Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Total potential

The general analysis, while not difficult, is complicated however, the limiting case of the very elongated, essentially cylindrical drop is not hard to treat. Consider a section of the elongated cylinder of volume V (Fig. II-18h). The centrifugal force on a volume element is u rAp, where w is the speed of revolution and Ap the difference in density. The potential energy at distance r from the axis of revolution is then w r Apfl, and the total potential energy for the... [Pg.30]

The basic device is very simple. A tip of refractory metal, such as tungsten, is electrically heat-polished to yield a nearly hemispherical end of about 10" cm radius. A potential of about 10 kV is applied between the tip and a hemispherical fluorescent screen. The field, F, falls off with distance as kr, and if the two radii of curvature are a and b, the total potential difference V is then... [Pg.299]

This ionic potential is periodic. A translation of r to r + R can be acconnnodated by simply reordering the sunnnation. Since the valence charge density is also periodic, the total potential is periodic as the Hartree and exchange-correlation potentials are fiinctions of the charge density. In this situation, it can be shown that the wavefiinctions for crystalline matter can be written as... [Pg.101]

A direct and transparent derivation of the second virial coefficient follows from the canonical ensemble. To make the notation and argument simpler, we first assume pairwise additivity of the total potential with no angular contribution. The extension to angularly-mdependent non-pairwise additive potentials is straightforward. The total potential... [Pg.449]

The presence of tln-ee-body interactions in the total potential energy leads to an additional temi in the internal energy and virial pressure involving the three-body potential / 2, r, and the corresponding tlnee-... [Pg.474]

Kirkwood derived an analogous equation that also relates two- and tlnee-particle correlation fiinctions but an approximation is necessary to uncouple them. The superposition approximation mentioned earlier is one such approximation, but unfortunately it is not very accurate. It is equivalent to the assumption that the potential of average force of tlnee or more particles is pairwise additive, which is not the case even if the total potential is pair decomposable. The YBG equation for n = 1, however, is a convenient starting point for perturbation theories of inliomogeneous fluids in an external field. [Pg.478]

In perturbation theories of fluids, the pair total potential is divided into a reference part and a perturbation... [Pg.503]

The first step is to divide the total potential into two parts a reference part and the remainder treated as a perturbation. A coupling parameter X is introduced to serve as a switch which turns the perturbation on or off. [Pg.503]

The total potential energy of A particles in a given configuration (r. [Pg.503]

Our discussion of solids and alloys is mainly confined to the Ising model and to systems that are isomorphic to it. This model considers a periodic lattice of N sites of any given symmetry in which a spin variable. S j = 1 is associated with each site and interactions between sites are confined only to those between nearest neighbours. The total potential energy of interaction... [Pg.519]

Figure Bl.26.21. Potential energy curves for an electron near a metal surface. Image potential curve no applied field. Total potential curve applied external field = -E. ... Figure Bl.26.21. Potential energy curves for an electron near a metal surface. Image potential curve no applied field. Total potential curve applied external field = -E. ...
Abstract. A smooth empirical potential is constructed for use in off-lattice protein folding studies. Our potential is a function of the amino acid labels and of the distances between the Ca atoms of a protein. The potential is a sum of smooth surface potential terms that model solvent interactions and of pair potentials that are functions of a distance, with a smooth cutoff at 12 Angstrom. Techniques include the use of a fully automatic and reliable estimator for smooth densities, of cluster analysis to group together amino acid pairs with similar distance distributions, and of quadratic progrmnming to find appropriate weights with which the various terms enter the total potential. For nine small test proteins, the new potential has local minima within 1.3-4.7A of the PDB geometry, with one exception that has an error of S.SA. [Pg.212]

One more quantum number, that relating to the inversion (i) symmetry operator ean be used in atomie eases beeause the total potential energy V is unehanged when all of the eleetrons have their position veetors subjeeted to inversion (i r = -r). This quantum number is straightforward to determine. Beeause eaeh L, S, Ml, Ms, H state diseussed above eonsist of a few (or, in the ease of eonfiguration interaetion several) symmetry adapted eombinations of Slater determinant funetions, the effeet of the inversion operator on sueh a wavefunetion P ean be determined by ... [Pg.257]

The total potential energy of adsorption interaction may be subdivided into parts representing contributions of the different types of interactions between adsorbed molecules and adsorbents. Adopting the terminology of Barrer (3), the total energy of interaction is the sum of contributions... [Pg.269]

The relative value of the two potentials reveals the destabdization action of salts added to the emulsion. Addition of an electrolyte to the continuous phase causes a reduction of the electric double-layer repulsion potential, whereas the van der Waals potential remains essentially unchanged. Hence, the reduced electric double-layer potential causes a corresponding reduction of the maximum in the total potential, and at a certain concentration of electrolyte the maximum barrier height is reduced to a level at which the stabdity is lost. [Pg.199]

Ethylene is first in total market value among petrochemicals. Based on 1989 production capacity of 58 x 10 t, the total potential market value would be approximately 29 x 10 based on an ethylene price of 500/t. [Pg.446]

In general, according to Eq. (2-10), two electrochemical reactions take place in electrolytic corrosion. In the experimental arrangement in Fig. 2-3, it is therefore not the I(U) curve for one reaction that is being determined, but the total current-potential curve of the mixed electrode, E,. Thus, according to Eq. (2-10), the total potential curve involves the superposition of both partial current-potential curves ... [Pg.44]

A potential energy function is a mathematical equation that allows for the potential energy, V, of a chemical system to be calculated as a function of its tliree-dimensional (3D) structure, R. The equation includes terms describing the various physical interactions that dictate the structure and properties of a chemical system. The total potential energy of a chemical system with a defined 3D strucmre, V(R)iai, can be separated into terms for the internal, V(/ )i,iBmai, and external, V(/ )extemai, potential energy as described in the following equations. [Pg.8]

Ashton solved this problem approximately by recognizing that the differential equation, Equation (5.32), is but one result of the equilibrium requirement of making the total potential energy of the mechanical system stationary relative to the independent variable w [5-9]. An alternative method is to express the total potential energy in terms of the deflections and their derivatives. Specifically, Ashton approximated the deflection by the Fourier expansion in Equation (5.29) and substituted it in the expression for the total potential energy, V ... [Pg.292]

Such a stationary value of V can be a relative maximum, a relative minimum, a neutral point, or an inflection point as shown in Figure B-1. There, Equation (B.1) is satisfied at points 1, 2, 3, 4, and 5. By inspection, the function V(x) has a relative minimum at points 1 and 4, a relative maximum at point 3, and an inflection point at point 2. Also shown in Figure B-1 at position 5 is a succession of neutral points for which all derivatives of V(x) vanish. A simple physical example of such stationary values is a bead on a wire shaped as in Figure B-1. That is, a minimum of V(x) (the total potential energy of the bead) corresponds to stable equilibrium, a maximum or inflection point to unstable equilibrium, and a neutral point to neutral equilibrium. [Pg.479]

On tlie otlicr hand, tlie liver is not protected, and its total potential absorption of a chemical is much greater. [Pg.308]

The total potential number of geometrie isomers inereases enormously with inerease in eluster size, being, for example, three for C30, 40 for C40, 271 for C50 and no fewer than 1812 for Ceo. However, the number beeomes mueh more manageable if one eonsiders only those isomers that have no eontiguous pentagons. The theoretieal justifieations for this... [Pg.280]


See other pages where Total potential is mentioned: [Pg.438]    [Pg.460]    [Pg.462]    [Pg.593]    [Pg.606]    [Pg.887]    [Pg.2537]    [Pg.190]    [Pg.194]    [Pg.325]    [Pg.501]    [Pg.99]    [Pg.164]    [Pg.190]    [Pg.194]    [Pg.5]    [Pg.546]    [Pg.21]    [Pg.107]    [Pg.136]    [Pg.401]    [Pg.69]    [Pg.131]    [Pg.834]    [Pg.306]    [Pg.357]    [Pg.569]    [Pg.752]   
See also in sourсe #XX -- [ Pg.120 ]




SEARCH



Application of total intermolecular pair potentials in a liquid medium

Chemical potential total

Electronic potential energy, total

Electronic potential energy, total molecule

INDEX total potential energy

Interparticle forces total potential energy

Irreversible electron transfer, totally, potential

Isolated, total electrostatic potential

Laterally averaged total potential

Potential dependent attenuated total

Potential energy total charge

Potential of zero total charge

Potential total dermal dose

Repulsive Interactions, Total Interaction Pair Potentials

The Net Total Particle Charge Surface Potential

The Total-Interaction Potential Curve

Total Potential Energy and the Schulze-Hardy Rule

Total Potential Soil Acidity

Total cell potential

Total cross section potential scattering

Total current density potential dependence

Total electric potential

Total intermolecular potential energy

Total potential energy

Total potential energy of interaction,

Total protonic potential difference

© 2024 chempedia.info