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ABSTRACT
Knowledge-Enhanced Pre-trained Language Models (KEPLMs) im-
prove the language understanding abilities of deep language models
by leveraging the rich semantic knowledge from knowledge graphs,
other than plain pre-training texts. However, previous effortsmostly
use homogeneous knowledge (especially structured relation triples
in knowledge graphs) to enhance the context-aware representations
of entity mentions, whose performance may be limited by the cover-
age of knowledge graphs. Also, it is unclear whether these KEPLMs
truly understand the injected semantic knowledge due to the “black-
box” training mechanism. In this paper, we propose a novel KEPLM
named HORNET, which integrates Heterogeneous knOwledge
from various structured and unstructured sources into the Roberta
NETwork and hence takes full advantage of both linguistic and
factual knowledge simultaneously. Specifically, we design a hybrid
attention heterogeneous graph convolution network (HaHGCN)
to learn heterogeneous knowledge representations based on the
structured relation triplets from knowledge graphs and the unstruc-
tured entity description texts. Meanwhile, we propose the explicit
dual knowledge understanding tasks to help induce a more effective
infusion of the heterogeneous knowledge, promoting our model
for learning the complicated mappings from the knowledge graph
embedding space to the deep context-aware embedding space and
vice versa. Experiments show that our HORNET model outper-
forms various KEPLM baselines on knowledge-aware tasks includ-
ing knowledge probing, entity typing and relation extraction. Our
model also achieves substantial improvement over several GLUE
benchmark datasets, compared to other KEPLMs.
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1 INTRODUCTION
Pre-trained Language Models (PLMs) leverage large-scale unstruc-
tured pre-training corpora and well-designed self-supervised pre-
training tasks to learn effective context-aware token representa-
tions, achieving the state-of-the-art performance on a wide range of
NLP downstream tasks, such as question answering, relation extrac-
tion and natural language inference [13, 16, 20]. Although previous
works have shown that deep PLMs pose some degrees of language
understanding abilities [27, 43], this advantage induces memoriz-
ing facts observed from the pre-training corpus. As Knowledge
Graphs (KGs) contain rich structured knowledge in the form of re-
lation triples, Knowledge-Enhanced Pre-trained Language Models
(KEPLMs) [17, 22, 42] can further benefit language understanding
by grounding these PLMs with the high-quality, human-curated
knowledge facts in KGs, which are difficult to learn from raw texts.

In the literature, popular KEPLMs [10, 30, 39] can be mostly
divided into two categories: i) PLMs with structured knowledge
and ii) PLMs with unstructured knowledge. PLMs with structured
knowledge learn context-aware representations of entity mentions
from both pre-training corpora and relation triples via entity linking
networks and knowledge-aware self-supervised tasks [42]. The re-
lation triples in KGs are usually embedded into a continuous feature
space by KG embedding algorithms (e.g., TransE [2]). PLMs with
unstructured knowledge specifically learn knowledge from entity
description texts [34] or natural-language sentences automatically
converted from relation triples [30].

Although previous studies have proved the effectiveness of incor-
porating external knowledge into PLMs, two critical issues remain
to be addressed. i) Previous works only focus on a single knowledge
source, such as structured relation triples or unstructured entity-
related text information [30, 42]. However, the relations triples
and the corresponding description texts are both critical to help
the PLMs understand the entity mentions in pre-training texts.
As shown in Figure 1, we find that “HORNET’ and “ParaNorman”
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Figure 1: Example of structured relation triples in the KG
and the corresponding entity description texts. To fully un-
derstand the sentence, it is necessary to obtain the knowl-
edge from both structured relations and unstructured entity
descriptions.

are names of movies based on the entity description tests. Hence,
the underlying PLM can further understand the relations between
“Travis Knight” and “HORNET”, together with “Travis Knight” and
“animated characters” in the pre-training text. ii) Current KEPLMs
pay little attention to whether the KEPLMs pre-trained by the exist-
ing self-supervised tasks truly understand the injected knowledge,
which is crucial for the realistic practice of the injected knowledge
to gain the advantage in the downstream tasks.

To overcome the two challenges mentioned above, we propose
a KEPLM based on heterogeneous knowledge information and
the RoBERTa model [19] (HORNET), which is continuously pre-
trained on large-scale corpora and heterogeneous knowledge sources
to retrofit the context-aware token representations:

• Weuse two types of homogeneous knowledge for pre-training
HORNET, including structured relation triples and unstruc-
tured entity description texts. The structured relation triples
are extracted from KGs such as WiKiData 1. The unstruc-
tured knowledge contains entity descriptions and natural-
language sentences constructed by entity mention lists in
WikiData5M 2. A heterogeneous graph is constructed based
on entities and relations in KGs, together with descriptive
sentences. Corresponding to the heterogeneous graph, we
propose a hybrid attention heterogeneous graph convolution
network (HaHGCN) to learn the knowledge-aware entity
representations based on two types of attention mechanisms,
namely semantic-level attention and node-level attention.

• To alleviate the “black-box” training problem, we propose
the dual mapping pre-training tasks to promote the model to
learn the complicated mappings between the KEPLM repre-
sentation space and the knowledge graph embedding space.

1https://www.wikidata.org
2https://deepgraphlearning.github.io/project/wikidata5m

These tasks intuitively help KEPLMs to understand the in-
jected heterogeneous knowledge informationmore explicitly,
thus the models can easily make use of the knowledge in
the downstream tasks. Specifically, we devise two essential
learning objects: i) mapping the PLM embedding space to
the KG embedding space, and ii) translating the KG embed-
dings back to context-aware representations generated by
KEPLMs.

In the experiments, we compare our HORNET model against var-
ious strong baselines, including mainstream KEPLMs pre-trained
over the same pre-training resources. The underlying NLP tasks in-
clude: Knowledge Probing, Relation Extraction, Entity Typing and the
open domain benchmark GLUE [33]. The results show that HOR-
NET consistently outperforms all the baselines on these knowledge-
aware tasks. Our model also achieves improvements on the GLUE
tasks compared to other KEPLMs.

To sum up, the contributions of our work mainly includes the
following threefolds:

• We propose a new KEPLM namedHORNET to help the PLMs
better integrate heterogeneous knowledge. To our knowl-
edge, it is the first work to explicitly integrate structured
and unstructured knowledge to enhance the knowledge un-
derstanding abilities of KEPLMs.

• We devise the HaHGCN network to fuse the heterogeneous
knowledge from different sources into knowledge-aware
representations. In addition, we propose dual mapping pre-
training tasks to explicitly decode the injected knowledge in
the pre-training process.

• We conduct comprehensive experiments to show that our
model achieves the state-of-the-art performance compared
to various baselines. A detailed analysis is also provided.

2 RELATEDWORK
2.1 PLMs
PLMs boost the performance of various downsteam NLP tasks [16,
24] via trained on the large-scale corpus and special self-supervised
pre-training tasks. Based on the two-stage training paradigm, namely
pre-training and fine-tuning, more PLMs are proposed to train mod-
els on large-scale corpora to learn general syntactic and semantic
knowledge. Then, the pre-trained models are fine-tuned on down-
stream tasks with the specific datasets to improve the performance
of NLP tasks. BERT [7] (as well as its robustly optimized version
RoBERTa [19]) is trained based on the bidirectional transformer ar-
chitecture by two novel self-supervised tasks. Following the BERT
model, a large number of PLMs have been proposed to further im-
prove performance in various NLP tasks, leveraging the following
three techniques: i) Self-supervised pre-training tasks: this approach
improves the model’s semantic understanding ability by modeling
large-scale unlabeled corpus in the token level and the sentence
level such as Baidu-ERNIE [31], and spanBERT [11]. ii) Encoder
architectures: these models boost the performance by changing
the internal encoder architecture based on general PLMs. XLNet
[38] utilizes the Transformer-XL [6] to encoder long sequence text.
Sparse self-attention [4] replaces the self-attention mechanism in
transformers to get a more interpretable representation for the

Full Paper Track  CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2609



whole input. iii) Supervised pre-training tasks: MT-DNN [18] com-
bines pre-training learning in self-supervised tasks and multi-task
learning in supervised tasks to improve performance on GLUE tasks
[33].

2.2 KEPLMs
The plain PLMs train deep language models only on the large-scale
unstructured corpora (such as Wikipedia 3 and BookCorpus [7]),
lacking the language understanding abilities of important entity
mentions that occurred in pre-training corpora. In contrast, the
structured KG data entails the rich semantic knowledge in the form
of relation triples.We summary the recent KEPLMs into the follow-
ing two types: i) Knowledge-enhancement by entity embeddings:
ERNIE-THU [42] injects the entity embeddings into the context-
aware representations via the knowledge-encoder stacked by the
information fusion module and the denoising entity auto-encoder
learning objective. KnowBERT [22] proposes the knowledge at-
tention and recontextualization (KAR) and entity-linking mecha-
nisms to inject the knowledge embeddings to PLMs. ii) Knowledge-
enhancement by knowledge descriptions: these works replace the
entity knowledge embeddings via encoding knowledge description
texts. For example, the pre-training corpora and entity descriptions
in KEPLER [34] are encoded into a unified semantic space with the
same PLM. The model is jointly optimized by the knowledge triple
loss and the masked language modeling objectives. K-BERT [17]
and CoLAKE [30] convert relation triplets into nodes and insert
them into the training samples without pre-trained embeddings.

Previous studies on KG embeddings and knowledge description
texts have shown significant improvement on various NLP tasks.
We argue that injecting the structured and unstructured knowledge
simultaneously (namely heterogeneous knowledge in this paper)
into the large-scale unsupervised training corpora can further ben-
efit the context-aware representations, which is the focus of this
work.

3 THE HORNET MODEL
3.1 Notation and Model Overview
We state some basic notations as follows. The hidden represen-
tations of input tokens (𝑤1,𝑤2, . . . ,𝑤𝑛) in training corpora are
denoted as (ℎ1, ℎ2, . . . , ℎ𝑛) and ℎ𝑖 ∈ R𝑑1 , where n is the length
of the input sequence in PLMs and 𝑑1 is dimension of the PLM’s
output. Each entity mention span 𝑠𝑚 recognized in pre-training
corpora is composed by continued token(s) (ℎ𝑖 , ℎ𝑖+1, . . . , ℎ 𝑗 ) and
𝑖 ≤ 𝑗 . 𝑑2 is the dimension of the entity embeddings generated by
knowledge embedding algorithms.

The overall model architecture of our HORNET is shown in
Figure 3. HORNET mainly contains three modules: (1) Knowledge
Encoding aims to recall the knowledge subgraph corresponding
to the entity mentions in the training samples and then aggregates
the knowledge subgraph representations via our HaHGCN model.
(2) Knowledge Infusion modules inject the knowledge subgraph
representations into the context-aware token hidden features gener-
ated by PLMs. (3) Dual Mapping Pre-training Tasks attempt to
promote the model to utilize the injected heterogeneous knowledge

3https://www.wikipedia.org

Figure 2: The process of our heterogeneous graph con-
struction, including (1) entity linking and retrieving related
knowledge (2) constructing two homogeneous graphs and
(3) constructing the heterogeneous graph (Best viewed in
color).

by learning the complex mapping functions between the knowledge
graph embedding space and the PLM’s embedding space.

3.2 Knowledge Encoding
The knowledge encoding processes include two parts: (1) construct-
ing the heterogeneous graph based on two different knowledge
sources and (2) performing the graph learning algorithm to obtain
the knowledge representations.

3.2.1 Constructing Heterogeneous Graph. The high-level process
of constructing the heterogeneous graph is shown in Figure 2,
including the following three steps.

• Entity Linking andRetrieving theRelatedKnowledge:
In this paper, we use the off-the-shelf tool TAGME [42] to link
thementions (i.e. “Hornet” in Figure 2) to KGs. Our retrieving
method of structured homogeneous knowledge in WiKiData
utilizes Personalized PageRank (PPR) [21], obtaining the
most relevant K neighboring nodes of the target entity via
the top-K scores. Unstructured knowledge are extracted via
the corresponding entity in WiKiData5M [34].

• Constructing theHomogeneous Graph:As for the struc-
tured homogeneous graph, we use the original triplet struc-
ture constructed by WiKiData. We design the following
heuristic rules to construct the unstructured homogeneous
graph: (1) The entity description text nodes are connected
based on the corresponding triplet structure. (2) We add
edges between mention-based sentence nodes and the de-
scription text node of the target entity.

• Constructing the Heterogeneous Graph: We construct
the heterogeneous graph based on the above two homoge-
neous graphs and add two types of extra special edges. i)
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Figure 3: Model overview of HORNET. The left part is our HORNET model architecture. The right part includes three main
components: (1) HaHGCN. (2) Heterogeneous information aggregator between context-aware representations and heteroge-
neous knowledge representations. (3) Pre-training tasks include our designed entity linking and knowledge decoder tasks.
(Best viewed in color).

We connect each target entity node with the correspond-
ing description text node. ii) For each neighboring entity
node and its description text node, we add an edge to con-
nect them. Formally, a heterogeneous graph is denoted as
G = (V, E,R) with 𝑣𝑖 ∈ V and the edges (𝑣𝑖 , 𝑟 , 𝑣 𝑗 ) ∈ E.
The node set T and the relation set R illustrated on the top
of Figure 2 contain five types, respectively.

3.2.2 Hybrid Heterogeneous Graph Attention. Existing heteroge-
neous convolution networks such as R-GCN [26] are proposed to
deal with the highly multi-relational data from realistic knowledge
bases. The propagation process for calculating the forward-pass
update of a node 𝑣𝑖 in R-GCN is defined as follows:

ℎ
(𝑙+1)
𝑖

= 𝜎
©«
∑
𝑟 ∈R

∑
𝑗 ∈N𝑟

𝑖

1
𝑐𝑖,𝑟

𝑊
(𝑙)
𝑟 ℎ

(𝑙)
𝑗

+𝑊 (𝑙)
0 ℎ

(𝑙)
𝑖

ª®¬ (1)

where N𝑟
𝑖
denotes the set of neighbor indices of node 𝑖 under

relation 𝑟 ∈ R. 𝑐𝑖,𝑟 is a problem-specific normalization constant that
can either be learned or chosen in advance (such as 𝑐𝑖,𝑟 =

��N𝑟
𝑖

��). 𝑙 is
the layer index of R-GCNmodel and 𝜎 is the action function.𝑊 (𝑙)

𝑖
is

the model parameters of R-GCN.ℎ (𝑙+1)
𝑖

is the hidden representation
of the node 𝑣𝑖 in the (𝑙 + 1)-th layer.

Although relation-based GCN models consider various relation
types in the heterogeneous graph, it ignores the heterogeneity
of different information types. A straightforward way to adapt
relation-based GCN to the heterogeneous nodes types T is as fol-
lows:

𝐻 (𝑙+1) = 𝜎

(∑
𝑟 ∈R

∑
𝜏 ∈T

1
𝑐𝑟
�̃�𝑟𝜏 · 𝐻 (𝑙) ·𝑊 (𝑙)

𝑟 ·𝑊 (𝑙)
𝜏 + 𝐻 (𝑙) ·𝑊 (𝑙)

0

)
(2)

where �̃�𝑟𝜏 ∈ R |V |×|V | is the adjacent matrix with node type 𝜏 , re-
lation type 𝑟 and self-connections.𝑊 (𝑙)

𝑟 and𝑊 (𝑙)
𝜏 is a layer-specific

trainable transformation matrix with for the different relation type
𝑟 and node type 𝜏 . 𝐻 (𝑙+1) is obtained by aggregating information
from the features of their neighboring nodes 𝐻 (𝑙) .

Considering target node with different neighboring nodes types
could have different importance, our HaHGCN learns adjacent
matrix �̃�𝑟𝜏 dynamically with type-level graph attention and node-
level graph attention.

• Semantic-level Attention: Given the target node 𝑣 , the
semantic-level graph attention mechanism aims to capture
the importance of different neighboring node types. Specif-
ically, we firstly get the different node type representation
as initialized embedding ℎ𝜏 =

∑
𝑣′ �̃�𝑣𝑣′ℎ𝑣′ , where �̃�𝑣𝑣′ is

the adjacent matrix with self-connections between node 𝑣
and neighboring node 𝑣 ′ ∈ N𝑣 with node type 𝜏 . Then, we
can calculate the weight of neighboring node types based
on the target node representation ℎ𝑣 and each node types
representation ℎ𝜏 .

𝛼𝜏 = 𝜎

(
𝜇𝑇𝜏 [ℎ𝑣𝑊𝑣 ∥ ℎ𝜏𝑊𝜏 ]

)
𝑊1 + 𝑏1 (3)

where 𝜇𝑇𝜏 is the attention vector for type 𝜏 and “∥” means
the concatenation of two vectors. Finally, we obtain the each
neighboring node types normalized weight with Softmax
operation:

𝛼𝜏 =
exp (𝑎𝜏 )∑

𝜏′∈𝑇 exp (𝑎𝜏 ′)
(4)

• Node-level Attention: Given a specific target node 𝑣 , dif-
ferent neighboring nodes 𝑣 ′ ∈ N𝑣 have also different im-
portance with different types 𝜏 . Hence, we calculate the
node-level attention weight based on different types weight
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𝛼𝜏 .

𝛽 ′𝑣𝑣′ = 𝜎

(
𝜈𝑇 · 𝛼𝜏 [𝑊𝑣ℎ𝑣 ∥𝑊𝑣′ℎ𝑣′]

)
(5)

where the 𝜈𝑇 is the node-level attention vector and 𝛼𝜏 is cor-
responding node type weight. Then, the node-level weight
𝛽𝑣𝑣′ is normalized with the Softmax function as follows:

𝛽𝑣𝑣′ =

exp
(
𝛽 ′
𝑣𝑣′

)
∑
𝑣′∈N𝑣

exp
(
𝛽 ′
𝑣𝑣′

) (6)

Finally, we use our hybrid attention graph mechanism to replace
the relation-based adjacent matrix �̃�𝑟𝜏 in Equation 2. Each element
in �̃�𝑟𝜏 is replaced by the node 𝑣 row and node 𝑣 ′ column in 𝛽𝑣𝑣′ .
For each heterogeneous graph corresponding to the entity mention,
we encode the subgraph representation utilizing the graph average
pooling operation on the all nodes 𝑁V . ℎ𝑔 = 1

|𝑁V |
∑
𝑣′∈NV ℎ𝑣′

denotes the injected knowledge information of each mention.

3.3 Knowledge Infusion
As the knowledge-injected representations may divert the texts
from its original meanings, we inject ℎ𝑔 into the context-aware
mention representation ℎ𝑠𝑚 calculated by self-attentive pooling
[14] of the PLMs’ token output to further reduce knowledge noises.
In this paper, we utilize the gated position infusion mechanism
including local gate and global gate to refine the injected knowledge
representations.

ℎ′𝑠𝑚𝑓
= 𝜎

( [
ℎ𝑔 ∥ ℎ𝑠𝑚𝑊𝑝𝑜 𝑗

]
𝑊𝑚𝑓 + 𝑏𝑚𝑓

)
(7)

ℎ̃′𝑠𝑚𝑓
= 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(ℎ′𝑠𝑚𝑓

𝑊𝑏𝑝 + 𝑏𝑏𝑝 ) (8)

where𝑊𝑝𝑜 𝑗 ∈ R𝑑1×𝑑2 ,𝑊𝑚𝑓 ∈ R2𝑑2×2𝑑2 ,𝑊𝑏𝑝 ∈ R2𝑑2×𝑑1 , 𝑏𝑚𝑓 ∈
R2𝑑2 , 𝑏𝑏𝑝 ∈ R𝑑1 . ℎ′𝑠𝑚𝑓

∈ R2𝑑2 is the span-level infusion represen-
tation. ℎ̃′𝑠𝑚𝑓

∈ R𝑑1 is the final heterogeneous knowledge-injected
representation for mention 𝑠𝑚 . For each final token representation
ℎ𝑖 𝑓

4 is generated by local gate and global gate mechanisms.

𝑔𝑖 = tanh
(( [

ℎ𝑖 ∥ ℎ̃′𝑠𝑚𝑓

] )
𝑊𝑢𝑔 + 𝑏𝑢𝑔

)
(9)

𝐺𝑖 = tanh
(
ℎ𝑠𝑊𝑠𝑔 + 𝑏𝑠𝑔

)
(10)

where 𝑔𝑖 denotes the local gated score to control the degree of
knowledge injection generated by mention-related tokens. The
global gated score𝐺𝑖 is calculated by the first token representation
ℎ𝑠 of the input sequence, which is at the position of special token
< 𝑠 > in case of RoBERTa [19].𝑊𝑢𝑔 ∈ R2𝑑1×𝑑1 ,𝑊𝑠𝑔 ∈ R𝑑1×𝑑1 and
𝑏𝑢𝑔, 𝑏𝑠𝑔 ∈ R𝑑1 are learnable parameters. 𝑡𝑎𝑛ℎ is the action function.
Hence, the final token representation ℎ𝑖 𝑓 is calculated by above
local score 𝑔𝑖 and global score 𝐺𝑖 simultaneously:

ℎ𝑖 𝑓 = 𝛼1 · 𝜎
(( [

ℎ𝑖 ∥ 𝐺𝑖 ∗ 𝑔𝑖 ∗ ℎ̃′𝑠𝑚𝑓

] )
𝑊𝑒𝑥 + 𝑏𝑒𝑥

)
+ ℎ𝑖 (11)

where𝑊𝑒𝑥 ∈ R2𝑑1×𝑑1 , 𝛼1 is the warm-up factor and “∗” is element-
wise multiplication.

4We find that restricting the knowledge infusion position to tokens within the mention
span is helpful to improve the model performance.

3.4 Dual Mapping Pre-training
In this section, we elaborate the two well-designed knowledge-
aware pre-training tasks, forcing our model to understand the in-
jected knowledge explicitly. Since the parameters of the pre-training
tasks are not reused in fine-tuning, we use the simple network mod-
ule for the dual tasks.

3.4.1 Text to Entity Pre-training. In this task, we train the model
to learn the function that mapping the PLMs’ embedding space to
knowledge graph embedding space makes the knowledge injection
more accurate. To predict the corresponding linked-entity 𝑒𝑚 in KG
from the mention-span 𝑠𝑚 , we first employ a self-attentive pooling
[14] 𝑓𝑠𝑝 over (ℎ𝑖 . . . ℎ 𝑗 ) inside 𝑠𝑚 to get the representation of the
mention-span:

ℎ𝑠𝑚 = 𝑓𝑠𝑝
(
ℎ𝑖 , . . . , ℎ 𝑗

)
(12)

Then, we get KG embedding of 𝑒𝑚 by a single neural layer, and
define the aligned entity distribution as follow:

ℎ𝑒𝑚 = 𝑡𝑎𝑛ℎ(ℎ𝑠𝑚 ·𝑊𝑠 ) (13)

𝑝 (𝑒𝑚 |𝑠𝑚) =
𝑒𝑥𝑝 (𝑐𝑠 (ℎ𝑒𝑚 , 𝑒𝑚))

𝑒𝑥𝑝 (𝑐𝑠 (ℎ𝑒𝑚 , 𝑒𝑚)) + ∑𝑁
𝑘=1 𝑒𝑥𝑝 (𝑐𝑠 (ℎ𝑒𝑚 , 𝑒𝑘 ))

(14)

where 𝑐𝑠 function represents the cosine similarity.𝑊𝑠 ∈ R𝑑1×𝑑2
is a trainable matrix and 𝑁 is the number of negative samples.
The strategies of sampling the negative entity 𝑒𝑘 are described in
section 4.2. We use the L𝐸𝐿 to represent the cross-entropy criterion
between the 𝑝 (𝑒𝑚 |𝑠𝑚) and the ground-truth entity label.

3.4.2 Entity to Text Pre-training. In this task, we transfer the pre-
dicted entity embedding to the target entity embedding given the
relation, and then decode the corresponding mention text from it.

We use DisMult [37] in this paper to obtain the target entity
embedding based on ℎ𝑒𝑚 and ℎ𝑠𝑚 encoded in the above modules.
The score function is as follows:

𝑓𝑟 (ℎ, 𝑡) = ℎ𝑇𝑑𝑖𝑎𝑔(𝑟 )𝑡 = (ℎ ∗ 𝑟 )𝑇 𝑡 (15)

where ℎ, 𝑡 are the head and tail entity vectors, respectively. 𝑟 is the
relation vector. In DisMult, the norm of ℎ and 𝑡 are both 1, and the
norm of 𝑟 is constrained to be less than 1. Hence, we have:

∥ (ℎ ∗ 𝑟 )𝑇 𝑡 ∥≤∥ ℎ ∥ × ∥ 𝑟 ∥ × ∥ 𝑡 ∥=∥ 𝑟 ∥≤ 1 (16)

Let 𝑟 ′ = 𝑟/| |𝑟 | |, it’s easy to show when 𝑡 = ℎ ∗ 𝑟 ′, the score function
is optimal. In practice, we also assign a scalar 𝛿𝑡 for each entity 𝑡
and apply additional non-linear mapping as the score function may
not be close to 1. Finally, we denote the representation 𝑡 as:

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝛿𝑡 × 𝑟 ′ ∗ ℎ𝑒𝑚 ·𝑊𝑚) (17)

In order to generate the mentions of the target entity, we extract
the information from ℎ𝑠𝑚 under the guidance of ℎ𝑡 with the gating
mechanism:

𝑔𝑡 = 𝑡𝑎𝑛ℎ(ℎ𝑡 ·𝑊𝑔) (18)
𝑔𝑚𝑡 = 𝐺𝑒𝐿𝑈 (ℎ𝑠𝑚 ·𝑊𝑝 ) ∗ 𝑔𝑡 (19)

where𝑊𝑚 ∈ R𝑑2×𝑑2 ,𝑊𝑔 ∈ R𝑑2×𝑑1 ,𝑊𝑝 ∈ R𝑑1×𝑑1 are trainable pa-
rameters, 𝑔𝑚𝑡 is the representation of the target entity mention for
decoding. As for the decoder, we employ a two-layers transformer
encoder initialized and share the last layer weight from the last
layer of RoBERTa to decode the 𝑔𝑚𝑡 , reducing the information left
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Datasets PLMs KEPLMs
ELMo ELMo5.5B BERT RoBERTa CoLAKE K-Adapter KEPLER HORNET +△

LAMA-Google-RE 2.2% 3.1% 11.4% 5.3% 9.5% 7.0% 7.3% 11.28% 1.78%
LAMA-UHN-Google-RE 2.3% 2.7% 5.7% 2.2% 4.9% 3.7% 4.1% 6.76% 1.86%

LAMA-T-REx 0.2% 0.3% 32.5% 24.7% 28.8% 29.1% 24.6% 32.95% 3.85%
LAMA-UHN-T-REx 0.2% 0.2% 23.3% 17.0% 20.4% 23.0% 17.1% 24.21% 1.21%

Table 1: The performance of PLMs and KEPLMs on knowledge probing datasets. △ represents an improvement over the best
results of existing KEPLMs compared to our model.

in pre-training-specific modules. Specifically, we firstly reuse the
embedding layer of RoBERTa model with input sequence as:

ℎ𝑠 , ℎ1, ..., ℎ𝐿, ℎ𝑒 = 𝑅𝑜𝐵𝐸𝑅𝑇𝑎𝐸𝑚𝑏 (<𝑠 >,<𝑚𝑎𝑠𝑘 >, ...,<𝑚𝑎𝑠𝑘 >,<𝑒 >)
(20)

where 𝐿 is the length of mentions of target entity. Then we replace
ℎ𝑠 with 𝑔𝑚𝑡 , and get decoding result as:

𝑦𝑠 , 𝑦1, .., 𝑦𝐿, 𝑦𝑒 = 𝑅𝑜𝐵𝐸𝑅𝑇𝑎𝐿𝑎𝑦𝑒𝑟𝑠 (𝑔𝑚𝑡 , ℎ1, .., ℎ𝐿, ℎ𝑒 ) (21)

A naive loss function for optimizing the masked language model
(MLM) task is to perform Cross-Entropy over the whole vocabulary.
To alleviate the training cost, we apply Sampled Softmax to the 𝑖-th
token of the mention-span as the loss function:

L𝐷𝐸𝑖 =
𝑒𝑥𝑝 (𝑓𝑠 (𝑦𝑖 , 𝑡𝑖 ))

𝑒𝑥𝑝 (𝑓𝑠 (𝑦𝑖 , 𝑡𝑖 )) + 𝑁 × E𝑡𝑛∼𝑄 (𝑡𝑛 |𝑡𝑖 ) [exp(𝑓𝑠 (𝑦𝑖 , 𝑡𝑛))]
(22)

𝑓𝑠 (𝑦, 𝑡) = 𝑦𝑇 · 𝑡 − log(𝑄 (𝑡 |𝑡𝑖 )) (23)
where 𝑡𝑖 is the ground-truth token and 𝑡𝑛 is the negative token sam-
pled in𝑄 (𝑡𝑛 |𝑡𝑖 ).𝑄 (·|·) is the negative sampling function (described
in section 4.2). N is the number of negative sampling.

3.5 Training Objective
In the HORNET model, the pre-training tasks include three parts:
(1) masked language model loss LMLM, (2) entity linking loss LEL
described in Section 3.4.1 and (3) mention decode loss LDE derived
from Equation 22. The total loss is as follows:

Ltotal = LMLM + 𝛼2𝜆1LEL + 𝛼3𝜆2LDE (24)

where the 𝜆1 and 𝜆2 are the hyperparameters, which in our paper
are set to 0.5. 𝛼2 and 𝛼3 are the warmup factors.

4 EXPERIMENTS
4.1 Pre-training Data
Weuse the EnglishWikipedia data (2020/03/01) 5 as pre-training cor-
pora and use WikiExtractor 6 to process the downloaded Wikipedia
dump. The Wikipedia anchors are used to aligned mentions of
entities to Wikidata5M [34]. The additional pre-processing and
filtration steps of invalid pre-training texts are kept the same as
CoLAKE [30]. Finally, there are 3,085,345 entities and 822 relations
in KGs and 26M training samples in our pre-training corpus. We
train a transformer-style auto-encoder to transfer unstructured
texts to the corresponding embeddings. Specifically, we use two
5https://dumps.wikimedia.org/enwiki/
6https://github.com/attardi/wikiextractor

transformer-encoder layers as the encoder and another two layers
as the decoder. For each entity descriptions or alias, we feed them
into the encoder, take the first token representations of the output
as the input of the decoder to generate the embeddings (with the
method mentioned in Section 3.4.2).

4.2 Model Settings and Training Details
In this work, we use the RoBERTa-base model [19] as our backbone
encoder. The hidden dimension of token embeddings is 𝑑1 = 768.
The dimensions of all types of entity and relation embeddings are
𝑑2 = 100. The entity embeddings are fixed during training while the
relation embeddings are allowed to be updated. HORNET works
as an additional layer inserted after the ninth layer of Roberta.
The single-layer graph network has already performed well for
the knowledge encoding module, and more layers do not bring
considerable improvement.

As for the negative sampling during the text to entity pre-training,
we find 16 mentions in all aliases can obtain the smallest Leven-
shtein distance given the mention. For the negative sampling of the
entity to text pre-training, we need to select negative tokens for
each decoding position. We first find all possible entities under the
given relation and retrieve all mentions of those entities as nega-
tive mentions. For each decoding position, we fill it with tokens in
negative mentions at the same position. We randomly select tokens
in RoBERTa vocabulary when there are too few negative samples.
The overall vocabulary size for each decoding position is 2500.

We pre-train theHORNETwithweights initialized by the RoBERTa
base model [19] released by Hugging Face7. In the pre-training pro-
cess, we use a linear learning-rate schedule with warm-up and the
warm-up proportion is 0.1 with a peak value of 5e-4. The AdamW
optimizer is used with 𝛽1 = 0.9, 𝛽2 = 0.998 and 𝜖 = 1𝑒 − 6. The
batch size is set to 2048. For a fair comparison, we only pre-train our
model by one epoch with the max sequence length as 512. All the
warm-up factors 𝛼1, 𝛼2, 𝛼3 are linearly increased from 0 to 1 in the
model warm-up stage and then are kept unchanged during the rest
of the pre-training process. Other pre-training hyper-parameters
and unmentioned details could be referred to CoLAKE [30]. The
pre-training process is conducted with 8 V100-16G GPUs for about
five days. For the hyperparameters of the downstream tasks, we
find the following ranges of possible values work well, i.e., the batch
size: 8,16, the learning rate: 5e-5, 4e-5, 3e-5, 2e-5, and the number
of epochs ranging from 3 to 5.

7https://huggingface.co/roberta-base
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Model Accuracy Macro F1 Micro F1
BERT 52.04 75.16 71.63
RoBERTa 56.3 76.9 74.2
NFGEC (Attentive) [28] 54.53 74.76 71.58
NFGEC (LSTM) [28] 55.60 75.15 71.73
ERNIE 57.19 76.51 73.39
HORNET 60.28 83.99 79.65

Table 2: The performance of various models on FIGER (%).

Model Precision Recall F1
UFET [3] 77.4 60.6 68.0
BERT 76.4 71.0 73.6
RoBERTa 77.4 73.6 75.4
ERNIE𝐵𝐸𝑅𝑇 78.4 72.9 75.6
ERNIE𝑅𝑜𝐵𝐸𝑅𝑇𝑎 80.3 70.2 74.9
KnowBERT𝐵𝐸𝑅𝑇 77.9 71.2 74.4
KnowBERT𝑅𝑜𝐵𝐸𝑅𝑇𝑎 78.7 72.7 75.6
KEPLER𝑊𝑖𝐾𝑖 77.8 74.6 76.2
CoLAKE 77.0 75.7 76.4
HORNET 80.54 75.8 76.9

Table 3: The performance of models on Open Entity (%).

4.3 Knowledge Probing
LAMA [23] (LAnguageModel Analysis) aims to recall factual knowl-
edge without any fine-tuning. This task demonstrates the language
models’ knowledge understanding abilities via the cloze-style state-
ment like "The official language of Mauritius is <mask>". In addition,
LAMA-UHN, the more complex "factual" subset of LAMA, is pro-
posed to alleviate the problem of overly relying on the surface
form of entity names. We report the mean precision at one (P@1)
macro-averaged. For fair comparison, we use the intersection of
the vocabularies for all considered models and construct a common
vocabulary of 18K case-sensitive tokens.

The results of LAMA and LAMA-UHN performance are shown in
Table 1. From the results, we can observe that: (1) the performance
of the BERT model has a large gap over the KEPLMs continually
trained on RoBERTa. This may be due to the difference in the size
of the vocabulary loaded by the BERT and RoBERTa models, which
makes the semantic reasoning of the LAMA-style probing tasks
simple. (2) Although our model is based on RoBERTa, it still outper-
forms all the baseline KEPLMs significantly over four datasets. From
this phenomenon, we believe that the dual mapping pre-training
enhances the ability of our model to transform the heterogeneous
knowledge into the representation of the PLMs’ tokens.

4.4 Knowledge-Driven Tasks
In this section, we fine-tune and evaluate HORNET on knowledge-
driven tasks, including entity typing and relation extraction.

Model FewRel TACRED
P R F1 P R F1

CNN 69.51 69.64 69.35 70.30 54.20 61.20
PA-LSTM [41] - - - 65.70 64.50 65.10
C-GCN [40] - - - 69.90 63.30 66.40
BERT 85.05 85.11 84.89 67.23 64.81 66.00
RoBERTa 86.3 86.3 86.3 70.80 69.60 70.20
ERNIE𝐵𝐸𝑅𝑇 88.5 88.40 88.30 70.01 66.14 68.09
KnowBERT - - - 71.62 71.49 71.53
CoLAKE 90.60 90.60 90.50 - - -
HORNET 91.24 91.08 91.16 73.51 71.07 72.26

Table 4: The performance of various models on FewRel and
TACRED datasets (%).

4.4.1 Entity Typing. This task requires the model to predict the
fine-grained types of a set of free-form phrases given their context.
We fine-tune the HORNET model on two well-established datasets
FIGER [15] and Open Entity [3] to evaluate its performance on
this task. To identify the entity mentions of interest, we add two
special tokens before the first and after the last token of the entity
spans, and use the first special tokens representation of the last
layer output for classification.

Table 2 shows the performance of various models on FIGER
dataset. It can be saw that the KEPLMs have superior performance
than corresponding vanilla PLMs. In addition, our HORNET model
with heterogeneous knowledge achieves a large gap performance
compared to baselines (+3.09% Acc., +7.48% macro F1 and +6.26%
micro F1). We believe that the heterogeneous knowledge, especially
that from unstructured texts, plays an important role as described
later in the ablation study (See Section 4.7).

The Open Entity results of our model are in Table 3. Note that
the dataset is in a relatively small size, thus the model usually easily
overfits the training set and the performance of the model varies
greatly when the hyper-parameters are set differently. Compared
with the improvement of the SOTA results (+0.2%, CoLAKE vs.
KEPLER), we achieve a relatively large step forward (+0.5%).

4.4.2 Relation Extraction. The relation extraction task (RE) aims to
determine the fine-grained semantic relation between two entities
in the given sentence. We fine-tune and evaluate our HORNET
model in two public authoritative RE datasets including FewRel
[9] and TACRED [41]. Following the ERNIE-THU [42] settings, we
sample 100 instances from each class for the training set, and sam-
ple 200 instances for the development and test, respectively. The
relation types in the two datasets are 80 and 42 (including a special
relation “no relation”), respectively. We adopt micro averaged met-
rics and macro averaged metrics for TACRED and FewRel following
the previous work [41], respectively.

From the Table 4, we can observe that the knowledge-injected
models comparing to the PLMs have further improved in these
datasets, while our model achieves the new SOTA performance,
which implies injecting the heterogeneous knowledge into the
PLMs for the RE task is also very effective.
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Model MNLI (m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average392K 363K 104K 67K 8.5K 5.7K 3.5K 2.5K
BERT𝐵𝐴𝑆𝐸 84.6 / 83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
RoBERTa 87.5 / 87.3 91.9 92.8 94.8 63.6 91.2 90.2 78.7 86.4
ERNIE 84.0 / 83.2 71.2 91.3 93.5 52.3 83.2 88.2 68.8 79.5
KEPLER 87.2 / 86.5 91.5 92.4 94.4 62.3 89.4 89.3 70.8 84.9
CoLAKE 87.4 / 87.2 92.0 92.4 94.6 63.4 90.8 90.9 77.9 86.3
HORNET 87.6 / 87.5 92.4 92.2 94.9 64.6 91.3 90.5 79.7 86.7

Table 5: The results of PLMs and KEPLMs on GLUE tasks (%). We use F1 to evaluate QQP and MRPC, Spearman correlations
for STS-B, and accuracy scores for the other tasks. The “m/mm” means matched/mismatched evaluation sets for MNLI [36].

4.5 Open Domain Benchmark: GLUE
The General Language Understanding Evaluation (GLUE) bench-
mark [33] aims to verify the language understanding abilities of
the proposed model, including 8 datasets [1, 5, 8, 12, 25, 29, 35, 36].
Those tasks are selected so as to favormodels that share information
across tasks using transfer learning techniques like PLMs.

Table 5 shows the overall results on GLUE datasets. From the
table, we can observe that in the large-scale downstream tasks in-
cluding MNLI, QQP, QNLI, and SST-2, our HORNETmodel achieves
the improvement steadily. However, we find that KEPLMs including
our model do not significantly improve the gap on these datasets
compared to the PLMs (i.e. BERT and RoBERTa) as the size of the
datasets are small and the injected knowledge may become noisy
features when the model can already make prediction based on
context.

(a) Improvement distribution (b) Degeneration distribution

Figure 4: Improvement/degeneration distributions from
RoBERTa.

4.6 Case Studies on Representative Samples
In this section, we perform case studies on representative samples
to explain why our model would be successful or fail in certain
cases. Specifically, we employ t-SNE [32] to cluster the samples
and select representative ones for evaluation. We consider the two
representative categories of samples, where (1) the predictions of
the other models are wrong while the predictions of our model are
right and (2) the opposite cases. We choose RoBERTa and CoLAKE
as baselines to compare with our model. The last hidden states on
FewRel test set before the final classifier are fed to t-SNE [32] to
generate distributions, highlighting the strengths and weaknesses

(a) Improvement distribution (b) Degeneration distribution

Figure 5: Improvement/degeneration distribution from Co-
LAKE.

of our model in figures. Note that the FewRel testset contains 16,000
samples and 80 types of relations, which are toomany to plot clearly.
Thus, we select ten categories of samples that appear firstly in the
test set.

Figure 4 shows the improvement and degeneration between our
model and RoBERTa. We elaborate those samples in Table 6 and 7,
where the red phrases are the head entities while the blue phrases
are the tail entities. In Table 6, it can be seen that our model does
figure out a real relation between the two entities that can not
be inferred from the contexts. We hypothesize that the injected
knowledge disturbs the prediction, causing our model to ignore
the text contexts. For the first sample in Table 7, the knowledge of
two entities indicate both of them are locations, then there should
be a terrain relation rather than the component relation. For the
second sample, we can see that “Tuditanus” was a politician. The
knowledge helps us to know the censor is a political office to be
held. However, we can hardly tell it when we know nothing about
the person.

In summary, comparing our model to RoBERTa, we can conjec-
ture that the injected knowledge helps our model realize properties
of entities when the inputs contain uncommon words (entities), and
thus leading to the correct predictions. On the other hand, when
the plain PLMs can make the right judgment based on the contexts,
our model may fail because the predictions can be dominated by
injected knowledge rather than the contexts.
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Truth Relation Predicted Relation Sample

P495: country of origin P364: original language of film Constance last acted in a run ofminor films made in Italy between 1955 and
1959, including a role as Lucretia Borgia in "La congiura dei Borgia" (1959).

P57: director(s) of film. P58: screenwriter, scriptwriter In 2008 he produced , alongside Christian Colson , the critically acclaimed
feature film "Eden Lake" (2008), directed by James Watkins.

Table 6: Representative samples where HORNET degenerates from RoBERTa.

Truth Relation Predicted Relation Sample

P706: located on terrain feature P361: parts of subject Heliaster Solaris is a possibly extinct sea star
which was known from the waters near Española in the Galapagos.

P39: political office held. P106: profession job work The censor Tuditanus among possible candidates for Princeps Senatus
chose instead his kinsman Quintus Fabius Maximus Verrucosus.

Table 7: Representative samples where HORNET improves from RoBERTa.

Figure 5 shows the comparison between our model and CoLAKE
[30]. We can see that both the cases of degeneration and improve-
ment are similar to RoBERTa, while CoLAKE is more competitive
than RoBERTa. Base on this observation, we believe that although
our model may be easy to discount the information in text contexts
than CoLAKE [30], it can make better use of injected knowledge,
thus achieving higher overall performance.

4.7 Ablation Study
In this subsection, we evaluate the effectiveness of three impor-
tant model components of HORNET on entity typing and relation
extraction tasks. Specifically, We introduce several variants of HOR-
NET removing certain components. HORNET-Desc replaces all
injected knowledge graph embeddings with <pad> embeddings
while HORNET-Triple does the replacement for all the text embed-
dings. HORNET-NK replaces all knowledge graph embeddings and
text embeddings with <pad> embeddings. HORNET-SI uses a sim-
ple infusion strategy that fixes the local gate 𝑔𝑖 and the global gate
𝐺𝑖 to be 1 at all the time. HORNET-MLM removes all pre-training
tasks except the masked language model(MLM) task. The perfor-
mance of those variants and HORNET on the testset of FIGER and
fewRel are shown in Table 8.

From the result, we can observe that: (1) Comparing HORNET-
Desc to HORNET-Triple, we could tell that the text information of
entities is more useful than triples in the entity typing task, while
the case is vice-verse for the relation extraction task. This phenom-
enon reveals that different types of knowledge spotlight different
tasks, thus integrating knowledge from heterogeneous knowledge
sources would be useful. (2) Comparing HORNET-SI to HORNET-
NK, the former performs only a little better than the latter, which
indicates that the simple infusion strategy is inefficient at utilizing
injected knowledge. (3) We can see that HORNET-MLM performs
worst in all variants, we hypothesize that the heavy-parameter
encoding and infusion modules of HORNET could not get effec-
tive training with the plain MLM task, and the small downstream
dataset may not train it sufficiently, thus fail to further help the
whole model to achieve a better result.

Model FIGER (Micro F1) FewRel (F1)
HORNET 79.65 91.16
HORNET-Desc 78.94 89.89
HORNET-Triple 77.42 90.74
HORNET-NK 76.13 89.45
HORNET-SI 77.10 89.41
HORNET-MLM 75.91 87.42

Table 8: The performance of models for ablation study (%).

5 CONCLUSION AND FUTUREWORK
In this work, we propose a novel KEPLM named HORNET to ad-
dress the knowledge-intensive language understanding tasks with
heterogeneous knowledge sources. Accordingly, we encode hetero-
geneous knowledge with hybrid attention heterogeneous graph
convolution network (HaHGCN) into a unified representation, in-
fusing it into PLMs with local and global level gating mechanisms
that are reducing the knowledge noise. Moreover, we propose the
dual mapping pre-training tasks that enhance the model’s ability of
language understanding explicitly, and thus our model could better
utilize the injected knowledge for downstream tasks. The experi-
mental results show the significant improvement of our model on
knowledge-driven and knowledge-probing takes while achieving
competitive results on the open domain benchmark.We also provide
intuitive evaluation for why and where our model would succeed
or fail. There are two research directions that can be further ex-
plored: (1) More effective models or training methods are designed
to further reduce the knowledge noise. (2) Conducting a deeper
theoretical analysis of the model’s understanding of knowledge.
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