NMR spectroscopy which showed the desired bis-equatorial coordination of the ligand to the rhodium center.419... [Pg.177]

The monosulfonated PPh derivative, Ph2P(m-C6H4S03K) (DPM) and its rhodium complex, HRh(CO)(DPM)3 have been synthesized and characterized by IR and NMR spectroscopic techniques. The data showed that the structure was similar to [HRh(CO)(PPh3)3]. The catalytic activity and selectivity of [HRh(CO)(DPM)3] in styrene hydroformylation were studied in biphasic catalytic systems.420 421 Rh1 complexes [Rh(acac)(CO)(PR3)] with tpa (131), cyep (132), (126), ompp (133), pmpp (134), tmpp (135), PPh2(pyl), PPh(pyl)2, and P(pyl)3 were characterized with NMR and IR spectra. Complexes with (131), (132), and (126) were catalysts for hydrogenation of C—C and C—O bonds, isomerization of alkenes, and hydroformylation of alkenes.422 Asymmetric hydroformylation of styrene was performed using as catalyst precursor [Rh(//-0 Me)(COD)]2 associated with sodium salts of m-sulfonated diarylphosphines.423... [Pg.177]

A consequence of the value of the ligand is that one of the simplest ways to restore catalyst activity is simply to add fresh catalyst precursor. Unfortunately, there are practical limits as the rhodium concentration increases. First one must consider metal complex solubility, particularly in the recycle catalyst solution in a liquid recycle system. Secondly, higher rhodium concentrations favor formation of various types of rhodium clusters.[11] As rhodium increments are added to a partially deactivated cata-... [Pg.30]

Trace Rhodium Recovery from Product or Byproduct Streams. As will be discussed later, there are what might be viewed as the ultimate rhodium recovery methods in which the organic matrix is burned, the rhodium recovered as an ash, then processed through a precious metal refinery before conversion into a catalyst precursor. Once rhodium is processed into an ash, there is significance expense associated with its conversion to a suitable catalyst precursor. Therefore, technologies which permit capture and reuse or reactivation and reuse are strongly preferred over more extreme procedures. [Pg.32]

Wiped-Film Evaporator/02 Reactivation of Catalyst. In this technology [38], spent or-ganophosphine-modified rhodium catalyst is first concentrated in a wiped-film evaporator where most of the organophosphine is removed. The rhodium concentrate is contacted with air to break down phosphido bridges in rhodium clusters. This air treated concentrate may then be used as a catalyst precursor. This procedure is suitable in circumstances where most of the aldehyde dimers, trimers and tetramers are sufficiently volatile to be removed in a wiped-film evaporator. [Pg.34]

Preparation of a Rhodium Hydride Catalyst Precursor from Spent Catalyst. If, for whatever reason, none of the reactivation procedures above are suitable, one is faced with the option of returning the catalyst concentrate to a vendor for conversion into a catalyst precursor. If the recovery involves reduction of the catalyst concentrate to a rhodium ash, significant expense is involved. Procedures that avoid rhodium ashing may be more economic. [Pg.36]

The catalyst precursor generally used for the reaction is rhodium dicarbonyl acetylacetonate. However, detailed infrared studies under the reaction conditions (ca. 1000 bar CO/H2 and 200°C) have shown both the [Rh(CO)4] and the [Rh12(CO)34 36]2 anions to be present in various concentrations at different stages of the reaction (62, 63). It is suggested that rhodium carbonyl clusters, characterized as having three intense infrared absorptions at 1868 10, 1838 10, and 1785 10 cm-1, are responsible for the catalysis (62), and it is believed that the reaction is dependent upon the existence of the following equilibria ... [Pg.80]

The [Rh(CO)2I2] ion is clearly an important species in systems derived from several different catalyst precursors fortuitously, it is a relatively nucleophilic rhodium species. Thus it reacts with methyl iodide at room temperature, whereas the related uncharged species, [Rh(CO)2Cl]2, is unreactive toward methyl iodide at low temperatures. This difference between neutral and charged species is also evidenced markedly in the relative reactivities of [RhL2(CO)X] and [RhL(CO)X2] toward methyl iodide, where a difference of five orders of magnitude has been observed (19). [Pg.261]

Butyne-l,4-diol has been hydrogenated to the 2-butene-diol (97), mesityl oxide to methylisobutylketone (98), and epoxides to alcohols (98a). The rhodium complex and a related solvated complex, RhCl(solvent)(dppb), where dppb = l,4-bis(diphenylphosphino)butane, have been used to hydrogenate the ketone group in pyruvates to give lactates (99) [Eq. (15)], and in situ catalysts formed from rhodium(I) precursors with phosphines can also catalyze the hydrogenation of the imine bond in Schiff bases (100) (see also Section III,A,3). [Pg.325]


See other pages where Rhodium catalyst precursors is mentioned: [Pg.120]    [Pg.3]    [Pg.59]    [Pg.59]    [Pg.98]    [Pg.462]    [Pg.491]    [Pg.63]    [Pg.192]    [Pg.120]    [Pg.3]    [Pg.59]    [Pg.59]    [Pg.98]    [Pg.462]    [Pg.491]    [Pg.63]    [Pg.192]    [Pg.471]    [Pg.14]    [Pg.242]    [Pg.115]    [Pg.182]    [Pg.385]    [Pg.180]    [Pg.270]    [Pg.294]    [Pg.347]    [Pg.113]    [Pg.113]    [Pg.118]    [Pg.123]    [Pg.160]    [Pg.162]    [Pg.164]    [Pg.164]    [Pg.172]    [Pg.172]    [Pg.143]    [Pg.258]    [Pg.340]   
See also in sourсe #XX -- [ Pg.26 , Pg.27 ]




SEARCH



Catalyst precursor

Rhodium catalysts catalyst

© 2024 chempedia.info