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Abstract

The Kähler-Ricci flow is studied on compact Kähler manifolds with positive first
Chern class, where it reduces to a parabolic complex Monge-Ampère equation. It is
shown that the flow converges to a Kähler-Einstein metric if the curvature remains
bounded along the flow, and if the manifold is stable in an algebro-geometric sense.

On a compact Calabi-Yau manifold there is a unique Ricci-flat Kähler metric in
each Kähler cohomology class, produced by Yau solving a complex Monge-Ampère
equation. The behaviour of these metrics when the class degenerates to the bound-
ary of the Kähler cone is studied. The problem splits into two cases, according to
whether the total volume goes to zero or not.

On a compact symplectic four-manifold Donaldson has proposed an analog of
the complex Monge-Ampère equation, the Calabi-Yau equation. If solved, it would
lead to new results in symplectic topology. We solve the equation when the manifold
is nonnegatively curved, and reduce the general case to bounding an integral of a
scalar function.
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Chapter 1

Introduction

We begin by summarizing the main results of the thesis. In section 1.2 we collect
some basic facts in Kähler geometry, and in section 1.3 we prove Yau’s estimates
for complex Monge-Ampère equations.

1.1 Summary of results

This thesis consists of three main parts, all revolving around the theory of elliptic
and parabolic complex Monge-Ampère equations and its geometric applications. We
will begin with the results on the Kähler-Ricci flow on Fano manifolds which form
the content of Chapter 2.

The Ricci flow is a nonlinear second order parabolic flow on Riemannian man-
ifolds introduced by Hamilton in [Ha1]. On a compact complex manifold M if the
initial metric is Kähler then the flow will preserve this property, and is thus called the
Kähler-Ricci flow. If the first Chern class c1(M) is definite and the initial metric lies
in the correct class, then the flow has a long time solution. When c1(M) is negative
or zero the flow always converges smoothly exponentially fast to a Kähler-Einstein
metric (with negative or zero scalar curvature). Thus, we will restrict our attention
to compact Kähler manifolds with c1(M) positive, that is Fano manifolds. The
(normalized) Kähler-Ricci flow equation then takes the form

(1.1)
∂

∂t
ωt = −Ric(ωt) + ωt,

where ωt is a family of Kähler metrics cohomologous to c1(M). It can also be
rewritten as a parabolic complex Monge-Ampère equation. Our main result on the
Kähler-Ricci flow is as follows.

1
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Theorem 1.1.1. Let M be a compact complex manifold with c1(M) > 0. Assume
that along the Kähler-Ricci flow (1.1) the sectional curvatures remain bounded

(1.2) |Rmt| ≤ C.

Assume moreover that (M, K−1
M ) is K-polystable and asymptotically Chow semistable.

Then the flow converges smoothly exponentially fast to a Kähler-Einstein metric on
M .

This is in line with a long-standing conjecture of Yau [Y5] which says that a
Kähler-Einstein metric should exist precisely when the manifold, polarized by the
anticanonical bundle K−1

M , is stable in a suitable algebro-geometric sense. The pre-
cise notion of stability involved is K-polystability, as introduced by Donaldson [Do2].
Chow semistability is another algebraic GIT notion which is likely to be implied by
K-polystability (see [RT]). The assumption of bounded curvature is certainly very
strong, but there are currently no known examples of Fano manifolds where it fails.
Moreover it is known to hold on all Fano manifolds of complex dimension 2, and in
higher dimension if the initial metric has nonnegative bisectional curvature.

Next, we will briefly discuss the results of Chapter 3. The main objects of study
are Ricci-flat Kähler metrics on a compact projective Calabi-Yau manifold X. The
solution of the Calabi conjecture given by Yau [Y1] guarantees the existence of a
unique such metric in each given ample class. The set of all ample classes is an open
convex cone inside the Néron-Severi space N1(X)R, the ample cone KNS . As long
as the Kähler class stays inside the cone, the corresponding Ricci-flat metrics vary
smoothly, but they will degenerate when the class approaches the boundary of the
cone. Several people have addressed the question of understanding this degeneration
process and seeing what the limiting space looks like [Y4, Y5, McM, Wi2]. The
problem splits naturally into two cases, according whether the limiting class α has
positive volume (we call α nef and big) or zero volume (and α is nef and not big).

Our first result deals with the nef and big case.

Theorem 1.1.2. Let X be a compact projective Calabi-Yau manifold, and let α ∈
N1(X)R be a big and nef class that is not ample. Then there exist a proper analytic
subvariety E ⊂ X, which is the null locus of α, and a smooth incomplete Ricci-flat
Kähler metric ω1 on X\E such that for any smooth path αt ∈ KNS with α1 = α,
the Ricci-flat metrics ωt ∈ αt converge to ω1 in the C∞ topology on compact sets of
X\E. Moreover ω1 extends to a closed positive current with continuous potentials
on the whole of X, that lies in α, and that is the pullback of a singular Ricci-flat
Kähler metric on a Calabi-Yau model of X obtained from the contraction map of α.

Incompleteness of the limit follows from a general diameter bound for Ricci-flat
Kähler metrics that might be of independent interest (Theorem 3.3.1). There are
many interesting concrete examples of our theorem, and we will examine a few of
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them in Chapter 3. This theorem generalizes classical results in dimension 2 of
Anderson [An], Bando-Kasue-Nakajima [BKN], Tian [Ti2] and Kobayashi-Todorov
[KT].

We will now discuss the case when the volume of α is zero. A natural example
of this is to consider an algebraic fiber space f : X → Y where Y is an algebraic
variety of lower dimension, and let α be the pullback of an ample divisor on Y . This
picture is conjecturally always true if α is a rational class. In this case we have the
following result.

Theorem 1.1.3. Let X be a compact projective Calabi-Yau manifold and let f :
X → Y be an algebraic fiber space with Y an irreducible normal algebraic variety of
lower dimension. Let ωX be a Kähler form on X and α be the pullback of an ample
divisor on Y . Then there exist a proper analytic subvariety E ⊂ X and a smooth
Kähler metric ω on Y \f(E), such that the the Ricci-flat metrics ωt ∈ α + tωX ,
0 < t ≤ 1, converge to f∗ω as t goes to zero in the C1,β

loc topology of potentials on
compact sets of X\E, for any 0 < β < 1. The metric ω satisfies

Ric(ω) = ωWP ,

on Y \f(E), where ωWP is a Weil-Petersson metric measuring the change of complex
structures of the fibers. Moreover for any y ∈ Y \f(E) if we restrict to Xy = f−1(y),
the metrics ωt converge to zero in the C1 topology of metrics, uniformly as y varies
in a compact set of Y \f(E).

What this theorem says is that the Ricci-flat metrics collapse to a metric on the
base of the fibration, and that the rescaled metrics on the fibers tend to be Ricci-
flat. The metric on the base is not Ricci-flat but somehow remembers the fibration
structure. This generalizes a result of Gross-Wilson [GW] where they proved this
for an elliptically fibered K3 surface.

Finally, in Chapter 4, we consider the analog of complex Monge-Ampère equa-
tions on symplectic four-manifolds, which are called Calabi-Yau equations. This is
part of a recent program of Donaldson [Do5], which if carried out would lead to
many new and exciting results in symplectic geometry (see the survey [TW]). A
necessary element of this program is to obtain estimates for the Calabi-Yau equation
on symplectic four-manifolds with a compatible but non-integrable almost complex
structure.

In [Do5], Donaldson made the following conjecture.

Conjecture 1.1.4. Let (M, Ω) be a compact symplectic four-manifold equipped with
an almost complex structure J tamed by Ω. Let σ be a smooth volume form on M .
If ω̃ ∈ [Ω] is a symplectic form on M which is compatible with J and solves the
Calabi-Yau equation

(1.3) ω̃2 = σ,
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then there are C∞ a priori bounds on ω̃ depending only on Ω, J and σ.
More precisely, we have the following. For each k = 0, 1, 2, . . ., there exists a

constant Ak depending smoothly on the data Ω, J and σ such that

(1.4) ‖ω̃‖Ck(gΩ) ≤ Ak.

We now state our results, which hold for symplectic manifolds of any even di-
mension 2n. Let us define a smooth real-valued function ϕ by

(1.5)
1
2n

∆̃ϕ = 1− ω̃n−1 ∧ Ω
ω̃n

, sup
M

ϕ = 0.

Then we have the following result.

Theorem 1.1.5. Let α > 0 be given. Let (M, Ω) be a compact symplectic 2n-
manifold equipped with an almost complex structure J tamed by Ω. Let σ be a smooth
volume form on M . If ω̃ ∈ [Ω] is a symplectic form on M which is compatible with
J and solves the Calabi-Yau equation

(1.6) ω̃n = σ,

there are C∞ a priori bounds on ω̃ depending only on Ω, J , σ, α and

Iα(ϕ) :=
∫

M
e−αϕΩn,

for ϕ defined by (1.5).

The function ϕ is precisely the usual Kähler potential in the case that ω̃ and Ω
are Kähler forms. In this case it is known (see [Ti1, Hö]) that the quantity Iα(ϕ)
is always uniformly bounded as long as α is sufficiently small (where the bounds
depend only on M , Ω, J).

Associated to the fixed data Ω, J is a modified curvature tensor R(Ω, J) which
reduces to the usual bisectional curvature in the Kähler case. Our second result is
as follows.

Theorem 1.1.6. If R(g, J) ≥ 0 in the sense of Griffiths, Conjecture 4.1.1 holds,
as well as its higher-dimensional analog.

This shows that Conjecture 1.1.4 holds for small perturbations (Ω, J) of the
standard Kähler structure of CP2.
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1.2 Basic Kähler geometry

Let (M, J) be a compact complex manifold of complex dimension n. A Riemannian
metric g is called Hermitian if it satisfies g(JX, JY ) = g(X, Y ) for all tangent
vectors X, Y . In this case we then define a real 2-form ω by the formula

ω(X, Y ) = g(JX, Y ).

If ω is closed, we call g a Kähler metric. Since ω and g are equivalent data, we will
often refer to ω as the Kähler metric, or Kähler form. It is of type (1, 1), and if
locally we write

g = gijdzi ⊗ dzj ,

then we have
ω =

√−1gijdzi ∧ dzj ,

where here and henceforth we are using the Einstein summation convention. The
Riemannian volume form of g is equal to ωn

n! , and we will denote by V the volume
of M

V =
∫

M

ωn

n!
.

We will write ∆ω for the Laplacian of g, which acts on a function F as

∆ωF = gij ∂2F

∂zi∂zj
.

The Ricci curvature of ω is the tensor locally defined by

Rij = − ∂

∂zi

∂

∂zj
log det(g),

and we associate to it the Ricci form

Ric(ω) =
√−1Rijdzi ∧ dzj .

It is a closed real (1, 1)-form that represents the cohomology class c1(M) ∈ H2(M, 2πZ).
The scalar curvature of ω is denoted by

R = gijRij .

Notice that R, the average of R, only depends on cohomological data, since

R =
1
V

∫

M
R

ωn

n!
=

1
V

∫

M
Ric(ω) ∧ ωn−1

(n− 1)!
=

nc1(M) · [ω]n−1

[ω]n
.

To the metric ω we can associate its Ricci potential fω, which is the real function
defined by

(1.7) R−R = ∆ωfω,



CHAPTER 1. INTRODUCTION 6

and

(1.8)
∫

M
(efω − 1)

ωn

n!
= 0.

The space of Kähler potentials of the metric ω is the set of all smooth real functions
ϕ such that ωϕ = ω+

√−1∂∂ϕ is a Kähler metric. Then we can define a real-valued
functional F 0

ω on the space of Kähler potentials by the formula

F 0
ω(ϕ) = − 1

V

∫ 1

0

∫

M

∂ϕt

∂t

ωn
ϕt

n!
,

where ϕt is any smooth path of Kähler potentials with ϕ0 = 0 and ϕ1 = ϕ (for
example one can take ϕt = tϕ). It can be written also as

(1.9) F 0
ω(ϕ) = Jω(ϕ)− 1

V

∫

M
ϕ

ωn

n!
,

where the functional Jω is defined by

Jω(ϕ) =
1
V

∫ 1

0

∫

M

∂ϕt

∂t

(
ωn

n!
− ωn

ϕt

n!

)
,

and integration by parts shows that Jω(ϕ) ≥ 0. Moreover F 0
ω satisfies the following

cocycle condition

(1.10) F 0
ω(ϕ) = F 0

ω(ψ) + F 0
ωψ

(ϕ− ψ),

for all Kähler potentials ϕ,ψ. Another useful functional is the Mabuchi energy
Mω(ϕ), which is defined by

Mω(ϕ) = − 1
V

∫ 1

0

∫

M

∂ϕt

∂t
(R(ωϕt)−R)

ωn
ϕt

n!
,

where ϕt is any smooth path of Kähler potentials with ϕ0 = 0 and ϕ1 = ϕ. It
satisfies the same cocycle condition as F 0

ω , namely

(1.11) Mω(ϕ) = Mω(ψ) +Mωψ
(ϕ− ψ).

We now assume that L is an ample line bundle over M , so that M is a projec-
tive algebraic manifold, and we assume that ω is cohomologous to c1(L). We now
consider the space H0(M, Lm) of holomorphic sections of the mth tensor power of
L, where m ≥ 1. This is a vector space whose dimension Nm can be computed from
the Riemann-Roch formula, when m is large

(1.12) Nm =
∫

M
ch(Lm) ∧ Todd(M) ≈ V mn +

RV

2
mn−1 + O(mn−2).
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Let us fix h a Hermitian metric along the fibers of L with curvature equal to ω.
This induces metrics hm on the tensor powers Lm. For each given positive integer
m we also fix {Si} a basis of H0(M, Lm) which is orthonormal with respect to the
L2 inner product defined by hm, ωn:

∫

M
〈S, T 〉hm

ωn

n!
.

Then we can define the “density of states” function

(1.13) ρm(ω) =
Nm∑

i=1

|Si|2hm .

It does not depend on the choice of orthonormal basis {Si} or on the choice of h,
and so it is canonically attached to ω and J . Its name stems from the property that

(1.14)
∫

M
ρm(ω)

ωn

n!
= Nm.

The Tian-Yau-Zelditch-Catlin expansion is the following

Theorem 1.2.1 (Zelditch [Ze], Catlin [Cat]). When m is large we have an expansion

(1.15) ρm(ω) ≈ mn + a1(ω)mn−1 + a2(ω)mn−2 + . . . ,

where ai(ω) are smooth functions defined locally by ω, and the expansion is valid
in any Ck(ω) norm. More precisely this means that given any k, N ≥ 1 there is a
constant C that depends only on k, N, ω such that

∥∥∥∥∥ρm(ω)−mn −
N∑

i=1

ai(ω)mn−i

∥∥∥∥∥
Ck(ω)

≤ Cmn−N−1,

for all m ≥ 1.

Moreover Z. Lu [Lu] has computed that a1(ω) = R
2 . The expansion (1.15)

integrates term by term to the Riemann-Roch expansion (1.12).

1.3 Complex Monge-Ampère equations

In this section (M,ω) will be a closed Kähler manifold, with complex dimension n.
Any Kähler metric ω̃ cohomologous to ω can be written as ω̃ = ω +

√−1∂∂ϕ for
some real-valued Kähler potential ϕ, that we can normalize so that

(1.16)
∫

M
ϕωn = 0.



CHAPTER 1. INTRODUCTION 8

We now consider the equation

(1.17) ω̃n = eF ωn,

where F is a smooth function on M with

(1.18)
∫

M
(eF − 1)ωn = 0.

If locally we write ω =
√−1gijdzi ∧ dzj , then (1.17) becomes

(1.19) det
(

gij +
∂2ϕ

∂zi∂zj

)
= eF det(gij),

which is a complex Monge-Ampère equation. The celebrated solution of the Calabi
conjecture by Yau [Y2] says that we can always solve (1.17):

Theorem 1.3.1. Let (M,ω) be a closed n-dimensional Kähler manifold, and let F
be a smooth real function on M that satisfies (1.18). Then there is a unique Kähler
form ω̃ on M which is cohomologous to ω and which solves (1.17).

The uniqueness part was proved by Calabi in [Ca2]. To prove the existence of
a solution, Yau derived a priori Ck estimates for ω̃ and then applied the continuity
method. The precise statement of the estimates is as follows:

Theorem 1.3.2. Assume the setup of Theorem 1.3.1. Then there are constants Ak,
k = 0, 1, ..., that depend only on k, F, ω, such that

(1.20) ‖ω̃‖Ck(ω) ≤ Ak.

Notice that (1.20) with k = 0 implies that

(1.21) ω̃ ≥ C−1ω,

for a uniform constant C (here and in the following, a uniform constant is a constant
that depends only on F and ω). To see this, we first we choose local coordinates so
that at one point p ∈ M the metric ω is the identity and ω̃ is diagonal with positive
entries λ1, . . . , λn. Then (1.20) with k = 0 gives

n∑

i=1

λi ≤ nA0.

For any fixed i we then have

λi =

∏n
j=1 λj∏
j 6=i λj

≥
∏n

j=1 λj

(
∑n

j=1 λj)n−1
≥ einfM F

(nA0)n−1
,
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where in the last inequality we have used (1.17). This is precisely the estimate
(1.21).

We will now give the proof of Theorem 1.3.2, referring the reader to Chapter 4
for some of the computations. Recall that we are writing ω̃ = ω +

√−1∂∂ϕ where
ϕ has average zero with respect to the volume form ωn. We will write g, g̃ for
the Riemannian metrics associated to ω, ω̃, and ∆, ∆̃ for their corresponding scalar
Laplace operators. It follows that the quantity n + ∆ϕ is equal to trgg̃. We clearly
have that ‖ω̃‖C0(ω) ≤ trg g̃. Yau’s estimates (1.20) are derived in four steps.

Step 1. The inequality

(1.22) trgg̃ ≤ CeA(ϕ−infM ϕ),

holds for uniform constants A,C.

Step 2. The Kähler potential ϕ satisfies

(1.23) sup
M

ϕ− inf
M

ϕ ≤ C,

for a uniform C.

Step 3. If ‖ω̃‖C0(ω) is uniformly bounded, we have ‖ω̃‖C1(ω) ≤ C, for a uniform C.

Step 4. Given a Hölder bound ‖ω̃‖Cβ(ω) ≤ C for some β > 0, we have, for each
k = 2, 3, . . . ,, the estimates ‖ω̃‖Ck(ω) ≤ Ak, for uniform Ak.

It is clear that proving these four steps will prove Theorem 1.3.2. To prove step
1, one first computes

∆̃ log trgg̃ ≥ −Ctrg̃g − C,

for a uniform constant C. This computation is performed in a more general setting
in Chapter 4 (see Lemma 4.3.2). On the other hand

∆̃ϕ = n− trg̃g,

and so if we pick A larger than C + 1 we get

∆̃(log trgg̃ −Aϕ) ≥ trg̃g − C.

At the point p ∈ M where log trg g̃ −Aϕ achieves it maximum, we get trg̃g(p) ≤ C.
Diagonalizing g and g̃ as above, we can write this as

n∑

i=1

1
λi
≤ C.
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We then apply the inequality

n∑

i=1

λi ≤
(

n∑

i=1

1
λi

)n−1 n∏

i=1

λi,

which can be written intrinsically as

(1.24) trgg̃ ≤ (trg̃g)n−1 det(g̃)
det(g)

.

This together with the Monge-Ampère equation (1.19) gives

trg g̃(p) ≤ C.

The maximum principle then yields (1.22).
To prove step 2, one employs a Moser iteration argument. For any p > 1 we

compute
∫

M
|∇(ϕ|ϕ| p−2

2 )|2ωn =
p2

4

∫

M
|ϕ|p−2|∇ϕ|2ωn

=
np2

4

∫

M
|ϕ|p−2∂ϕ ∧ ∂ϕ ∧ ωn−1

≤ np2

4

∫

M
|ϕ|p−2∂ϕ ∧ ∂ϕ ∧

(
n−1∑

i=0

ωn−1−i ∧ ω̃i

)

= − np2

4(p− 1)

∫

M
ϕ|ϕ|p−2∂∂ϕ ∧

(
n−1∑

i=0

ωn−1−i ∧ ω̃i

)

=
np2

4(p− 1)

∫

M
ϕ|ϕ|p−2(ω − ω̃) ∧

(
n−1∑

i=0

ωn−1−i ∧ ω̃i

)

=
np2

4(p− 1)

∫

M
ϕ|ϕ|p−2(ωn − ω̃n)

≤ Cp

∫

M
|ϕ|p−1ωn,

(1.25)

where we used (1.17) in the last inequality. The Sobolev inequality for ω gives us,
for β = n

n−1 and any smooth function f ,

(1.26)
(∫

M
|f |2βωn

) 1
β

≤ C

(∫

M
|∇f |2ωn +

∫

M
f2ωn

)
.
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Applying this to f = ϕ|ϕ| p−2
2 we get

(∫

M
|ϕ|pβωn

) 1
β

≤ C

(∫

M
|∇(ϕ|ϕ| p−2

2 )|2ωn +
∫

M
|ϕ|pωn

)

≤ Cp

∫

M
|ϕ|p−1ωn + C

∫

M
|ϕ|pωn

≤ Cp

(∫

M
|ϕ|pωn

) p−1
p

+ C

∫

M
|ϕ|pωn

≤ Cp max
(∫

M
|ϕ|pωn, 1

)
.

(1.27)

Raising to the power 1
p we get

max(‖ϕ‖pβ, 1) ≤ C
1
p p

1
p max(‖ϕ‖p, 1),

where ‖ ‖q denotes the Lq norm with respect to ωn. Successively replacing p by pβ
and iterating we get

log max(‖ϕ‖pβk , 1) ≤ log max(‖ϕ‖p, 1)+
1
p

(
k−1∑

i=0

1
βi

)
(log C+log p)+

1
p

(
k−1∑

i=1

i

βi

)
log β.

Setting p = 2 and letting k →∞ we finally get

(1.28) ‖ϕ‖L∞ ≤ C

(∫

M
ϕ2ωn

) 1
2

+ C.

Recall that the Poincaré inequality for ω says that for any smooth function f with∫
M fωn = 0 we have

(1.29)
∫

M
f2ωn ≤ C

∫

M
|∇f |2ωn.

We use this together with (1.25) with p = 2 and with the Hölder inequality to get

(1.30)
∫

M
ϕ2ωn ≤ C

∫

M
|∇ϕ|2ωn ≤ C

∫

M
|ϕ|ωn ≤ C

(∫

M
ϕ2ωn

) 1
2

,

which gives
∫
M ϕ2ωn ≤ C, and so with (1.28) this gives an L∞ bound |ϕ| ≤ C.

Notice that since
∫
M ϕωn = 0, it follows that ϕ must vanish somewhere, and so the

oscillation of ϕ is controlled by its L∞ norm. For future use we record here the
estimate we have just proved, keeping track of the dependence of the constants.
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Theorem 1.3.3 (Yau’s L∞ estimate). Let (M,ω) be an n-dimensional compact
Kähler manifold, and ω̃ = ω+

√−1∂∂ϕ be another Kähler form on M with
∫
M ϕωn =

0. If ω̃ satisfies (1.17), then we have

sup
M
|ϕ| ≤ C(sup

M
eF + 1)(n+2)/2(CSob + 1)n/2(CPoi + 1),

where C is a constant that depends only on n and the volume of ω, and CSob and
CPoi are upper bounds for the Sobolev and Poincaré constants of ω, as in (1.26) and
(1.29).

To prove step 3 one first defines the quantity S = |∇g̃|2g̃, where ∇ is the covariant
derivative associated to the metric g. Using ϕ we can write

S = g̃ipg̃qj g̃krϕijkϕpqr,

where again lower indices are covariant derivatives with respect to g. Since we
assume that g and g̃ are uniformly equivalent in C0, we only need to prove an upper
bound for S. One computes

∆̃S ≥ −CS − C.

Again, this is done in a more general setting in Chapter 4 (Lemma 4.4.5). On the
other hand, again using that g and g̃ are equivalent, we also have

∆̃trgg̃ ≥ 1
C

S − C,

see for example (4.56). One can then apply the maximum principle to S + Atrgg̃,
where A is sufficiently large, to get the required estimate S ≤ C.

Finally, step 4 follows from a bootstrapping argument. The arguments are purely
local, so we can restrict to a small ball where ω =

√−1∂∂ψ for a local function ψ.
Then differentiating the logarithm of (1.19) with respect to zi we get

∆̃
(

∂(ψ + ϕ)
∂zi

)
= ∆

(
∂ψ

∂zi

)
+

∂F

∂zi
.

Since the operator ∆̃ is uniformly elliptic, with coefficients uniformly bounded in
Cβ(ω), Schauder’s estimates give a uniform C3,β(ω) bound on ϕ. But this gives a
uniform C1,β(ω) bound on the coefficients of ∆̃, and so bootstrapping gives all the
higher order estimates. This completes the proof of Theorem 1.3.2.

The complex Monge-Ampère equation (1.17) can be thought as “nondegenerate”.
There are two ways to make the equation more degenerate. First, we can modify
the right-hand side to

(ω +
√−1∂∂ϕ)n = eF−ϕωn,

so that now the determinant of the complex Hessian of ϕ is not controlled a priori.
This is precisely the equation to construct Kähler-Einstein metrics with positive
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Ricci curvature on Fano manifolds, and its parabolic analog is the Käher-Ricci flow.
This will be the topic studied in Chapter 2.

Second, we could move the cohomology class of ω to approach the boundary
of the Kähler cone. Since the limit cohomology class is not Kähler, it cannot be
represented by any Kähler form. Thus the solutions of (1.17) must blow up when
we reach the boundary of the cone, and we will address this phenomenon in Chapter
3.

Finally, in Chapter 4, we consider the same equation (1.17) but we don’t insist
that the complex structure be integrable. Thus instead of a Kähler manifold we are
considering a symplectic manifold. The equation is still nondegenerate, but it is now
a system of equation (rather than a scalar equation), and this makes the analysis
more complicated.



Chapter 2

Kähler-Ricci flow on Fano
manifolds

The Kähler-Ricci flow is a second order nonlinear parabolic flow of Kähler metrics.
In section 2.1 we describe this flow and state our main convergence result (Theorem
2.1.1). We then recall some recent fundamental estimates of Perelman [Pe] that
are used in the proof. In section 2.3 we define Chow semistability and, following
Donaldson [Do3] and Zhang [ZhS], we show that it is equivalent to a lower bound of
a suitable functional defined on the space of Kähler potentials (Proposition 2.3.1).
Finally in section 2.4 we prove Theorem 2.1.1. The key new ideas are: first to use
K-polystability to show that if the flow does not converge then the Mabuchi energy
decays at least linearly at infinity. Second to show that the Mabuchi energy is well
approximated by the functionals controlling asymptotic Chow semistability, so that
their lower boundedness gives a contradiction. And third to prove the approxima-
tion result by showing that the so-called Tian-Yau-Zelditch-Catlin expansion holds
uniformly along the flow (Proposition 2.4.1), a result that uses boundedness of the
curvature.

The results of this chapter can be found in [To3].

2.1 Kähler-Ricci flow

In this section we introduce the Kähler-Ricci flow, describe our main result, and
state some estimates of Perelman that will be used extensively.

In this chapter (M, J) denotes a compact complex manifold of complex dimen-
sion n and with positive first Chern class c1(M) > 0. We will often drop the
reference to the complex structure J . We fix a reference metric ω cohomologous to

14
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c1(M). The (normalized) Kähler-Ricci flow starting at ω is the evolution equation

(2.1)
∂

∂t
ωt = −Ric(ωt) + ωt,

with ω0 = ω. Since the right hand side of (2.1) is a closed real (1, 1)-form, it follows
that ωt is Kähler (as long as it exists) and cohomologous to c1(M). The fixed points
of the flow are Kähler-Einstein metrics with positive scalar curvature, that is metrics
ωKE that satisfy

(2.2) Ric(ωKE) = ωKE .

If such a metric exists then it is unique up to the action of Aut0(M), the connected
component of the identity of the biholomorphism group of M [BM]. In general
there are obstructions to the existence of Kähler-Einstein metrics, and these fall into
two categories: obstructions arising from Aut0(M), such as Matsushima’s Theorem
[Ma] or the Futaki invariant [Fu], and obstructions arising from stability. A long-
standing conjecture of Yau [Y5] says that a Kähler-Einstein metric should exist
precisely when the manifold, polarized by the anticanonical bundle K−1

M , is stable
in a suitable algebro-geometric sense. The precise notion of stability involved is
called K-polystability, has been introduced by Donaldson [Do2]. Yau’s conjecture
then states that the existence of a Kähler-Einstein metric on a Fano manifold M
is equivalent to K-polystability of (M, K−1

M ). There has been much progress on the
subject, see for example [Do1, Do4, Ti3] but the conjecture is still open in general.
A natural approach to this conjecture is to show that the Kähler-Ricci flow (1.1)
converges to a Kähler-Einstein metric. Since we know that the flow (1.1) exists
for all time the issue is to show that stability implies convergence of the flow at
infinity. Despite some recent powerful estimates of Perelman [Pe, ST], this seems to
be out of reach at present. On the other hand some progress has been done under the
assumption that the curvature remains bounded along the flow. In [PS2, PSSW2, Sz]
it is shown that if this holds and if the manifold is stable in some different analytic
ways, then the flow converges to a Kähler-Einstein metric. Our main result is the
following (the definitions of K-polystability and Chow semistability are in section
2.3):

Theorem 2.1.1. Let M be a compact complex manifold with c1(M) > 0. Assume
that along the Kähler-Ricci flow (1.1) the sectional curvatures remain bounded

(2.3) |Rmt| ≤ C.

Assume moreover that (M, K−1
M ) is K-polystable and asymptotically Chow semistable.

Then the flow converges smoothly exponentially fast to a Kähler-Einstein metric on
M .
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We are going to rewrite the Kähler-Ricci flow (2.1) as a parabolic complex
Monge-Ampère equation as follows: since the metrics ωt are all cohomologous to
c1(M), we can write ωt = ω +

√−1∂∂ϕt, where the normalization of the potentials
ϕt will be specified presently. Then (1.1) is equivalent to the following parabolic
complex Monge-Ampère equation

(2.4)
(
ω +

√−1∂∂ϕt

)n
= efω−ϕt+ϕ̇tωn,

where ϕ̇t denotes ∂ϕt/∂t, fω is the Ricci potential defined by (1.7), (1.8), and ϕ0

is a constant. The choice of this constant matters: if ϕt is the solution of (2.4)
with initial value the constant ϕ0, then ϕ̃t = ϕt + (ϕ̃0 − ϕ0)et also solves (2.4) and
has initial value the constant ϕ̃0. This shows that there is at most one initial value
that guarantees convergence of the flow as t → ∞. Notice that taking ∂∂ of the
logarithm of (2.4) shows that the Ricci potential fωt of ωt is equal to −ϕ̇t plus a
time-dependent constant. We now need the following estimates of Perelman (we
refer to the exposition [ST] and to [Pe] for proofs).

Theorem 2.1.2 (Perelman). Independently of the choice of ϕ0, there is a constant
C that depends only on ω such that for all t ≥ 0 we have

(2.5) |fωt |+ |∇fωt |t + diam(M, ωt) + |Rt| ≤ C,

where Rt denotes the scalar curvature of ωt. Moreover given any r0 > 0 there is a
constant κ > 0 that depends only on r0 and ω such that for all t ≥ 0, all p ∈ M and
all 0 < r < r0 we have

(2.6)
∫

Bt(p,r)

ωn
t

n!
≥ κr2n,

where Bt(p, r) is the geodesic ball in the metric ωt centered at p of radius r.

We then set ϕ0 equal to the constant

(2.7)
1
V

∫

M
fω

ωn

n!
+

∫ ∞

0
e−t

(∫

M
|∇ϕ̇t|2t

ωn
t

n!

)
dt.

Perelman’s estimate (2.5) shows that this is finite, and the discussion above shows
that it is well-defined (since ∇ϕ̇t = ∇ ˙̃ϕt). An easy computation (see [PSS]) shows
that with this choice we get the uniform estimate

(2.8) |ϕ̇t| ≤ C.

2.2 Stability of algebraic varieties

In this expository section we define several notions of stability for algebraic varieties.
We start by defining the general notion of Geometric Invariant Theory (GIT) sta-
bility, and then specialize to Chow stability and K-stability for algebraic manifolds.
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More details can be found in [Mu, MFK, Th, Wa].

Let V be an (n+1)-dimensional complex vector space, and let G = SL(N +1,C)
act on V through a linear representation SL(N +1,C) → GL(n+1,C). This action
induces an action of G on Pn = P(V ), and we will call π : V \{0} → Pn the canonical
projection. Then a point x ∈ Pn is called GIT semistable if for some (and hence
for any) x̂ ∈ V with π(x̂) = x, the closure of the G-orbit of x̂ doesn’t contain the
origin. The point x is called GIT polystable if the G-orbit of x̂ is closed in V , and
it is called GIT stable if it is polystable and if its G-stabilizer is finite. Notice that
the stability of a point x depends only on its G-orbit.

We now fix ‖ · ‖ a U(N + 1)-invariant metric on V , fix a lift x̂ as above, and
consider the function on G given by

F : g 7→ log
‖g · x̂‖2

‖x̂‖2
.

Then we have the fundamental

Theorem 2.2.1 (Kempf-Ness [KeN]). The point x is GIT semistable if and only
if F is bounded below on G. It is GIT polystable if and only if F achieves a global
minimum on G. And it is GIT stable if and only if F is bounded below and proper
on G.

We now apply this general theory to a concrete situation. We assume that we
have a projective n-dimensional manifold M embedded in projective space PN as a
subvariety of degree d. We denote by G the Grassmanian Gr(N −n−1, N) of linear
(N − n− 1)-dimensional subspaces inside PN . The subset

ZM = {Λ ∈ G | Λ ∩M 6= ∅}

is a divisor in G of degree d. Since the Picard group of G is generated by the
hyperplane bundle OG(1), it follows that ZM = {sM = 0} for a holomorphic section
sM ∈ H0(G,O(d)). The section sM is unique up to multiplication by a nonzero
constant, and we get a well defined point

Chow(M) = [sM ] ∈ PH0(G,O(d)) = Pm.

The group G = SL(N + 1,C) acts naturally on Pm, and we can then define Chow
(semi-, poly-)stability of M by requiring GIT (semi-, poly-)stability of Chow(M).

Let now M be a compact complex manifold equipped with an ample line bundle
L. For all m sufficiently large, holomorphic sections of Lm give projective embed-
dings in bigger and bigger projective spaces PNm−1. Here the number Nm can be
computed from the Riemann-Roch formula (1.12). To any such embedding there is
an associated Chow point Chowm(M). For any fixed m all the possible embeddings
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into PNm−1 are parametrized by G = SL(Nm,C), and changing the embedding by
g ∈ G just corresponds to letting g act on Chowm(M). We will then say that
(M, Lm) is Chow (semi-, poly-)stable if Chowm(M) is (semi-, poly-)stable. Finally,
we say that (M,L) is asymptotically Chow (semi-, poly-)stable if for all m sufficiently
large (M, Lm) is (semi-, poly-)stable.

We now recall the Mumford numerical criterion for stability. Let’s go back to the
setup of the abstract GIT stability. Let ρ : C∗ → G be a 1-parameter subgroup (1-
PSG) of G, i.e. an algebraic group homomorphism. We will say that ρ is nontrivial
if it is nonconstant. For any x ∈ Pn, we can take the limit x0 = limt→0 ρ(t)x and
get a point x0 ∈ Pn which is fixed by the action of the 1-PSG ρ. This means that
ρ acts on the tautological line Ox0(−1), and it thus has a weight µ ∈ Z. Then we
have

Theorem 2.2.2 (Mumford’s numerical criterion). The point x is GIT stable if and
only if µ < 0 for all nontrivial 1-PSG ρ. The point x is GIT semistable if and only
if µ ≤ 0 for all nontrivial 1-PSG ρ.

Let now (M,L) be a polarized manifold as above, fix m large so that Lm embeds
M in PNm−1, and let ρ be a 1-PSG of G = SL(Nm,C) as before. We can then
use the action of ρ to move M around inside PNm−1 by projective transformations,
and we can take the flat limit M0 of ρ(t)(M) as t → 0. We thus get a family
M→ C with all fibers isomorphic to M except possibly the fiber M0 over 0, which
might be highly singular. Moreover the hyperplane bundle over PNm−1 induces a
line bundle L over M which restricts to Lm to the generic fiber. The 1-PSG then
induces a C∗ action on the pair (M,L) which makes the map M→ C equivariant,
and which induces a C∗ action on the central fiber (M0,L|M0), and the weight µ
can be calculated from it. This motivated Donaldson to pose the following

Definition 2.2.3. A test configuration for (M,L) of order m is a C∗-equivariant
flat family (M,L) over C, with L ample on all fibers, such that the generic fiber is
isomorphic to (M, Lm). The test configuration is called a product configuration if
M0

∼= M , and a trivial configuration if moreover C∗ acts trivially on M0
∼= M .

We have just seen that a 1-PSG gives rise to a test configuration, and the converse
is true as well [RT]. One can then rephrase Chow stability for (M, Lm) by saying
that for any nontrivial test configuration of order m, the numerical invariant µ is
negative. Donaldson then defined a different notion of stability, by replacing µ with
the so-called Futaki invariant F1. If the central fiber M0 is smooth then this is
just the classical Futaki invariant of the holomorphic vector field generating the C∗
action on M0.

Definition 2.2.4. A polarized manifold (M, L) is called K-semistable if for any
m large and for any nontrivial test configuration for (M,L) of order m the Futaki
invariant F1 is nonpositive. It is called K-stable if F1 is negative, and K-polystable
if F1 is nonpositive and zero only on product configurations.
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As an aside, we remark that changing the weight from µ to F1 just amounts
to changing the linearized line bundle over the Hilbert scheme in the definition of
GIT stability. But unfortunately the line bundle that corresponds to K-stability is
not ample over the Hilbert scheme. This means that K-stability is not a bona fide
algebraic stability notion.

2.3 Chow semistability

In this section we link Chow semistability to a certain functional on the space of
Kähler potentials. The results in this section follow from work of Donaldson [Do3]
and S. Zhang [ZhS].

From now on M will be a Fano manifold, polarized by the anticanonical bundle
K−1

M . For each m sufficiently large the line bundle K−m
M is very ample, and so

choosing a basis {Si} of holomorphic sections in H0(M,K−m
M ) gives an embedding

of M inside PNm−1 = PH0(M, K−m
M )∗. Associated to this embedding there is a

point Chowm(M) in the Chow variety of cycles in PNm−1 of dimension n and degree
d = V mnn!. If we let G be the Grassmannian of Nm − n − 2-planes in PNm−1

and if we call W = H0(G,O(d)), then the Chow variety sits inside the projective
space P(W ∗). As we have seen, the Kempf-Ness theorem [KeN] says that Chow
semistability of (M, K−m

M ) is equivalent to the fact that the function

(2.9) τ 7→ log
‖τ · Chowm(M)‖2

‖Chowm(M)‖2

is bounded below on SL(Nm,C). Here ‖ · ‖ is any norm on the vector space W
which is invariant under SU(Nm).

We now fix h a metric on K−1
M with curvature equal to ω, and for each m we

also fix {Si} a basis of H0(M,K−m
M ) which is orthonormal with respect to the L2

inner product defined by hm, ωn. Given a matrix τ ∈ GL(Nm,C) we define the
corresponding “algebraic Kähler potential” by

ϕτ =
1
m

log

∑
i |

∑
j τijSj |2hm∑

i |Si|2hm

.

This has the following interpretation. We use the sections {Si} to embed the man-
ifold M inside PH0(M,K−m

M ) = PNm−1. This carries a natural Kähler form ωFS ,
the Fubini-Study form associated to the L2 inner product of hm, ωn. If we let τ act
on PNm−1 via the natural action, then on M we have

(2.10) τ∗ωFS = ωFS + m
√−1∂∂ϕτ ,

so ϕτ is a Kähler potential for ωFS
m . On the other hand, we also have that

(2.11) ω =
ωFS

m
− 1

m

√−1∂∂ log ρm(ω),
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and so the function

ψτ =
1
m

log
∑

i

∣∣∑

j

τijSj

∣∣2
hm = ϕτ +

1
m

log ρm(ω)

is a Kähler potential for ω. Now if we go back to (2.9) and we choose the norm ‖ · ‖
suitably (see [PS1]) then a theorem of Zhang [ZhS] (see also [Pa, PS1]) gives that

(2.12) F 0
ωFS

m

(ϕτ ) = − 1
V m(n + 1)

log
‖τ · Chowm(M)‖2

‖Chowm(M)‖2
,

for all τ ∈ SL(Nm,C). We now introduce a slight variant of F 0
ω , following Donaldson

[Do3]. Given a Kähler potential ϕ we let hϕ = he−ϕ, which is a metric on K−1
M with

curvature equal to ωϕ. The L2 inner product on H0(M,K−m
M ) defined by hm

ϕ , ωn
ϕ,

can be represented as a positive definite Hermitian matrix, with respect to the fixed
basis {Si}. Explicitly, this means that we set

(2.13) Hij,ϕ =
∫

M
〈Si, Sj〉hm

ϕ

ωn
ϕ

n!
.

We then let
cϕ = log | detHij,ϕ|.

Notice that changing the basis {Si} does not affect cϕ, which depends only on ϕ and
the choice of h. Also cϕ changes smoothly if ϕ does. We then define the functional

L̃m(ϕ) =
cϕ

Nm
−mF 0

ω(ϕ).

If ϕt is a smooth path of Kähler potentials then the variation of L̃m can be computed
as follows: since ct = cϕt is independent of the choice of Si we can pick them so that
for a fixed time t we have Hij,t = λ2

i δij where the numbers λi are real and nonzero.
Then the holomorphic sections Ti = Si

λi
are orthonormal with respect to hm

t , ωn
t , and

we have

∂

∂t
ct = H ij

t

∂

∂t
Hij,t =

∑

i

1
λ2

i

∫

M
|Si|2hm

∂

∂t

(
e−mϕt

ωn
t

n!

)

=
∑

i

1
λ2

i

∫

M
|Si|2hm

t
(−mϕ̇t + ∆tϕ̇t)

ωn
t

n!

=
∑

i

∫

M
|Ti|2hm

t
(−mϕ̇t + ∆tϕ̇t)

ωn
t

n!

=
∫

M
ρm(ωt)(−mϕ̇t + ∆tϕ̇t)

ωn
t

n!

=
∫

M
ϕ̇t(∆tρm(ωt)−mρm(ωt))

ωn
t

n!
.

(2.14)
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So we get (cfr. Lemma 2 in [Do3])

(2.15)
∂

∂t
L̃m(ϕt) =

1
Nm

∫

M
ϕ̇t

(
∆tρm(ωt)−mρm(ωt) +

mNm

V

)
ωn

t

n!
.

We then have the following

Proposition 2.3.1. The pair (M,K−m
M ) is Chow semistable if and only if there

exists a constant C, that might depend on m, such that

(2.16) L̃m(ϕ) ≥ −C,

for all Kähler potentials ϕ.

Proof. First we prove that Chow semistability implies the lower boundedness of L̃m.
For each potential ϕ set hϕ = he−ϕ and ωϕ = ω +

√−1∂∂ϕ. Choose {Si(ϕ)} a basis
of H0(M, K−m

M ) which is orthonormal with respect to the L2 inner product defined
by hm

ϕ , ωn
ϕ. Then we can write

Si(ϕ) =
∑

j

τijSj ,

for some matrix τ = (τij) ∈ GL(Nm,C) that depends on ϕ. From the definition we
get

cϕ = −2 log |det τ |,
and so

(2.17) L̃m(ϕ) = − 2
Nm

log | det τ | −mF 0
ω(ϕ).

We now observe that from the cocycle formula (1.10) we have

F 0
ω(ϕ)− F 0

ω(ψτ ) = −F 0
ωϕ

(ψτ − ϕ)

= −Jωϕ(ψτ − ϕ) +
1
V

∫

M
(ψτ − ϕ)

ωn
ϕ

n!

≤ 1
V

∫

M
(ψτ − ϕ)

ωn
ϕ

n!
,

(2.18)

where we have also used the fact that Jωϕ ≥ 0. On the other hand we have
∫

M
em(ψτ−ϕ)

ωn
ϕ

n!
=

∑

i

∫

M
|Si(ϕ)|2hme−mϕ

ωn
ϕ

n!
= Nm,

and so by Jensen’s inequality

m

V

∫

M
(ψτ − ϕ)

ωn
ϕ

n!
≤ log(Nm/V ).
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Together with (2.18) this gives

(2.19) F 0
ω(ϕ)− F 0

ω(ψτ ) ≤ log(Nm/V )
m

.

Then the cocycle formula (1.10) gives

(2.20) F 0
ωFS

m

(ϕτ ) = F 0
ω(ψτ ) + F 0

ωFS
m

(
− 1

m
log ρm(ω)

)
,

and this together with (2.19) gives

(2.21) −mF 0
ω(ϕ) ≥ −mF 0

ω(ψτ )− C ≥ −mF 0
ωFS

m

(ϕτ )− C.

This and (2.17) give

(2.22) L̃m(ϕ) ≥ − 2
Nm

log |det τ | −mF 0
ωFS

m

(ϕτ )− C.

We now set
τ̃ = (det τ)−

1
Nm τ,

so now τ̃ ∈ SL(Nm,C) and we notice that

ϕτ̃ = ϕτ − 2
mNm

log | det τ |,

and so

(2.23) − 2
Nm

log | det τ | −mF 0
ωFS

m

(ϕτ ) = −mF 0
ωFS

m

(ϕτ̃ ) ≥ −C,

by Chow semistability and (2.12). Combining (2.22) with (2.23) finally gives

(2.24) L̃m(ϕ) ≥ −C.

To show the other implication we assume that (2.24) holds and we let τ be any
matrix in SL(Nm,C). By (2.12) it is enough to prove that the function

−mF 0
ωFS

m

(ϕτ )

has a uniform lower bound independently of τ . By (2.20) we have

−mF 0
ωFS

m

(ϕτ ) ≥ −mF 0
ω(ψτ )− C,

and we have
L̃m(ψτ ) =

cψτ

Nm
−mF 0

ω(ψτ ),
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so we are reduced to showing that cψτ is bounded above independently of τ . Notice
that in (2.13) if we use the basis S̃i =

∑
j τijSj instead of Si we get a different matrix

H̃ij,ψτ
but its log determinant is the same. Using the definitions we have that

ωψτ =
τ∗ωFS

m
,

and

H̃ij,ψτ
=

∫

M

〈S̃i, S̃j〉hm∑
k |

∑
l τklSl|2hm

· (τ∗ωFS)n

mnn!
,

so using the arithmetic-geometric mean inequality we get

cψτ

Nm
≤ log

(
1

Nm

∫

M

∑
i |S̃i|2hm∑
i |S̃i|2hm

· (τ∗ωFS)n

mnn!

)
,

and since the integral above is just the volume of M in the metric τ∗ωFS
m , this is

bounded independent of τ .

2.4 Convergence of the flow

In this section we prove Theorem 2.1.1 by relating the behavior of the functionals
L̃m to the Mabuchi energy.

Proof of Theorem 2.1.1. First of all we use Perelman’s estimate (2.6): this together
with (2.3), Perelman’s diameter bound (2.5) and Theorem 4.7 of [CGT] gives a
uniform lower bound for the injectivity radius of (M, ωt) independent of t. Then
Hamilton’s compactness theorem [Ha2] gives that for any sequence ti →∞ we can
find a subsequence (still denoted ti), a Kähler structure (ω∞, J∞) on the differen-
tiable manifold M and diffeomorphisms Fi : M → M such that ωi = F ∗

i ωti → ω∞
and Ji = F−1

i ∗ ◦ J ◦ Fi∗ → J∞ smoothly. We will denote by ∂i (resp. ∂∞) the
∂-operators of Ji (resp. J∞). An argument of Šešum-Tian (see [ST] or [PSSW2] p.
662) shows that (ω∞, J∞) is a Kähler-Ricci soliton, and so it satisfies

(2.25) Ric(ω∞) = ω∞ +
√−1∂∞∂∞ψ,

for a smooth function ψ whose gradient is a J∞-holomorphic vector field. Such a
function ψ is only defined up to addition of a constant, but we can choose it by
requiring that ∫

M
(eψ − 1)

ωn∞
n!

= 0.

Since along the flow we have that

Ric(ωt) = ωt +
√−1∂∂ft,
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where ft is the Ricci potential of ωt, it follows that the functions F ∗
i fti will converge

smoothly to ψ. In fact F ∗
i ∂∂fti = ∂i∂iF

∗
i fti converges smoothly to ∂∞∂∞ψ, and the

statement follows because of the normalizations we chose. Notice that ft is equal to
ϕ̇t up to a constant.

We let Mω(ϕt) be the Mabuchi energy, normalized so that Mω(ϕ0) = 0. Recall
that the variation of the Mabuchi energy is

∂

∂t
Mω(ϕt) = − 1

V

∫

M
ϕ̇t(Rt − n)

ωn
t

n!
,

while the variation of L̃m was computed in (2.15) to be

∂

∂t
L̃m(ϕt) =

1
Nm

∫

M
ϕ̇t

(
∆tρm(ωt)−mρm(ωt) +

mNm

V

)
ωn

t

n!
.

For a fixed metric ω the Tian-Yau-Zelditch-Catlin expansion (1.15) says that as
m →∞ we have

ρm(ω) ≈ mn +
R

2
mn−1 + O(mn−2),

Recalling that by Riemann-Roch (1.12) we also have

Nm ≈ V mn +
nV

2
mn−1 + O(mn−2),

we get that for a fixed metric ω

∆ρm(ω)−mρm(ω) +
mNm

V
≈ mn

2
(n−R) + O(mn−1).

We claim that this still holds uniformly along the flow.

Proposition 2.4.1. Given any k,m0 and ε > 0 there exist an m ≥ m0 and a t0 > 0
such that for all t ≥ t0 we have

1
mn−1

∥∥∥∥ρm(ωt)−mn − Rt

2
mn−1

∥∥∥∥
Ck(ωt)

≤ ε.

The proof of this proposition is postponed. As above applying this with k = 2
and m0, ε to be specified later, we get

(2.26)
1

mn
|∆tρm(ωt)| ≤ ε

m
+
|∆tRt|

2m
,

while Riemann-Roch implies that

(2.27)
∣∣∣∣

Nm

V mn−1
−

(
m +

n

2

)∣∣∣∣ ≤
C0

m
.
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Proposition 2.4.1 also gives that

(2.28)
∣∣∣∣
ρm(ωt)
mn−1

−m− Rt

2

∣∣∣∣ ≤ ε.

Putting together (2.26), (2.27) and (2.28) gives
∣∣∣∣

1
mn

(
∆tρm(ωt)−mρm(ωt) +

mNm

V

)
− 1

2
(n−Rt)

∣∣∣∣ ≤ 2ε +
C0

m
+
|∆tRt|

2m
.

From the boundedness of curvature and Shi’s estimates [Shi], it follows that for all
t ≥ 0 we have

|∆tRt| ≤ C1,

for a uniform constant C1.
Using now the fact that |ϕ̇t| ≤ C2, which is just (2.8), and Riemann-Roch, we

get
∣∣∣∣
∂

∂t

(
L̃m − Mω

2

)
(ϕt)

∣∣∣∣ ≤ 2(2ε + C3/m)
1
V

∫

M
|ϕ̇t|ω

n
t

n!
≤ C2(2ε + C3/m).

In particular given any ε1 > 0 we can fix ε and m0 so that

C2(2ε + C3/m0) ≤ ε1,

and moreover (M,K−m
M ) is Chow semistable for all m ≥ m0. Then Proposition 2.4.1

with the above arguments gives an m ≥ m0 and a t0 such that for all t ≥ t0
∣∣∣∣
∂

∂t

(
L̃m − Mω

2

)
(ϕt)

∣∣∣∣ ≤ ε1.

Integrating this, we get that for all t ≥ t0 we have

(2.29) L̃m(ϕt) ≤ Mω(ϕt)
2

+ ε1t + C.

We now claim that either M already admits a Kähler-Einstein metric, or there
is a constant γ > 0 such that

(2.30)
∂

∂t
Mω(ϕt) ≤ −γ,

for all t sufficiently large. In fact, if the above estimate fails, then we can find a
sequence of times ti →∞ such that

∂

∂t
Mω(ϕti) > −1

i
.



CHAPTER 2. KÄHLER-RICCI FLOW ON FANO MANIFOLDS 26

Since
∂

∂t
Mω(ϕti) = − 1

V

∫

M
|∇ϕ̇ti |2ti

ωn
ti

n!
,

we get

(2.31)
1
V

∫

M
|∇ϕ̇ti |2ti

ωn
ti

n!
<

1
i
.

By passing to a subsequence, we may assume that there are diffeomorphisms Fi :
M → M such that ωi = F ∗

i ωti → ω∞ a Kähler-Ricci soliton as above. Then we
have

(2.32)
∫

M
|∇ϕ̇ti |2ti

ωn
ti

n!
=

∫

M
|∇(F ∗

i fti)|2ti
F ∗

i ωn
ti

n!
→

∫

M
|∇ψ|2∞

ωn∞
n!

,

so by (2.31) we see that the Ricci potential ψ of ω∞ must be constant, and so
ω∞ is a Kähler-Einstein metric on J∞ a complex structure on M of which J is a
small deformation. Notice that since ω∞ is Kähler-Einstein its cohomology class is
c1(M, J∞). Moreover we have that the Chern classes c1(M,Ji) → c1(M, J∞) and
since they are integral classes, we must have c1(M,Ji) = c1(M, J∞) for all i large.
So we can assume that the canonical bundles KM,i are all isomorphic to KM,∞ as
complex line bundles, but with different holomorphic structures. So (M, Ji,K

−m
M,i )

is a small deformation of (M,J∞,K−m
M,∞). Then the fact that M is K-polystable

together with Theorem 2 of [Sz] shows that M admits a Kähler-Einstein metric.
The claim is proved.

Now we assume that M does not admit a Kähler-Einstein metric, so that (2.30)
holds. We now pick ε1 < γ/2, and consequently get an m such that (2.29) holds. But
we are also assuming that m is large enough, so that (M, K−m

M ) is Chow semistable
and so by Proposition 2.3.1 we have that (2.16) holds. We can integrate (2.30),
which holds for all t large, and get

(2.33) Mω(ϕt) ≤ −γt + C.

and this together with (2.29), (2.16) gives

−C ≤ L̃m(ϕt) ≤ Mω(ϕt)
2

+ ε1t + C ≤ −(γ/2− ε1)t + C,

for all t large, which is absurd. Hence M must admit a Kähler-Einstein metric.
Once we know this, results of Perelman-Tian-Zhu [TiZhu] and Phong-Song-Sturm-
Weinkove [PSSW1] imply that the flow converges exponentially fast. In fact, we can
avoid the analysis of Perelman-Tian-Zhu in our case: the theorem in [Sz] that we
used constructs a Kähler-Einstein metric gKE,i on (M, Ji) for i large as a small C∞

perturbation of a Kähler-Einstein metric gKE,∞ on (M, J∞) (here we use the nota-
tion g instead of ω to emphasize that we are considering the Riemannian metrics).
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In particular the Gromov-Hausdorff distance of gKE,i to gKE,∞ goes to zero as i goes
to infinity. But the metrics (F−1

i )∗gKE,i are then Kähler-Einstein on (M,J) and by
the Bando-Mabuchi uniqueness theorem [BM] they must be all isometric to a fixed
Kähler-Einstein metric gKE on (M,J). Since their Gromov-Hausdorff distance to
gKE,∞ is arbitrarily small, it follows that the Gromov-Hausdorff distance between
gKE and gKE,∞ is zero, and so they are isometric. By Matsushima’s theorem [Ma]
the space of holomorphic vector fields of (M, J) is the complexification of the space
of Killing vector fields of gKE , but this is the same as the space of Killing vector
fields of gKE,∞. It follows that (M,J) and (M, J∞) have the same dimension of
holomorphic vector fields. By the argument in the proof of Theorem 5 in [Sz] this
implies that J must be biholomorphic to J∞. So we have shown that there is a
sequence of times ti and diffeomorphisms Fi such that the metrics F ∗

i ωti converge
smoothly to a Kähler-Einstein metric on (M,J). Then by a theorem of Bando-
Mabuchi [BM] the Mabuchi energy Mω has a lower bound, and the arguments in
section 2 of [PS2] show that

∂

∂t
Mω(ϕt) → 0,

as t →∞. This together with the above arguments imply that given any sequence
ti →∞ we can find a subsequence, still denoted ti, and diffeomorphisms Fi such that
F ∗

i ωti converges smoothly to a Kähler-Einstein metric on (M,J). A contradiction
argument then implies that the flow converges modulo diffeomorphisms: there exists
ω∞ a Kähler-Einstein metric on (M, J) and diffeomorphisms Ft : M → M such that
F ∗

t ωt conveges smoothly to ω∞. Then [PSSW1] shows that the original flow ωt

converges to a Kähler-Einstein metric exponentially fast.

Proof of Proposition 2.4.1. If the conclusion is not true, then there are a k,m0 and
ε0 > 0 such that for all m ≥ m0 and i ≥ 1 there is a ti ≥ i such that

1
mn−1

∥∥∥∥ρm(ωti)−mn − Rti

2
mn−1

∥∥∥∥
Ck(ωti )

≥ ε0.

Up to a subsequence, we may assume that ti → ∞ and that there are diffeomor-
phisms Fi : M → M such that ωi = F ∗

i ωti and Ji = F−1
i ∗◦J ◦Fi∗ converge smoothly

to some limit ω∞ and J∞ respectively. We remark that while the complex structures
Ji are all biholomorphic to each other, they might not be biholomorphic to J∞. No-
tice also that the Ck norms involved are invariant under diffeomorphisms, and that
F ∗

i Rti = Ri, F ∗
i ρm(ωti) = ρm(ωi). The Tian-Yau-Zelditch-Catlin expansion applied

to ω∞ gives that there exists a uniform constant C such that for all m we have

1
mn−1

∥∥∥∥ρm(ω∞)−mn − R∞
2

mn−1

∥∥∥∥
Ck(ω∞)

≤ C

m
.

Moreover since ωi converges smoothly to ω∞, it follows that the Ck norms they
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define are uniformly equivalent, so we will also have

1
mn−1

∥∥∥∥ρm(ω∞)−mn − R∞
2

mn−1

∥∥∥∥
Ck(ωi)

≤ C

m
.

Then we get

ε0 ≤ 1
mn−1

∥∥∥∥ρm(ωi)−mn − Ri

2
mn−1

∥∥∥∥
Ck(ωi)

≤ 1
2
‖Ri −R∞‖Ck(ωi) +

1
mn−1

‖ρm(ωi)− ρm(ω∞)‖Ck(ωi) +
C

m
.

We now fix m ≥ m0 such that C/m ≤ ε0/4. Since ωi converges smoothly to ω∞,
when i is sufficiently large we will have

1
2
‖Ri −R∞‖Ck(ωi) ≤

ε0

4
.

We now claim that when i is large we will also have

1
mn−1

‖ρm(ωi)− ρm(ω∞)‖Ck(ωi) ≤
ε0

4
,

which will give a contradiction. In fact we will show that, for m fixed as above,
the function ρm(ωi) converges smoothly to ρm(ω∞) as i goes to infinity. This can
be done in several ways, for example using the implicit function theorem, or the L2

estimates for the ∂̄ operator. We choose the first way because it is easier, though the
second way gives more precise estimates. As remarked earlier we can assume that
the canonical bundles KM,i are all isomorphic to KM,∞ as complex line bundles, but
with different holomorphic structures. Fix h∞ a metric on K−1

M,∞ with curvature
ω∞, and perturb it to a family of metrics hi on K−1

M,i with curvature ωi that converge
smoothly to h∞. Given S a holomorphic section of K−m

M,∞ we wish to perturb S to
a family Si of holomorphic sections of K−m

M,i that converge smoothly to S. Once this
is done, it is clear that ρm(ωi) converges smoothly to ρm(ω∞), and we are done.
Since m can be assumed to be large, by Riemann-Roch we can write the dimension
of H0(M, K−m

M,∞) as an integral over M of Chern forms of ω∞:

dimH0(M, K−m
M,∞) =

∫

M
ch(K−m

M ) ∧ Todd(M, ω∞, J∞),

and we can do the same for ωi, Ji. But since ωi and Ji converge smoothly to ω∞
and J∞, it follows that the Riemann-Roch integrals are equal, and so the dimension
of H0(M, K−m

M,∞) is the same as Nm. This means that we have a sequence of elliptic
operators, ¤∂̄i

, acting on Γ(M,K−m
M ) (more precisely on Sobolev W r,2 sections of

this line bundle with r ≥ n + k + 1 to make them Ck) which converge smoothly to
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¤∂̄∞ (which acts on the same space) and such that the dimension of their kernel is
the same as in the limit. Then Lemma 4.3 in [Ko], which is a simple consequence
of the implicit function theorem, ensures that any element in the kernel of ¤∂̄∞ can
be smoothly deformed to a sequence of elements in the kernel of ¤∂̄i

.



Chapter 3

Degenerations of Calabi-Yau
metrics

In this chapter we study the way in which Ricci-flat Kähler metrics degenerate
when the Kähler class approaches the boundary of the Kähler cone. In section 3.1
we provide some background and state the main results, Theorems 3.1.1 and 3.1.2.
In section 3.2 we collect some facts from algebraic geometry. In section 3.3 we prove
a diameter bound for Calabi-Yau metrics (Theorem 3.3.1). In section 3.4 we prove
Theorem 3.1.1 and in section 3.5 we prove Theorem 3.1.2. The key points of the
proof of Theorem 3.1.1 are: first, algebraic geometry provides a smooth nonnegative
reference (1, 1) form in the limit class. The diameter bound then gives a uniform
Sobolev inequality which can be used in a Moser-type iteration argument to prove
an L∞ estimate. Then a trick of Tsuji can be used for the C2 estimates, and higher
order estimates are standard. As for Theorem 3.1.2, the L∞ bound was proved
in [DP, EGZ2]. We then use the fibration structure and a Schwarz Lemma type
computation to prove a Laplacian bound. A modification of Calabi’s C3 estimate
then gives the fiberwise collapse, and these estimates are then used to prove the
convergence results in Theorem 3.1.2. Finally in section 3.6 we give some explicit
examples where our theorems apply.

The esults of this chapter are contained in [To2], except for the results in section
3.5, which are new.

3.1 Degenerations of Calabi-Yau metrics

Einstein metrics, namely metrics with constant Ricci curvature, have been an impor-
tant subject of study in the field of differential geometry since the early days. The
solution of the Calabi Conjecture given by Yau [Y1] in 1976 provided a very powerful
existence theorem for Kähler-Einstein metrics with negative or zero Ricci curvature
(the negative case was also done independently by Aubin [Au]). This produced a

30
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number of nonhomogeneous examples of Ricci-flat manifolds. These spaces have
been named Calabi-Yau manifolds by the physicists in the Eighties, and have been
throughly studied in several different areas of mathematics and physics. Prompted
by the physical intuition of mirror symmetry, mathematicians have studied the ways
in which Calabi-Yau manifolds can degenerate when they are moving in families. In
general both the complex and symplectic (Kähler) structure are changing, and the
behaviour is not well understood. In this thesis we will consider the case when the
complex structure is fixed, and so we will be looking at a single compact projective
Calabi-Yau manifold. The Kähler class is then allowed to vary inside the ample
cone. As long as the class stays inside the cone, the corresponding Ricci-flat metrics
vary smoothly, but they will degenerate when the class approaches the boundary
of the cone. We will try to understand this degeneration process and see what the
limiting space looks like.

To introduce our results, let us fix some notation first. Let X be a compact
projective Calabi-Yau manifold, of complex dimension n. This is by definition a
projective manifold such that c1(X) = 0 in H2(X,R). The real Néron-Severi space
is by definition

N1(X)R = (H2(X,Z)free ∩H1,1(X))⊗ R = N1(X)Z ⊗ R,

and we assume that
dimN1(X)R = ρ(X) > 1.

This cohomology space contains KNS the ample cone, which is open. Its closure
KNS is the nef cone. Fix a nonzero class α ∈ KNS\KNS , which exists precisely
when ρ(X) > 1, and a smooth path αt : [0, 1] → KNS such that αt ∈ KNS for t < 1
and α1 = α. For any t < 1 Yau’s Theorem [Y2] gives us a unique Ricci-flat Kähler
metric ωt ∈ αt. Fixing a smooth path of reference metrics in αt, it can be verified
that the Ricci-flat metrics ωt vary smoothly, as long as t < 1. We have the following
very natural

Question 1: What is the behaviour of the metrics ωt as t → 1?

This question has a long history: it is a special case of a problem by Yau [Y4, Y5],
where the complex structure is also allowed to vary; it has been stated explicitly in
this form by McMullen [McM] and Wilson [Wi2]. Physicists have also looked at this
question, roughly predicting the behaviour that we will describe in Theorem 3.1.1
(see e.g., [HW]). One of the reasons that makes this question interesting is that the
Ricci-flat metrics are not known explicitly, except in very few cases.

A nef class α ∈ N1(X)R is called big if αn > 0. Our first main theorem addresses
Question 1 in this case (see section 3.2 for definitions).

Theorem 3.1.1. Let X be a compact projective Calabi-Yau manifold, and let α ∈
N1(X)R be a big and nef class that is not ample. Then there exist a proper analytic
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subvariety E ⊂ X, which is the null locus of α, and a smooth incomplete Ricci-flat
Kähler metric ω1 on X\E such that for any smooth path αt ∈ KNS with α1 = α,
the Ricci-flat metrics ωt ∈ αt converge to ω1 in the C∞ topology on compact sets of
X\E. Moreover ω1 extends to a closed positive current with continuous potentials
on the whole of X, which lies in α, and which is the pullback of a singular Ricci-flat
Kähler metric on a Calabi-Yau model of X obtained from the contraction map of α.

There are many interesting concrete examples of our theorem, and we will ex-
amine a few of them in section 3.6. Roughly speaking, the case when α is nef
and big corresponds to a “non-collapsing” sequence of metrics, meaning that the
Gromov-Hausdorff limit has the same dimension. We will now discuss Question 1
in the “collapsing” case, when the volume of α is zero. A natural example of this is
to consider an algebraic fiber space f : X → Y where Y is an algebraic variety of
lower dimension, and let α be the pullback of an ample divisor on Y . This picture is
conjecturally always true if α is a rational class. In this case we have the following
result, which is a combination of Theorems 3.5.2, 3.5.3 and 3.5.4.

Theorem 3.1.2. Let X be a compact projective Calabi-Yau manifold and let f :
X → Y be an algebraic fiber space with Y an irreducible normal algebraic variety of
lower dimension. Let ωX be a Kähler form on X and α be the pullback of an ample
divisor on Y . Then there exist a proper analytic subvariety E ⊂ X and a smooth
Kähler metric ω on Y \f(E), such that the the Ricci-flat metrics ωt ∈ α + tωX ,
0 < t ≤ 1, converge to ω as t goes to zero in the C1,β

loc topology of potentials on
compact sets of X\E, for any 0 < β < 1. The metric ω satisfies

Ric(ω) = ωWP ,

on Y \f(E), where ωWP is a Weil-Petersson metric measuring the change of complex
structures of the fibers. Moreover for any y ∈ Y \f(E) if we restrict to Xy = f−1(y),
the metrics ωt converge to zero in the C1 topology of metrics, uniformly as y varies
in a compact set of Y \f(E).

3.2 Some facts from algebraic geometry

In this section we will review some definitions and results from algebraic geometry,
mainly from Mori’s Program, that will be used in the proof.

Let X be a compact Calabi-Yau n-fold, that is a compact Kähler manifold of
dimension n and such that c1(X) = 0 in H2(X,R). We don’t insist that X be
simply connected. Notice that it follows that aKX

∼= OX for some integer a > 0:
in fact by Theorem 1 in [Be] a finite unramified a : 1 cover of X, p : X̃ → X, has
trivial canonical bundle. But we have that p∗KX

∼= KX̃
∼= OX̃ and then Lemma

16.2 in [BHPV] implies that aKX
∼= OX . This can be rewritten as KX ∼Q 0 where
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∼Q indicates Q-linear equivalence of Cartier Q-divisors. For the rest of this section
we will assume that X is projective.

Definition 3.2.1. A projective variety X has canonical singularities if it is normal,
if rKX is Cartier for some r ≥ 1 and if there exists a resolution f : Y → X such
that

rKY = f∗(rKX) +
∑

i

aiEi,

where Ei ranges over all exceptional prime divisors of f , and ai ≥ 0.

Definition 3.2.2 (Wilson [Wi1]). A Calabi-Yau model Y is a normal projective
variety with canonical singularities and such that KY ∼Q 0.

Let L be a nef line bundle on X, and let κ(X,L) be its Iitaka dimension, that is

κ(X,L) = m ⇐⇒ h0(X, kL) ∼ km for all k large enough

and κ(X,L) = −∞ if kL has no sections for all k ≥ 0. We call ν(X, L) its numer-
ical dimension, that is the largest nonnegative integer m such that there exists an
m−cycle V such that (Lm · V ) > 0. It is always true that

κ(X, L) ≤ ν(X,L) ≤ n.

Definition 3.2.3. If κ(X, L) = ν(X, L) we say that L is good (or abundant). If the
complete linear system |kL| is base-point-free for some k ≥ 1 we say L is semiample.

When |kL| is base-point-free, we get a morphism Φ|kL| : X → PH0(X, kL)∗ that
satisfies kL = Φ∗|kL|O(1). Notice that if L is big, that is κ(X, L) = n, then it is
automatically good. The following is an immediate consequence of the base-point-
free Theorem (Theorem 6.1.11 in [KMM]).

Theorem 3.2.4 (Kawamata). Assume X is a projective Calabi-Yau. If L is good
then it is semiample.

The next theorem is classical (see Theorem 2.1.27 in [La]).

Theorem 3.2.5 (Iitaka). Let L be semiample. Then there exists a surjective mor-
phism f : X → Y where Y is a normal irreducible variety of dimension κ(X, L),
and we have f∗OX = OY , and L = f∗A for some ample line bundle A on Y . In
fact f = Φ|kL| for all k sufficiently divisible.

We’ll call f the contraction map of L. If dim(Y ) = κ(X,L) < n, we will also
call f : X → Y an algebraic fiber space. There is a version of the base-point-free
Theorem for Cartier R-divisors, essentially due to Shokurov [Sho]. If D is a Cartier
R-divisor on X we say that D is semiample if there exist Y a normal irreducible
projective variety, f : X → Y a surjective morphism with f∗OX = OY , and A an
ample R-divisor on Y such that D ∼R f∗A. Again we will call f the contraction
map of D. Then the following holds (Theorem 7.1 in [HM]):
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Theorem 3.2.6. Assume X is a projective Calabi-Yau. If D is a Cartier R-divisor
which is nef and big, then it is semiample.

The contraction map of D is in fact also the contraction map of a suitable nef
and big line bundle L (see the proof of Proposition 3.4.1). We also have the following
theorem (Theorem 5.7 in [Ka1] or Theorem 1.9 in [Ka2]).

Theorem 3.2.7 (Kawamata). Assume X is a projective Calabi-Yau. Then the
subcone of KNS given by nef and big classes is locally rational polyhedral.

If D is a nef and big R-divisor, then we can define its augmented base locus
B+(D) to be the intersection of the support of E, for all effective Cartier R-divisor
such that D = A + E for some ample R-divisor A (see [ELMNP]). Thanks to
Kodaira’s Lemma (Example 2.2.23 in [La]) there is always such a decomposition,
and so B+(D) is a proper subvariety of X. The key result that we need is Corollary
5.6 of [ELMNP2], which says that B+(D) is equal to the null locus of D, that is the
union of all positive-dimensional subvarieties V ⊂ X such that (Ddim V · V ) = 0.

Finally let us state a well-known conjecture (see 10.3 of Peternell’s lectures in
[MP]).

Conjecture 3.2.8. Assume X is a projective Calabi-Yau. If L is a nef line bundle,
then L is semiample.

If L is effective, this conjecture follows from the log abundance conjecture. In-
deed for any small rational ε > 0, the pair (X, εL) is klt, and the log abundance
conjecture would imply that KX + εL ∼Q εL is semiample.

Notice that when X is a surface, Conjecture 3.2.8 holds: in fact if L is nef and
non trivial, then H2(X, L) = H0(X, KX − L) = 0 and by Riemann-Roch

dimH0(X, L) ≥ 2 +
1
2
L · L ≥ 2,

thus L is effective. Then we can apply the log abundance theorem for surfaces (see
e.g., [FM]) and get the result.

3.3 Diameter bound for Calabi-Yau metrics

In this section we will prove a uniform diameter bound for Ricci-flat Kähler metrics.

Let X be a compact Calabi-Yau n-fold, that is a compact Kähler manifold with
c1(X) = 0 in H2(X,R). Thanks to Yau’s Theorem [Y2] there is a unique Ricci-flat
Kähler metric in each Kähler class. Let ω0 be one of these metrics, which will be
considered a reference metric. If ω is another Ricci-flat Kähler metric on X, we
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would like to get a uniform bound for its diameter diam(X, ω). Without any further
assumption on ω this is impossible: one can take X to be an elliptic curve and ω
a flat metric with very large volume (and diameter). But if the cohomology class
of ω lies in a fixed compact set in H2(X,R) then we can bound the diameter, and
the bound does not degenerate as the class approaches the boundary of the Kähler
cone. The result is as follows.

Theorem 3.3.1. Let (X,ω0) be a compact n-dimensional Ricci-flat Kähler manifold
and let ω be another Ricci-flat Kähler metric such that

(3.1)
∫

X
ωn−1

0 ∧ ω ≤ C0,

for some constant C0. Then the diameter of (X, ω) is bounded above by a constant
that depends only on n,C0, ω0.

To prove Theorem 3.3.1 we need a lemma, which appears as Lemma 1.3 in [DPS].

Lemma 3.3.2. In the above situation there exists a constant C1 that depends only
on n,C0, ω0, such that given any δ > 0 there exists an open set Uδ ⊂ X such that
its volume with respect to ω0 is at least

∫
X ωn

0 − δ, and any two points in Uδ can be
joined by a path in X with ω-length less than C1δ

−1/2.

Proof. First notice that (3.1) gives a uniform L1 bound on ω. Up to covering X by
finitely many charts, we may assume that X = K is a compact convex set in Cn,
and we will denote by gE the Euclidean metric on K. If x1, x2 ∈ K, we denote by
[x1, x2] the segment joining them in K, and we compute the average of the length
square of [x1, x2] with respect to ω, when the endpoints vary. We will denote by g
the Riemannian metric associated to ω. Using Fubini’s Theorem and the Cauchy-
Schwarz inequality we get

∫

K×K

(∫ 1

0

√
g(1−s)x1+sx2

(x2 − x1, x2 − x1)ds

)2

dx1dx2

≤ ‖x2 − x1‖2
gE

∫ 1

0

∫

K×K
|ω(1−s)x1+sx2

|dx1dx2ds

≤ diam2
gE

(K)22n

(∫ 1
2

0

∫

K×K
|ωy+sx2 |dydx2ds

+
∫ 1

1
2

∫

K×K
|ω(1−s)x1+y|dydx1ds

)

≤ diam2
gE

(K)22nVolgE (K)‖ω‖L1(K) ≤ C1,

(3.2)

where C1 is a uniform constant, we changed variable y = (1 − s)x1 if s ≤ 1
2 and

y = sx2 when s ≥ 1
2 and integrated first with respect to y. Then the set S of pairs
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(x1, x2) ∈ K × K such that the length of [x1, x2] with respect to ω is more than
(C1/δ)1/2 has Euclidean measure less than or equal δ: otherwise

∫

K×K

(∫ 1

0

√
g(1−s)x1+sx2

(x2 − x1, x2 − x1)ds

)2

dx1dx2

≥
∫

S

(∫ 1

0

√
g(1−s)x1+sx2

(x2 − x1, x2 − x1)ds

)2

dx1dx2 ≥ C1

δ
VolgE (S)

which is more than C1, and this contradicts (3.2). If x1 ∈ K we let S(x1) to be the
set of the x2 ∈ K such that (x1, x2) ∈ S, and we let Q to be the set of the x1 ∈ K
such that VolgE (S(x1)) ≥ 1

2VolgE (K) and R to be the set of (x1, x2) ∈ S such that
x1 ∈ Q. Then by Fubini’s Theorem

δ ≥ VolgE (R) =
∫

R
dx2dx1 =

∫

Q

(∫

S(x1)
dx2

)
dx1 ≥ 1

2
VolgE (K)VolgE (Q),

and so VolgE (Q) ≤ 2δ
VolgE

(K) . We let Uδ = K\Q. Then Uδ is open and if x1, x2 ∈ Uδ

then VolgE (S(xi)) < 1
2VolgE (K), for i = 1, 2. Hence

VolgE ((K\S(x1)) ∩ (K\S(x2))) > 0,

and so this set is nonempty. If y belongs to it, then (x1, y) and (x2, y) are not in S,
which means that the lengths with respect to ω of the segments [x1, y] and [y, x2]
are both less than (C1/δ)1/2. Concatenating these two segments we get a path from
x1 to x2 with length less than 2(C1/δ)1/2. We also have that

Volω0(Q) ≤ C2VolgE (Q) ≤ 2C2δ

VolgE (K)
.

Up to adjusting the constants, this is what we want.

Proof of Theorem 3.3.1. Choose δ ≤ min(C2
1 , 1/2

∫
X ωn

0 ), and pick any p ∈ Uδ. If
we denote the metric ball of ω centered at p and with radius r by B(p, r), then we
get that Uδ ⊂ B(p, C2), where C2 = C1δ

−1/2 ≥ 1. Then
∫

B(p,C2)
ωn

0 ≥
∫

Uδ

ωn
0 ≥

1
2

∫

X
ωn

0 .

Moreover we have
√−1∂∂ log

ωn

ωn
0

= Ric(ω0)− Ric(ω) = 0,

which implies that ωn = Bωn
0 where B is the constant

(3.3) B =

∫
X ωn

∫
X ωn

0

.
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So we get that

(3.4)
∫

B(p,C2)
ωn ≥ BC3,

for some constant C3 > 0 independent of ω. Since Ric(ω) = 0, the Bishop volume
comparison Theorem and (3.4) give that

(3.5)
∫

B(p,1)
ωn ≥

∫
B(p,C2) ωn

C2n
2

≥ BC4 > 0.

The following lemma is due to Yau (see e.g., Theorem I.4.1 in [SY]).

Lemma 3.3.3. Let (M2n, g) be a closed Riemannian manifold with Ric(g) ≥ 0, let
p ∈ M and 1 < R < diam(X, g). Then

R− 1
4n

≤ Vol(B(p, 2(R + 1)))
Vol(B(p, 1))

.

Proof. Choose x0 ∈ ∂B(p,R), so that d(x0, p) = R, and denote by ρ(x) = d(x, x0).
The Laplacian comparison theorem gives ∆ρ2 ≤ 4n in the sense of distributions.
Let ϕ(x) = ψ(ρ(x)) where

ψ(t) =





1 if 0 ≤ t ≤ R− 1,
1
2(R + 1− t) if R− 1 < t < R + 1,
0 if t ≥ R + 1.

Then ϕ is a nonnegative Lipschitz function supported in B(x0, R + 1), and we have
that

∫

M
ϕ∆ρ2dVg = −

∫

B(x0,R+1)
∇ϕ · ∇ρ2dVg = −2

∫

B(x0,R+1)
ρ|∇ρ|2ψ′(ρ(x))dVg

=
∫

B(x0,R+1)\B(x0,R−1)
ρdVg

≥ (R− 1)Vol(B(x0, R + 1)\B(x0, R− 1)),

and also
∫

M
ϕ∆ρ2dVg ≤ 4n

∫

B(x0,R+1)
ϕdVg ≤ 4nVol(B(x0, R + 1)).

Notice that B(p, 1) ⊂ B(x0, R + 1)\B(x0, R− 1) and so the previous two equations
give

(R− 1)Vol(B(p, 1)) ≤ 4nVol(B(x0, R + 1)).

The conclusion follows from the fact that B(x0, R + 1) ⊂ B(p, 2(R + 1)).
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Lemma 3.3.3 gives that for any 1 < R < diam(X, ω) we have

(3.6)
R− 1

4n
≤

∫
B(p,2(R+1)) ωn

∫
B(p,1) ωn

.

Choosing R = diam(X, ω)− 1 and using (3.5), (3.3) we get

diam(X, ω) ≤ 2 +
4n

BC4

∫

X
ωn = 2 +

4n

C4

∫

X
ωn

0 ,

which is bounded independent of ω. This completes the proof of Theorem 3.3.1 (a
somewhat similar argument can be found in [Pn]).

3.4 Limits of Ricci-flat metrics: the noncollapsing case

In this section we will prove Theorem 3.1.1. The idea is to carefully set up a family of
complex Monge-Ampère equations that degenerate in the limit, and prove estimates
for the solutions that are uniform outside a subvariety.

We begin with the following result.

Proposition 3.4.1. Let X be a projective Calabi-Yau n-fold, and α ∈ N1(X)R a
big and nef class that is not ample. Then there exists ω ∈ α a smooth real (1, 1)
form that is pointwise nonnegative and which is Kähler outside a proper analytic
subvariety of X. Moreover if αt : [0, 1] → KNS is a smooth path such that αt ∈ KNS

for t < 1 and α1 = α, then we can find a continuous family of Kähler forms βt ∈ αt,
t < 1, such that βt → ω in the C∞ topology as t approaches 1.

Proof. Let’s assume first that that α = c1(L) for some line bundle L, which is
equivalent to requiring that α ∈ N1(X)Z. Now L is nef and big and so Theorem
3.2.4 implies that L is semiample, so there exists some k ≥ 1 such that kL is globally
generated. This gives a morphism f : X → PN such that f∗O(1) = kL. If we let
ωFS be the Fubini-Study metric on PN , then ω = f∗ωFS

k is a pointwise nonnegative
smooth real (1, 1) form in the class α. Moreover ω is Kähler outside the exceptional
set of f , which is a proper subvariety of X. If α ∈ N1(X)Q, then kα ∈ N1(X)Z for
some integer k ≥ 1, and we can proceed as above. If finally α ∈ N1(X)R then by
Theorem 3.2.7 we know that the subcone of nef and big classes is locally rational
polyhedral. Hence α lies on a face of this cone which is cut out by linear equations
with rational coefficients. It follows that rational points on this face are dense, and
it is then possible to write α as a linear combination of classes in N1(X)Q which
are nef and big, with nonnegative coefficients. It is now clear that we can represent
α by a smooth nonnegative form ω. Notice that all of these classes give the same
contraction map f : X → Y , because they lie on the same face. This map is then
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also the contraction map of α, and ω is again Kähler outside the exceptional set of
f .

We choose a ball U in N1(X)R centered at α, such that KNS ∩ U is defined
by {Φβ > 0}1≤β≤k where the Φβ are linear forms with rational coefficients. Since
the big cone is open, up to shrinking U we may also assume that all the classes in
∂KNS ∩U are big. We may add some more linear forms to the Φβ, until they define
a strongly convex rational polyhedral cone C which is contained in KNS ∩ U . We
can then write

C =

{∑̀

i=1

aiγi

∣∣∣∣ ai ≥ 0

}
,

where the γi are nef and big classes in U . We claim that, when t is bigger than some
t0 < 1, it is possible to write the path αt as

∑
i ai(t)γi where the functions ai(t)

are continuous and nonnegative. Assume first that the cone C is simplicial, which
means that the γi are linearly independent. Then the path αt enters and eventually
stays in C, and so it can be expressed uniquely as

(3.7) αt =
∑̀

i=1

ai(t)γi,

where the ai(t) are smooth and nonnegative, t0 ≤ t ≤ 1. If on the other hand C is
not simplicial, it can be written as a finite union of simplicial subcones that intersect
only along faces, and that are spanned by some linearly independent subsets of the
γi. On any time interval when αt belongs to the interior of a simplicial cone, the
coefficients ai(t) in (3.7) vary smoothly, and on a common face of two simplicial
cones the coefficients agree, hence the ai(t) vary continuously when t0 ≤ t < 1.
Moreover since we only have finitely many simplicial subcones, we see that as t → 1
the ai(t) converge to the coefficients of α1 in any of the simplicial cones that contain
it, and so the ai(t) are continuous on the whole interval t0 ≤ t ≤ 1.

By the first part of the proof we know that we can choose δi ∈ γi a smooth
nonnegative representative, for all i. Choose a smooth function ε(t) : [t0, 1] → R
that is positive on [t0, 1) and ε(1) = 0, and that is small enough so that the classes
α̃t = αt − ε(t)αt0 are ample for all t0 ≤ t < 1. Then the new path α̃t is also
converging to α as t → 1, and by the previous claim we can write

α̃t =
∑̀

i=1

ãi(t)γi,

where ãi(t) is a continuous nonnegative function, for all i. Then the smooth (1, 1)
forms

β̃t :=
∑̀

i=1

ãi(t)δi
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are nonnegative representatives of α̃t that vary continuously in t. When t approaches
1, the forms β̃t converge in the C∞ topology to a smooth nonnegative form ω̃
representing α. If χ is a Kähler form in αt0 , then the forms βt = β̃t + ε(t)χ defined
on [t0, 1) are Kähler, represent αt and converge to ω̃ as t → 1. Up to replacing ω
by ω̃, this gives the desired family of forms on [t0, 1). It is very easy to extend the
family βt on the whole [0, 1), and since we’re not going to use this, we leave the
proof to the reader.

Of course, a similar statement holds if we are given a sequence of ample classes
αi converging to α, instead of a path.

Let us now recall some notation and facts from analytic geometry. If X is any
complex manifold and ω is a Hermitian form on X, we’ll denote by PSH(X, ω)
the set of all upper semicontinuous (usc) functions ϕ : X → [−∞, +∞) such that
ω+

√−1∂∂ϕ is a positive current. In the case when (X,ω) is Kähler, then all Kähler
potentials for ω belong to PSH(X,ω). A fundamental result by Bedford-Taylor [BT]
says that the Monge-Ampère operator (ω +

√−1∂∂ϕ)n is well defined whenever
ϕ ∈ PSH(X,ω) is locally bounded. Let’s also recall the definition of a singular
Kähler metric [EGZ1] on a (possibly singular) algebraic variety X. This is given by
specifying its Kähler potentials on an open cover (Ui) of X, that are usc functions
ϕi : Ui → [−∞, +∞) with the following property: ϕi extends to a plurisubharmonic
function on an open set Vi ⊂ Cm where Ui ⊂ Vi is a local embedding. We refer the
reader to section 7 of [EGZ1] for the definition of a singular Ricci-flat Kähler metric
and for a proof that they always exist on Calabi-Yau models. With these facts in
mind, we can now give the

Proof of Theorem 3.1.1. Proposition 3.4.1 gives us ω ∈ α a smooth nonnegative
representative, and βt ∈ αt continuously varying Kähler forms, when t < 1, such
that βt → ω as t → 1. As in the proof of Proposition 3.4.1, there is a contraction
map f : X → Y such that Y is a normal irreducible projective variety, f is birational
and f∗OX = OY . Moreover ω is the pullback of a (singular) Kähler metric on Y ,
and it is Kähler outside the exceptional set of f . Then setting D0 = 0 as Cartier
divisors on Y , we have aKX = f∗D0 for some integer a > 0, so

f∗(aKX) = D0 = 0

holds as Weil divisors, but since f is birational we also have f∗(aKX) = aKY (as
Weil divisors), hence aKY is Cartier and is equal to zero. So we have f∗KY = KX

as Q-divisors, which implies that Y has at most canonical singularities and is a
Calabi-Yau model (see also Corollary 1.5 of [Ka1]).

Denote by Ω the smooth volume form on X given by

Ω =
ωn

0∫
X ωn

0

,
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which satisfies
∫
X Ω = 1. We can write

Ω = Fωn,

where F ∈ L1(ωn), F > 0. The following argument to show that actually F ∈
Lp(ωn) for some p > 1 is similar to Lemma 3.2 in [EGZ1]. First of all 1/F is
smooth, nonnegative, and vanishes precisely on the exceptional set of f . Fixing
local coordinates (zi) on a polydisc D ⊂ X and a local embedding G : f(D) → Cm,
we see that 1/F is comparable to

∣∣∣∣
∂G

∂z1
∧ · · · ∧ ∂G

∂zn

∣∣∣∣
2

on D. But this is in turn comparable to

r∑

i=1

|gi|2,

where the gi are holomorphic functions on D, and so F ε ∈ L1(D,Ω) for some small
ε > 0 that depends on the vanishing orders of the gi. Then

(3.8)
∫

D
F 1+εωn =

∫

D
F εΩ < ∞.

The compactness of X gives F ∈ L1+ε(ωn), and so we can apply Theorem 2.1 and
Proposition 3.1 of [EGZ1] or Theorem 1.1 in [Zh1] (which rely on the seminal work
of KoÃlodziej [KoÃl]) to get a unique bounded ϕ ∈ PSH(X, ω) such that

(3.9) (ω +
√−1∂∂ϕ)n = αnΩ,

and supX ϕ = 0. We then embed Y into projective space and extend ω to a Kähler
form in a neighborhood of Y as in Proposition 3.3 of [DPa] or in Theorem 4 of [De].
Composing the embedding with f we get a morphism which is birational with the
image, with connected fibers, and we can then apply Theorem 1.1 in [Zh1] (see also
[Zh2] and Remark 5.2 in [DZ]) and get that ϕ is continuous. Moreover we can see
that ϕ descends to a function on Y : if V is a fiber of f , the restriction of ϕ to V
is a plurisubharmonic function, because ω|V = 0. Desingularizing V and applying
the maximum principle we see that ϕ|V has to be constant, and so ϕ descends to
Y . Since ω by construction is the pullback of a (singular) Kähler form on Y , we see
that ω+

√−1∂∂ϕ is a singular Ricci-flat metric on Y , in the terminology of [EGZ1].
On X, the closed positive current ω1 = ω +

√−1∂∂ϕ clearly lies in the class α and
has continuous potentials. Intuitively, our goal is to get estimates in the open set
where ω is positive. This can be done rigorously in the following way, which was
first used by H. Tsuji [Ts]. Since α is nef and big, by Kodaira’s lemma (Example
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2.2.23 in [La]) there exists E an effective Cartier R-divisor such that for all ε > 0
small enough, α− εE = κε is Kähler. We’ll show that ϕ is smooth on X\E, and so
ω1 is a smooth Ricci-flat metric there, and that the Ricci-flat metrics ωt converge to
ω1 in the C∞ topology on compact sets of X\E. Notice that the metric ω1 on X\E
cannot be complete, since its diameter is finite by Theorem 3.3.1. Our argument
is very similar to the proof of Theorem 3.5 in [EGZ1] (see also [Y2]). Once this
is proved, we can repeat the argument for any other E given by Kodaira’s lemma,
and by uniqueness we see that ω1 is smooth off E′, the intersection of the supports
of all such E. But this is equal to the augmented base locus B+(α), just from its
definition, and we have already mentioned the fact that this is equal to the null
locus of α.

We now fix once and for all an ε > 0 small enough so that Kodaira’s lemma
holds. First of all notice that the classes αt − εE = κt

ε are all Kähler when t is
close to 1. Choose a Kähler form χε ∈ κε, let σ ∈ H0(X,OX(E)) be the canonical
section, and fix a Hermitian metric | · | on E such that the following Poicaré-Lelong
equation holds

(3.10) ω − ε[E] = χε − ε
√−1∂∂ log |σ|,

where [E] denotes the current of integration on E. Then we have

βt − ε[E] = χε + (βt − ω)− ε
√−1∂∂ log |σ|,

and χt
ε = χε + (βt − ω) is Kähler for t close to 1. There are smooth functions ϕt

solutions of

(3.11) ωn
t = (βt +

√−1∂∂ϕt)n = αn
t Ω,

where the positive constants αn
t approach αn as t goes to 1, and supX ϕt = 0. We

now derive a uniform L∞ estimate for ϕt. Since the Ricci-flat metrics ωt have a
uniform upper bound on the diameter by Theorem 3.3.1 and a uniform positive
lower bound for the volume

∫
X ωn

t , classical results of Croke [Cr], Li [Li] and Li-Yau
[LY] give uniform upper bounds for the Sobolev and Poincaré constants of ωt. We
temporarily modify the normalization of ϕt by requiring that

∫
X ϕtω

n
t = 0 and we’re

going to show that |ϕt| ≤ C. This will then hold for the original ϕt as well, with
perhaps a bigger constant. We employ a Moser iteration argument in the following
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way, inspired by [Y2]. For any p > 1 we compute

∫

X
|∇(ϕt|ϕt|

p−2
2 )|2ωt

ωn
t =

p2

4

∫

X
|ϕt|p−2|∇ϕt|2ωt

ωn
t

=
np2

4

∫

X
|ϕt|p−2∂ϕt ∧ ∂ϕt ∧ ωn−1

t

≤ np2

4

∫

X
|ϕt|p−2∂ϕt ∧ ∂ϕt ∧

(
n−1∑

i=0

ωn−1−i
t ∧ βi

t

)

= − np2

4(p− 1)

∫

X
ϕt|ϕt|p−2∂∂ϕt ∧

(
n−1∑

i=0

ωn−1−i
t ∧ βi

t

)

=
np2

4(p− 1)

∫

X
ϕt|ϕt|p−2(βt − ωt) ∧

(
n−1∑

i=0

ωn−1−i
t ∧ βi

t

)

=
np2

4(p− 1)

∫

X
ϕt|ϕt|p−2(βn

t − ωn
t )

≤ Cp

∫

X
|ϕt|p−1ωn

t ,

(3.12)

where we used (3.11) in the last inequality. Using the uniform Sobolev and Poincaré
inequalities for ωt and iterating in the same way as in (1.25), (1.27), (1.28), (1.30)
we get the required L∞ bound |ϕt| ≤ C. Notice that such a bound is also proved in
a more general setting in [EGZ1, Zh1], using sophisticated tools from pluripotential
theory.

Outside E we now have

βt = χt
ε − ε

√−1∂∂ log |σ|,
so that the functions ψt = ϕt − ε log |σ| solve

(3.13) (χt
ε +

√−1∂∂ψt)n = αn
t Ω = eF t

ε (χt
ε)

n

there, for some appropriate smooth functions F t
ε , defined on the whole of X. As t

approaches 1, the Kähler forms χt
ε are uniformly bounded in the smooth topology

(with eigenvalues bounded away from 0 uniformly), and so are the functions F t
ε .

Yau’s second order estimates [Y2] for the Monge-Ampère equation (3.13) give

(3.14) ∆′
t(e

−Aψt(n + ∆tψt)) ≥ e−Aψt

(
−C1 − C2(n + ∆tψt) + (n + ∆tψt)

n
n−1

)
,

where A,C1 and C2 are uniform positive constants, ∆t is the Laplacian of χt
ε and

∆′
t is the Laplacian of χt

ε +
√−1∂∂ψt. Now notice that on X\E we have

e−Aψt(n + ∆tψt) = |σ|Aεe−Aϕt(n + ∆tϕt − ε∆t log |σ|),
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and
|∆t log |σ|| ≤ C,

for some uniform constant C. Hence the function e−Aψt(n + ∆tψt) goes to zero
when we approach E, and so its maximum will be attained. The maximum principle
applied to (3.14) then gives

n + ∆tψt ≤ CeA(ψt−infX\E ψt),

on the whole of X\E. But noticing that infX\E ψt ≥ infX ϕt − C for a uniform
constant C, and recalling that |ϕt| ≤ C0, we get

n + ∆tϕt ≤ C + n + ∆tψt ≤ C(1 + |σ|−Aε).

This gives uniform interior C2 estimates of ϕt and ψt on compact sets of X\E.
Then the Harnack estimate of Evans-Krylov gives uniform C2,γ estimates, for some
0 < γ < 1, and a standard bootstrapping argument gives uniform Ck,γ estimates
for all k ≥ 2, on compact sets of X\E, independent of t < 1. Thus the family (ϕt)
is precompact Ck,γ′(X\E) for any 0 < γ′ < γ, and any limit point ψ belongs to
PSH(X\E, ω), it satisfies

(ω +
√−1∂∂ψ)n = αnΩ

on X\E, and is bounded near E. Hence ψ extends to a bounded function in
PSH(X, ω) and the above Monge-Ampère equation holds on X because the Borel
measure (ω+

√−1∂∂ψ)n doesn’t charge the analytic set E. Then by the uniqueness
part of Theorem 2.1 of [EGZ1], we must have ψ = ϕ. This implies that ϕt → ϕ in
C∞ on compact sets of X\E, and that ϕ is smooth there.

Let us briefly compare this with some previous results. Using the diameter
bound (Theorem 3.3.1), we can apply the Bishop volume comparison Theorem and
get that for any point p ∈ X and any r > 0, t < 1

(3.15)
∫

Bt(p,r)
ωn

t ≥ r2n

∫
X ωn

t

diam(X,ωt)2n
≥ cr2n,

where c > 0 is a uniform constant. A well-known computation in Chern-Weil theory
gives

1
n(n− 1)

∫

X
‖Rmt‖2

t ω
n
t =

∫

X
c2(X, ωt) ∧ ωn−2

t = c2(X) · αn−2
t ≤ C,

where Rmt is the Riemann curvature tensor of ωt and c2(X, ωt) is the second Chern
form of ωt. If n = 2 we can thus apply Theorem C of [An], Theorem 5.5 of [BKN]
or Proposition 3.2 of [Ti2] and get that a subsequence of (X,ωt) converges to an
Einstein orbifold with isolated singularities in the Gromov-Hausdorff topology, and
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also in the C∞ topology on compact sets outside the orbifold points. If n > 2 these
theorems require a uniform bound on

∫

X
‖Rmt‖n

t ωn
t ,

which in general can not be expressed in terms of topological data as above. Instead
when n > 2 we apply a general theorem of Gromov [Gr] that says that any se-
quence of compact Riemannian manifolds of dimension 2n with diameter bounded
above and Ricci curvature bounded below, has a subsequence that converges in
the Gromov-Hausdorff topology to a compact length space. Thus a subsequence of
(X,ωt) converges to a compact metric space Y , and Theorem 1.15 in [CCT] says
that Y is a complex manifold outside a rectifiable set R ⊂ Y of real Hausdorff
codimension at least 4. Moreover their Theorem 9.1 gives supporting evidence that
R should in fact be a complex subvariety of Y .

On the other hand our Theorem 3.1.1 gives the convergence of the whole sequence
of metrics, and not just of a subsequence, and the limit metric is uniquely determined
by the class α. When n > 2 the convergence we get is stronger than Gromov-
Hausdorff convergence, but it only happens outside the singular set E. Also we see
precisely what the limit space Y is, namely the Calabi-Yau model of X obtained
from the contraction map of α. It has canonical singularities, so its singular set is a
subvariety of complex codimension at least 2, and when n = 2 canonical singularities
are precisely rational double points, that are of orbifold type. We will discuss the
case n = 2 with more details in section 3.6.

3.5 Limits of Ricci-flat metrics: the collapsing case

In this section we will prove Theorem 3.1.2.

Let X be a projective manifold with c1(X) = 0, that is a Calabi-Yau manifold,
and we will fix ωX a Kähler form. We assume that we have a class α ∈ ∂KNS

which is nef but not big, and moreover that it is a rational class. This means that
a multiple of α is equal to c1(L) for some nef line bundle L over X, with Iitaka
dimension κ(X,L) = m < n. If Conjecture 3.2.8 holds, then L is semiample, and
so there is an algebraic fiber space f : X → Y , with Y an m-dimensional normal
variety, and α = f∗Aα for some ample divisor Aα on Y . From now on we will
assume that L is semiample, and so we have an algebraic fiber space f : X → Y .
We can then find proper subvarieties S ⊂ X and f(S) ⊂ Y such that Y is smooth
away from f(S), and f : X\S → Y \f(S) is a smooth submersion. Lemma 10.6 in
[I] shows that a generic fiber of f is also a Calabi-Yau manifold. We will denote
by ω0 the pullback of the Fubini-Study metric on X, and by ωY the pullback to Y .
Then ω0 is a smooth nonnegative form representing α, while ωY is a smooth Kähler
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metric on the regular part of Y , and ω0 = f∗ωY on X\S. Moreover on X we have

ωk
0 ∧ ωn−k

X = 0,

for m + 1 ≤ k ≤ n, and

(3.16) ωm
0 ∧ ωn−m

X = Hωn
X ,

where the smooth non-negative function H vanishes precisely on S and is such that
H−γ is in L1 for some small γ > 0. This is because H is locally comparable to
the modulus square of the Jacobian of f , which is locally given as the sum of the
modulus square of holomorphic functions that are not identically zero. In particular
it follows that ∫

X
ωm

0 ∧ ωn−m
X > 0.

In this setting we look at the Kähler forms ωt = ω0 + tωX for 0 < t ≤ 1, and
we call ω̃t the unique Ricci-flat Kähler metric cohomologous to ωt for t > 0, whose
existence is guaranteed by Yau’s theorem [Y2]. Explicitly, if we denote by χ the
unique Ricci-flat Kähler metric cohomologous to ω1 then Yau’s theorem guarantees
the existence of smooth functions ϕt for 0 < t ≤ 1 so that ω̃t = ωt +

√−1∂∂ϕt,
supX ϕt = 0 and

(3.17) (ωt +
√−1∂∂ϕt)n = atχ

n,

where

at =

∫
X ωn

t∫
X ωn

1

.

Notice that as t approaches zero, the constants at behave like

(3.18)
(

n

m

)∫
X ωm

0 ∧ ωn−m
X∫

X ωn
1

tn−m + O(tn−m+1).

We can define a smooth function E by the relation χn = eEωn
X , and then we can

write (3.17) as

(3.19) (ωt +
√−1∂∂ϕt)n = ctt

n−meEωn
X ,

where the constant ct is bounded away from zero and infinity as t goes to zero.
Equation (3.19) has been studied for example in [KTi] where a uniform L∞ bound
on ϕt was conjectured. This was then proved independently by Demailly and Pali
[DP] and by Eyssidieux, Guedj and Zeriahi [EGZ2]:

Theorem 3.5.1 ([DP, EGZ2]). There is a constant C that depends only on X, E, ωX , ω0

such that for all 0 < t ≤ 1 we have

(3.20) ‖ϕt‖L∞ ≤ C.
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Our goal is to show higher order estimates for ϕt which are uniform on compact
sets of X\S. Notice that since

0 < trωX ω̃t = trωX ωt + ∆ωX ϕt,

and since trωX ωt is uniformly bounded, we always have a uniform lower bound for
∆ωX ϕt.

The following are the main results of this section, and together they imply Theo-
rem 3.1.2. The estimates that follow contain the function |σ|λh. This is a nonnegative
function on Y , which will be defined later on, and whose zero set is a subvariety
that contains f(S). Moreover, we will have freedom in choosing σ, and the common
zero locus of all the possible choices is precisely f(S).

Theorem 3.5.2 (Laplacian bound). There are constants A,B, C that depend only
on the fixed data, so that on X\S and for any 0 < t ≤ 1 we have

(3.21)
t

CeAe
B|σ|−λ

h

ωX ≤ ω̃t ≤ CeAe
B|σ|−λ

h ωX .

In particular the Laplacian ∆ωX ϕt is bounded uniformly on compact sets of X\S,
independent of t.

Theorem 3.5.3 (Fiberwise collapse). Given any y ∈ Y \f(S) denote by Xy the
fiber f−1(y), by ωy the Kähler form ωX |Xy and by ω̃y the restriction of the Ricci-flat
metric ω̃t|Xy . Then there are constants A,B,C that only depend on the fixed data,
so that on the fiber Xy and any 0 < t ≤ 1 we have

(3.22)
t

CeAe
B|σ(y)|−λ

h

ωy ≤ ω̃y ≤ tCeAe
B|σ(y)|−λ

h ωy,

(3.23) |∇ω̃y|2ωy
≤ t1/2CeAe

B|σ(y)|−λ
h ,

where ∇ is the covariant derivative of ωy. In particular the metrics ω̃y converge
to zero in C1(ωy) as t approaches zero, uniformly as y varies in a compact set of
Y \f(S).

Theorem 3.5.4. As t → 0 the Ricci-flat metrics ω̃t on X\S converge to a smooth
Kähler metric ω on Y \f(S), in the C1,β

loc topology of Kähler potentials for any 0 <
β < 1. The metric ω satisfies

Ric(ω) = ωWP ,

on Y \f(S), where ωWP is the pullback of the Weil-Petersson metric from the moduli
space of the Calabi-Yau fibers, and it measures the change of complex structures of
the fibers.
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To prove Theorems 3.5.2, 3.5.3 and 3.5.4 we need a few lemmas.

Lemma 3.5.5. There is a uniform constant C so that for all 0 < t ≤ 1 we have

(3.24) trω̃tω0 ≤ C.

Proof. Recall that we are assuming that ω0 = cf∗ωFS where f : X → PN is a
holomorphic map. We can then use the Chern-Lu formula that appears in Yau’s
Schwarz lemma computation ([Y3], [To1]) and get

∆ω̃t log trω̃tω0 ≥ −Atrω̃tω0,

for a uniform constant A. Noticing that

∆ω̃tϕt = n− trω̃tωt ≤ n− trω̃tω0,

we see that

(3.25) ∆ω̃t(log trω̃tω0 − (A + 1)ϕt) ≥ trω̃tω0 − n(A + 1).

Then the maximum principle applied to (3.25), together with the estimate (3.20),
gives (3.24).

The next lemma, which gives a Sobolev constant bound, is essentially due to
Michael and Simon [MS].

Lemma 3.5.6. There is a uniform constant C so that for any 0 < t ≤ 1, for any
y ∈ Y \f(S) and for any u ∈ C∞(Xy) we have

(3.26)

(∫

Xy

|u| 2(n−m)
n−m−1 ωn−m

y

)n−m−1
n−m

≤ C

∫

Xy

(|∇u|2ωy
+ |u|2)ωn−m

y .

Proof. For any y ∈ Y \f(S) the fiber Xy is a smooth (n−m)-dimensional complex
submanifold of X. Since X is Kähler, it follows that Xy is a minimal submanifold,
and so it has vanishing mean curvature vector. We then use the Nash embedding
theorem to isometrically embed (X, ωX) into Euclidean space, and so we have an
isometric embedding X → RN . The length of the mean curvature vector of the
composite isometric embedding Xy → X → RN is then uniformly bounded inde-
pendent of y, since it depends only on the second fundamental form of X → RN .
Then (3.26) follows from the uniform Sobolev inequality of [MS]. Notice that they
prove an L1 Sobolev inequality, but this implies the stated L2 Sobolev inequality
thanks to the Hölder inequality.

One can easily avoid the Nash embedding theorem by using a partition of unity
to reduce directly to the Euclidean case, but the above proof is perhaps cleaner.

We note here that the volume of Xy with respect to ωy,
∫
Xy

ωn−m
y , is a homo-

logical constant independent of y ∈ Y \f(S), up to scaling ωX we may assume that
it is equal to 1. The next step is to prove a diameter bound for ωy:
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Lemma 3.5.7. There is a uniform constant C so that for any 0 < t ≤ 1, for any
y ∈ Y \f(S) we have

(3.27) diam(Xy, ωy) ≤ C.

Proof. As above we embed (X, ωX) isometrically into RN and we get that the length
of the mean curvature vector of the composite isometric embedding Xy → X → RN

is then uniformly bounded independent of y. We can then apply Theorem 1.1 of
[Tp] and get the required diameter bound.

Alternatively, first one observes that (3.26) implies that there are uniform con-
stants r0, κ so that that geodesic balls in Xy of radius r < r0 have volume at least
κr2(n−m) (Lemma 3.2 in [He]). Since the total volume of Xy is constant equal to 1,
an elementary argument gives the required diameter bound.

The next step is to prove a Poincaré inequality for the restricted metric ωy.
This time the constant will not be uniformly bounded, but it will blow up like a
power of 1

H . To this end, we first estimate the Ricci curvature of ωy. Fix a point
y ∈ Y \f(S) and choose local coordinates z1, . . . , zn−m on the fiber Xy, which extend
locally to coordinates in a ball in X. Then pick local coordinates wn−m+1, . . . , wn

near y ∈ Y \f(S), so that z1, . . . , zn−m, zn−m+1 = f∗(wn−m+1), . . . , zn = f∗(wn)
give local holomorphic coordinates on X. We can also assume that at the point y
the metric ωY is the identity. At any fixed point of Xy we then have

Ric(ωy) = −√−1∂∂ log
ωn−m

y

dz1 ∧ · · · ∧ dzn−m = −√−1∂∂ log
ωn−m

X ∧ ωm
0

dz1 ∧ · · · ∧ dzn

= −√−1∂∂ log H −√−1∂∂ log
ωn

X

dz1 ∧ · · · ∧ dzn ≥ −
√−1∂∂H

H
+ Ric(ωX)|Xy

≥ −
(

C

H
+ C

)
ωy ≥ −C

H
ωy.

(3.28)

Now if we fix an ample line bundle LY cohomologous to Aα, some high power of
it has a holomorphic section σ whose zero set contains the subvariety f(S). Up to
changing ωY with a multiple of it, we will assume that σ is a section of LY . We
then fix h a Hermitian metric on LY with curvature ωY , and consider the function
on Y given by |σ|2h. Then on Y we have the inequality

(3.29) |σ(y)|λh ≤ C inf
Xy

H,

where λ,C are constants depending only on the fixed data. This is because the
function H is locally a sum of squares of holomorphic functions (the minors of the
Jacobian of f) which have well-defined vanishing orders on S, and f∗(|σ|2h) also
vanishes on S by construction. Combining (3.28) and (3.29) we see that the Ricci
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curvature of ωy is bounded below by −C|σ|−λ
h . Since the diameter of ωy is bounded

by Lemma 3.5.7, a theorem of Li-Yau [LY] then shows that the Poincaré constant
of ωy is bounded above by CeB|σ|−λ

h . This proves the following

Lemma 3.5.8. There are uniform constants λ,B, C so that for any 0 < t ≤ 1, for
any y ∈ Y \f(S) and for any u ∈ C∞(Xy) with

∫
Xy

uωn−m
y = 0 we have

(3.30)
∫

Xy

|u|2ωn−m
y ≤ CeB|σ|−λ

h

∫

Xy

|∇u|2ωy
ωn−m

y .

We now let ω̃y be the restriction ω̃t|Xy . We have the following estimate for the
volume form of ω̃y on Xy:

ω̃n−m
y

ωn−m
y

=
ω̃n−m

t ∧ ωm
0

ωn−m
X ∧ ωm

0

=
ω̃n−m

t ∧ ωm
0

ω̃n
t

· ω̃n
t

Hωn
X

≤
(

ω̃n−1
t ∧ ω0

ω̃n
t

)m
ctt

n−meE

H

= (trω̃tω0)m ctt
n−meE

H
≤ Ctn−m

|σ|λh
.

(3.31)

Notice that when we restrict to Xy we have

ω̃y = (ω0 + tωX +
√−1∂∂ϕt)|Xy = tωy + (

√−1∂∂ϕt)|Xy .

It is convenient to define a function ϕt on Y \f(S) by

ϕt(y) =
∫

Xy

ϕtω
n−m
y .

This is just the “integration along the fibers” of ϕt, and we will also denote by ϕt

its pullback to X\S via f . We also define a function on X\S by

ψ =
1
t

(
ϕt − ϕt

)
,

so that we have
∫
Xy

ψωn−m
y = 0 and

(3.32) (ωy +
√−1∂∂ψ)n−m =

ω̃n−m
y

tn−m
≤ C

|σ|λh
ωn−m

y .

We can then apply Yau’s L∞ estimate Theorem 1.3.3 to the inequality (3.32). Since
the volume of Xy is constant equal to 1, the Sobolev constant of ωy is uniformly
bounded (Lemma 3.5.6) and the Poincaré constant is controlled by Lemma 3.5.8,
we get

(3.33) sup
Xy

∣∣ϕt − ϕt

∣∣ = t sup
Xy

|ψ| ≤ tCeB|σ(y)|−λ
h .

Recall that from (3.20) we have a uniform bound for the oscillation of ϕt.
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Proof of Theorem 3.5.2. First we will show the right-hand side inequality in (3.21).
We will apply the maximum principle to the quantity

K = e−B|σ|−λ
h

(
log trωX ω̃t − A

t
(ϕt − ϕt)

)
,

where A is a suitably chosen uniform large constant. The maximum of K on X\S
is obviously achieved, and we will show that in fact K ≤ C for a uniform constant
C. This together with (3.33) will show that on X\S we have

(3.34) ∆ωX ϕt = trωX ω̃t − trωX ω0 − nt ≤ trωX ω̃t ≤ CeCe
B|σ|−λ

h ,

which is half of (3.21) To do this, we first compute as in Lemma 4.3.2

∆ω̃t log trωX ω̃t ≥ −Ctrω̃tωX − C,

for a uniform constant C. On the other hand

∆ω̃tϕt ≤ n− t · trω̃tωX ,

and so if A is large enough we get

∆ω̃t

(
log trωX ω̃t − A

t
ϕt

)
≥ trω̃tωX − C

t
.

Since f is locally a submersion on X\S, the fiber integration formula

∂∂ϕt = f∗(∂∂ϕt ∧ ωn−m
X )

holds. So we can compute that

∆ω̃tϕt = trω̃tf∗(
√−1∂∂ϕt ∧ ωn−m

X ) = trω̃tf∗((ω̃t − ωt) ∧ ωn−m
X )

≥ −trω̃tf∗(ωt ∧ ωn−m
X ) = −trω̃tf∗(f

∗ωY ∧ ωn−m
X )− ttrω̃tf∗(ω

n−m+1
X )

= −trω̃tω0 − ttrω̃tf∗(ω
n−m+1
X ).

(3.35)

On Y \f(S) the Kähler form f∗(ωn−m+1
X ) can be estimated by

f∗(ωn−m+1
X ) ≤ ωm−1

Y ∧ f∗(ωn−m+1
X )

ωm
Y

ωY =
f∗(ωm−1

0 ∧ ωn−m+1
X )

ωm
Y

ωY

≤ C
f∗(ωn

X)
ωm

Y

ωY = C
f∗(H−1ωm

0 ∧ ωn−m
X )

ωm
Y

ωY

≤ C|σ|−λ
h

f∗(ωm
0 ∧ ωn−m

X )
ωm

Y

ωY = C|σ|−λ
h ωY .

(3.36)
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and so using (3.24) we get

∆ω̃tϕt ≥ −C − tC|σ|−λ
h .

It follows that

(3.37) ∆ω̃t

(
log trωX ω̃t − A

t
(ϕt − ϕt)

)
≥ trω̃tωX − C

t
− C|σ|−λ

h .

Next we compute on Y \f(S)

∆ω̃t |σ|λh = (λ/2)2|σ|λh|∇ log |σ|2h|2ω̃t
+ λ/2|σ|λhtrω̃t

√−1∂∂ log |σ|2h
= (λ/2)2|σ|λ−4

h |∇|σ|2h|2ω̃t
− λ/2|σ|λhtrω̃tω0 ≥ −C|σ|λh,

(3.38)

|∇|σ|2h|2ω̃t
= |σ|2h|∇σ|2h,ω̃t

≤ C|σ|2htrω̃tωY ≤ C|σ|2h,

(3.39) |∇|σ|λh|2ω̃t
= (λ/2)2|σ|2λ−4

h |∇|σ|2h|2ω̃t
≤ C|σ|2λ−2

h ,

∆ω̃t |σ|λh = (λ/2)2|σ|λ−4
h |∇|σ|2h|2ω̃t

− λ/2|σ|λhtrω̃tω0

≤ C|σ|λ−2
h .

(3.40)

Using (3.37) we then compute

∆ω̃tK ≥ e−B|σ|−λ
h

(
trω̃tωX − C

t
− C|σ|−λ

h

)

+
(

log trωX ω̃t − A

t
(ϕt − ϕt)

)
∆ω̃t

(
e−B|σ|−λ

h

)

+ 2eB|σ|−λ
h Re〈∇K,∇e−B|σ|−λ

h 〉ω̃t

− 2
(

log trωX ω̃t − A

t
(ϕt − ϕt)

)
eB|σ|−λ

h |∇e−B|σ|−λ
h |2ω̃t

.

(3.41)

Using (3.38), (3.39) and |σ|λh ≤ C, the second term in (3.41) can be estimated as
follows

∆ω̃t

(
e−B|σ|−λ

h

)
=

Be−B|σ|−λ
h

|σ|2λ
h

∆ω̃t |σ|λh +
B2e−B|σ|−λ

h

|σ|4λ
h

|∇|σ|λh|2ω̃t

− 2Be−B|σ|−λ
h

|σ|3λ
h

|∇|σ|λh|2ω̃t

≥ −C
e−B|σ|−λ

h

|σ|λh
− C

e−B|σ|−λ
h

|σ|λ+2
h

≥ −C
e−B|σ|−λ

h

|σ|λ+2
h

.

(3.42)
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At the maximum of K we may assume that K ≥ 0, otherwise we have nothing to
prove. Hence we can use (3.33) to estimate

(
log trωX ω̃t − A

t
(ϕt − ϕt)

)
∆ω̃t

(
e−B|σ|−λ

h

)
≥ −C

e−B|σ|−λ
h

|σ|λ+2
h

log trωX ω̃t − C

|σ|λ+2
h

.

(3.43)

The fourth term in (3.41) can be estimated using (3.39)

|∇e−B|σ|−λ
h |2ω̃t

=
B2e−2B|σ|−λ

h

|σ|4λ
h

|∇|σ|λh|2ω̃t
≤ Ce−2B|σ|−λ

h

|σ|2λ+2
h

,(3.44)

−2
(

log trωX ω̃t − A

t
(ϕt − ϕt)

)
eB|σ|−λ

h |∇e−B|σ|−λ
h |2ω̃t

≥ −C
e−B|σ|−λ

h

|σ|2λ+2
h

log trωX ω̃t − C

|σ|2λ+2
h

.

(3.45)

Plugging (3.43) and (3.45) in (3.41), at the maximum point of K we get

0 ≥ trω̃tωX − C

t
− C

|σ|λh
− C

|σ|2λ+2
h

log trωX ω̃t − C
eB|σ|−λ

h

|σ|2λ+2
h

.

From (1.24) we see that

trωX ω̃t ≤ Ctn−m(trω̃tωX)n−1 ≤ C(trω̃tωX)n−1,

and using this and the inequalities 2ab ≤ εa2 + b2/ε and (log xn−1)2 ≤ x + C we get

trω̃tωX ≤ C

t
+

C

|σ|λh
+

C

|σ|4λ+4
h

+ C
eB|σ|−λ

h

|σ|2λ+2
h

+
1
2
trω̃tωX ,

whence
trω̃tωX ≤ C

t
+ CeC|σ|−λ

h .

At the same point we then get

trω̃tωt = trω̃t(ω0 + tωX) ≤ C + tCeC|σ|−λ
h .

and using (1.24) we get

(3.46) trωtω̃t ≤ (trω̃tωt)n−1 ω̃n
t

ωn
t

≤
(
C + tCeC|σ|−λ

h

)n−1 ω̃n
t

ωn
t

.

We now use (3.16), (3.19) and (3.29) to get

(3.47)
ω̃n

t

ωn
t

≤ Ctn−mωn
X

ωm
0 ∧ (tωX)n−m

=
C

H
≤ C

|σ|λh
.
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Combining (3.46) and (3.47) we get

trωtω̃t ≤ CeC|σ|−λ
h ,

for some uniform constant C. But we also have ωt = ω0 + tωX ≤ CωX and so we
get

trωX ω̃t ≤ CeC|σ|−λ
h .

Using (3.33) again, this implies that at the maximum of K we have

K ≤ C + e−B|σ|−λ
h log(CeC|σ|−λ

h ) ≤ C.

We now show the left-hand side inequality in (3.21). To this extent we apply
the maximum principle to the quantity

K1 = e−B|σ|−λ
h

(
log(t · trω̃tωX)− A

t
(ϕt − ϕt)

)
,

where A is a suitably chosen uniform large constant. The maximum of K1 on X\S
is obviously achieved, and we will show that in fact K1 ≤ C for a uniform constant
C. This together with (3.33) will show that on X\S we have

(3.48) trω̃tωX ≤ C

t
eCe

B|σ|−λ
h ,

which is the other half of (3.21). To prove that K1 ≤ C we use the maximum
principle and, as in (3.41), we compute

∆ω̃tK1 ≥ e−B|σ|−λ
h

(
trω̃tωX − C

t
− C|σ|−λ

h

)

+
(

log(t · trω̃tωX)− A

t
(ϕt − ϕt)

)
∆ω̃t

(
e−B|σ|−λ

h

)

+ 2eB|σ|−λ
h Re〈∇K1,∇e−B|σ|−λ

h 〉ω̃t

− 2
(

log(t · trω̃tωX)− A

t
(ϕt − ϕt)

)
eB|σ|−λ

h |∇e−B|σ|−λ
h |2ω̃t

.

(3.49)

We estimate this in the same way as before and get

∆ω̃tK1 ≥ e−B|σ|−λ
h

(
trω̃tωX − C

t
− C|σ|−λ

h

)

− C
e−B|σ|−λ

h

|σ|2λ+2
h

log(t · trω̃tωX)− C

|σ|2λ+2
h

+ 2eB|σ|−λ
h Re〈∇K1,∇e−B|σ|−λ

h 〉ω̃t .

(3.50)
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At the maximum of K1 we get

0 ≥ trω̃tωX − C

t
− C

|σ|λh
− C

|σ|2λ+2
h

log(t · trω̃tωX)− CeC|σ|−λ
h ,

and using the inequalities 2ab ≤ εa2 + b2/ε and (log x)2 ≤ x + C we get

trω̃tωX ≤ C

t
+

C

|σ|λh
+

C

|σ|4λ+4
h

+ CeC|σ|−λ
h +

1
2
trω̃tωX ,

whence
t · trω̃tωX ≤ C + tCeC|σ|−λ

h ≤ CeC|σ|−λ
h ,

and so at that point

K1 ≤ C + e−B|σ|−λ
h log(CeC|σ|−λ

h ) ≤ C,

and we are done.

Proof of Theorem 3.5.3. We will first show (3.22), which is an easy consequence of
(3.21). The left-hand side follows immediately from (3.21), which implies

(3.51) trω̃yωy ≤ C

t
eCe

B|σ|−λ
h .

Then (1.24) and (3.31) give

(3.52) trωy ω̃y ≤ (trω̃yωy)n−m−1
ω̃n−m

y

ωn−m
y

≤ t
CeCe

B|σ|−λ
h

|σ|λh
≤ tCeCe

B|σ|−λ
h ,

which proves (3.22).
Next, we show (3.23). Recall from (3.34) and (3.48) that on X\S we have

(3.53) trωX ω̃t ≤ CeC0e
B|σ|−λ

h .

(3.54) trω̃tωX ≤ C

t
eC0e

B|σ|−λ
h ,

for uniform constants B,C, C0. We apply the maximum principle to the quantity

K2 = e−Ae
B|σ|−λ

h


S + C

e3C0e
B|σ|−λ

h

t5/2
trωX ω̃t


 ,

for suitable constants A,C, where the quantity S is the same quantity as in section
1.3:

S = |∇ω̃t|2ω̃t
,
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where ∇ is the covariant derivative associated to the metric ωX . Using ϕt we can
write

S = g̃ip
t g̃qj

t g̃kr
t ϕijkϕpqr,

where again lower indices are covariant derivatives with respect to ωX . We are going
to show that K2 ≤ C

t5/2 , and using (3.53) this implies that

(3.55) S ≤ CeAe
B|σ|−λ

h

t5/2
.

We now use (3.52), which says that on Xy we have

(3.56) trωy ω̃y ≤ tCeC0e
B|σ|−λ

h ,

At any given point of Xy we can assume that ωX is the identity and ω̃t is diagonal
with positive entries λi, 1 ≤ i ≤ n, so that the first n−m directions are tangent to
the fiber Xy. Then (3.56) gives that

λi ≤ tCeC0e
B|σ|−λ

h ,

for 1 ≤ i ≤ n−m. Then using (3.55) we see that

n−m∑

i=1

1
λiλjλk

|ϕijk|2 ≤
n∑

i=1

1
λiλjλk

|ϕijk|2 = S ≤ CeAe
B|σ|−λ

h

t5/2
,

and using (3.56) we get

|∇ω̃y|2ωy
=

n−m∑

i=1

|ϕijk|2 ≤ t1/2Ce2Ae
B|σ|−λ

h ,

provided we choose A ≥ 4C0, and this is (3.23).
We now prove that K2 ≤ C

t5/2 . To simplify the computation, we will use the
notation

F (x) = exe
B|σ|−λ

h ,

where x is a real number, and we note here that F is increasing. The starting point
is the formula for ∆ω̃tS which is done in a more general setting in Chapter 4 (Lemma
4.4.5). With the notation there, we can write

S =
∑

i,j,k

|ai
jk|2.

We then choose local unitary frames {θ1, . . . , θn} for ωX and {θ̃1, . . . , θ̃n} for ω̃t,
and write

θ̃i =
∑

j

ai
jθ

j ,
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θi =
∑

j

bi
j θ̃

j ,

for some local matrices of functions ai
j , b

i
j . Notice that at any given point we can

choose the frames and arrange that

(3.57) ai
j =

√
λiδ

i
j ,

(3.58) bi
j =

1√
λi

δi
j .

Then in our case (4.63) reads

∆ω̃tS ≥ 2Re
(

ai
k`

(
bm
k bq

`b
s
pR

j
mqsa

i
rpa

r
j − ai

jb
q
`b

s
pR

j
mqsa

r
kpb

m
r

− ai
jb

m
k bs

pR
j
mqsa

r
`pb

q
r + ai

jb
m
k bq

`b
s
pb

u
pRj

mqs,u

))
,

where we are summing over all indices, Rj
mqs represents the curvature of ωX and

Rj
mqs,u its covariant derivative (with respect to ωX). Since these are fixed tensors,

we can use the Cauchy-Schwarz inequality and (3.57), (3.58) to estimate the first
term on the right hand side of (3.59) by

∣∣∣2Re
(
ai

k`b
m
k bq

`b
s
pR

j
mqsa

i
rpa

r
j

)∣∣∣ ≤ C
∑

i,k,`,r,p

|ai
k`a

i
rp|

√
λr

λkλ`λp

≤ C


∑

j

λj




1
2 (∑

q

1
λq

) 3
2 ∑

k,`,r,p

(∑

i

|ai
k`|2

) 1
2
(∑

i

|ai
rp|2

) 1
2

= C(trωX ω̃t)
1
2 (trω̃tωX)

3
2


∑

i,k,`

|ai
k`|2




1
2

∑

i,r,p

|ai
rp|2




1
2

= CS(trωX ω̃t)
1
2 (trω̃tωX)

3
2 .

The second and third term in (3.59) are estimated similarly, while the fourth term
can be bounded by

∣∣∣2Re
(
ai

k`a
i
jb

m
k bq

`b
s
pb

u
pRj

mqs,u

)∣∣∣ ≤ C
∑

i,k,`,p

|ai
k`|

√
λi

λkλ`λ2
p

≤ C


∑

j

λj




1
2 (∑

q

1
λq

)2 ∑

i,k,`

|ai
k`|

≤ C
√

S(trωX ω̃t)
1
2 (trω̃tωX)2.
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Overall we can estimate

(3.59) ∆ω̃tS ≥ −CS(trω̃tωX)3/2(trωX ω̃t)1/2 − C
√

S(trω̃tωX)2(trωX ω̃t)1/2.

On the other hand from (4.56) we see that

∆ω̃ttrωX ω̃t = ai
k`a

i
p`a

k
j a

p
j + ai

ja
i
rb

q
`b

s
`R

r
jqs

≥
∑

i,j,`

|ai
j`|2λj − C

∑

i,`

λi

λ`

≥
(∑

k

1
λk

)−1 ∑

i,j,`

|ai
j`|2 − C

(∑

k

λk

)(∑

k

1
λk

)

=
S

trω̃tωX
− C(trω̃tωX)(trωX ω̃t).

(3.60)

We now insert (3.53), (3.54) in (3.59), (3.60) and get

(3.61) ∆ω̃tS ≥ −CF (2C0)
t3/2

S − CF (5C0/2)
t2

√
S,

∆ω̃ttrωX ω̃t ≥ tF (−C0)
C

S − CF (2C0)
t

.

We then compute

∆ω̃t

(
F (3C0)

t5/2
trωX ω̃t

)
≥ F (2C0)

Ct3/2
S − CF (5C0)

t7/2
+

2
t5/2

Re〈∇F (3C0),∇trωX ω̃t〉ω̃t

+
1

t5/2
(trωX ω̃t)∆ω̃tF (3C0),

(3.62)

and estimate

Re〈∇F (3C0),∇trωX ω̃t〉ω̃t ≥ −|∇F (3C0)|ω̃t |∇trωX ω̃t|ω̃t .

Using (4.57) we see that

|∇trωX ω̃t|ω̃t ≤
√

S(trωX ω̃t).

On the other hand a direct computation using (3.38), (3.39) and (3.40) shows that
there is a constant C such that for any real number x we have

|∇F (x)|ω̃t ≤ CF (x + 1),

|∆ω̃tF (x)| ≤ CF (x + 1),
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and so we have

∆ω̃t

(
F (3C0)

t5/2
trωX ω̃t

)
≥ F (2C0)

Ct3/2
S − CF (5C0)

t7/2
− CF (5C0)

t5/2

√
S

− CF (5C0)
t5/2

.

(3.63)

This and (3.61) give

∆ω̃t

(
S +

CF (3C0)
t5/2

trωX ω̃t

)
≥ F (2C0)

t3/2
S − CF (5C0/2)

t2

√
S

− CF (5C0)
t7/2

− CF (5C0)
t5/2

√
S − CF (5C0)

t5/2

≥ F (2C0)
t3/2

S − CF (5C0)
t7/2

− CF (5C0)
t5/2

√
S,

(3.64)

and

∆ω̃tK2 ≥ F (−A)
(

F (2C0)
t3/2

S − CF (5C0)
t7/2

− CF (5C0)
t5/2

√
S

− CF (1)S − CF (4C0 + 1)
t5/2

)
+ 2F (A)Re〈∇K2,∇F (−A)〉ω̃t

≥ F (−A)
(

F (2C0)
Ct3/2

S − CF (5C0)
t7/2

− CF (5C0)
t5/2

√
S

)

+ 2F (A)Re〈∇K2,∇F (−A)〉ω̃t .

(3.65)

At the maximum of K2 we then get

S ≤ CF (3C0)
t

√
S +

CF (3C0)
t2

,

which implies that

S ≤ CF (3C0)
t2

,

and so

K2 = F (−A)
(

S +
CF (3C0)

t5/2
trωX ω̃t

)
≤ F (−A)

CF (4C0)
t5/2

≤ C

t5/2
,

because we chose A ≥ 4C0.

We now explain the meaning of the Weil-Petersson metric, following the discus-
sion in [SoT2]. Fix a Ricci-flat Kähler metric χ on X cohomologous to ω1 = ω0+ωX

and call Ω = χn its volume form. The generic fiber Xy of f is an (n−m)-dimensional
Calabi-Yau manifold, and it is naturally equipped with the Kähler form ωy = ωX |Xy .
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Recall that the volume of Xy is a homological constant independent of y, and
that we assume that it is equal to 1. Since c1(Xy) = 0, there is a smooth function Fy

such that Ric(ωy) =
√−1∂∂Fy and

∫
Xy

(eFy − 1)ωn−m
y = 0. The functions Fy vary

smoothly in y, since so do the Kähler forms ωy. By Yau’s theorem there is a unique
Ricci-flat Kähler metric ωSF,y on Xy cohomologous to ωy, given by the solution of

(3.66) ωn−m
SF,y = eFyωn−m

y .

If we write ωSF,y = ωy +
√−1∂∂ζy, the functions ζy vary smoothly in y and so they

define a smooth function ζ on X\S. We then define a real closed (1, 1)-form ωSF on
X\S by ωSF = ωX +

√−1∂∂ζ, and call it the semi-flat form. Notice that ωSF is not
necessarily nonnegative (it is Kähler only in the fiber directions), but on X\S the
(n, n)-form ωn−m

SF ∧ ωm
0 is strictly positive, and so we can define a smooth positive

function F on X\S by

(3.67) F =
Ω

ωn−m
SF ∧ ωm

0

.

We claim that F is actually constant on each fiber Xy, and so it is the pullback
of a function on Y \f(S). To see this, fix a point y ∈ Y \f(S) and choose local
coordinates z1, . . . , zn−m on the fiber Xy, which extend locally to coordinates in
a ball in X. Then take local coordinates wn−m+1, . . . , wn near y ∈ Y \f(S), so
that z1, . . . , zn−m, zn−m+1 = f∗(wn−m+1), . . . , zn = f∗(wn) give local holomorphic
coordinates on X. In these coordinates write

ω0 =
√−1

n∑

i,j=n−m+1

g0
ij
dzi ∧ dzj ,

ωSF,y =
√−1

n−m∑

i,j=1

gSF
ij

dzi ∧ dzj ,

Ω = G(
√−1)ndz1 ∧ · · · ∧ dzn.

Then locally

F =
G

det(g0
ij

) det(gSF
ij

)
,

and so on the fiber Xy we have
√−1∂∂ log F = −Ric(χ) + Ric(ωSF,y) = 0,

because ω0 is the pullback of a metric from Y , and so F is indeed constant on Xy.
Moreover, it is easy to check [SoT2, Lemma 3.3] that on Y \f(S) we have

F =
f∗Ω
ωm

Y

,
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and so ∫

Y
Fωm

Y =
∫

X
Ω =

∫

X
ωn

1

is finite. In fact there is a positive ε so that
∫
Y F 1+εωm

Y [SoT2, Proposition 3.2].
Then we apply [SoT2, Theorem 3.2], which relies on the seminal work of KoÃlodziej
[KoÃl], to solve (uniquely) the complex Monge-Ampère equation

(3.68) (ωY +
√−1∂∂ψ)m =

∫
X ωm

0 ∧ ωn−m
X∫

X ωn
1

Fωm
Y ,

with ψ ∈ L∞(Y ) and moreover ψ is smooth on Y \f(S) (the proof of this follows
the arguments of Yau in [Y2]). We will call ω = ωY +

√−1∂∂ψ the Kähler metric
on Y \f(S) that we’ve just constructed. Its Ricci curvature is the Weil-Petersson
metric that we are about to define. Recall that the fibers Xy have torsion canonical
bundle, so that there is a number k such that K⊗k

Xy
is trivial for all y ∈ Y \f(S).

The Weil-Petersson metric is a smooth nonnegative (1, 1)-form on Y \f(S) defined
as the curvature form of a Hermitian pseudometric on the relative canonical line
bundle f∗(Ωn−m

X/Y )⊗k: if Ψy is a local nonzero holomorphic section of f∗(Ωn−m
X/Y )⊗k,

which means that Ψy is a nonzero holomorphic k-pluricanonical form on Xy that
varies holomorphically in y, then we let its length be

|Ψy|2hWP
=

∫

Xy

(Ψy ∧Ψy)
1
k .

For k > 1 this is not a Hermitian metric, but just a norm. The Weil-Petersson
metric ωWP on Y \f(S) is just formally the curvature of hWP , that is locally we set

ωWP = −√−1∂∂ log |Ψy|2hWP
,

and this is well-defined because the bundle K⊗k
Xy

is trivial. It is a classical fact (see
e.g., [FS]) that ωWP is pointwise nonnegative.

Proposition 3.5.9 (cfr. [SoT2]). On Y \f(S) we have

(3.69) Ric(ω) = ωWP .

Proof. Differentiating (3.68) we see that

Ric(ω) = Ric(ωY )−√−1∂∂ log F.

If we fix y ∈ Y \f(S) and choose Ψ a local never vanishing holomorphic section of
f∗(Ωn−m

X/Y )⊗k, then we can define a local function u = (Ψ∧Ψ)1/k

ωn−m
SF

on X\S, which is

constant on each fiber Xy. Since
∫
Xy

ωn−m
SF = 1, we see that

−√−1∂∂ log u = ωWP .
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Then

(3.70) Ric(ω) = Ric(ωY )−√−1∂∂ log
uΩ

(Ψ ∧Ψ)
1
k ∧ ωm

0

.

Picking local coordinates zi as above, and writing

Ψ = K[(
√−1)n−mdz1 ∧ · · · ∧ dzn−m]⊗k,

ω0 =
√−1

n∑

i,j=n−m+1

g0
ij
dzi ∧ dzj ,

Ω = G(
√−1)ndz1 ∧ · · · ∧ dzn,

we see that
uΩ

(Ψ ∧Ψ)
1
k ∧ ωm

0

=
uG

|K| 2k det(g0
ij
)
,

and since K is holomorphic and Ω is Ricci-flat we see that

−√−1∂∂ log
uG

|K| 2k det(g0
ij
)

= ωWP − Ric(ωY ),

which together with (3.70) gives (3.69).

With these preparations, we can now show Theorem 3.5.4, which can be recast
as follows

Theorem 3.5.10. Consider the Ricci-flat metrics ω̃t on X, which can be written as
ω̃t = ω0 + tωX +

√−1∂∂ϕt. As t → 0 we have that ϕt → ψ in the C1,β
loc topology on

X\S, for any 0 < β < 1, and so ω̃t converges in this topology to ω, which satisfies
(3.69).

Proof. We first prove that ω̃t converges to ω in the weak topology of currents. Since
the cohomology class of ω̃t is bounded, weak compactness of currents implies that
from any sequence ti → 0 we can extract a subsequence so that ω̃ti converges weakly
to a limit closed positive (1, 1)-current ω̂, which a priori depends on the sequence.
If we write ω̂ = ω0 +

√−1∂∂ϕ̂, it follows that ϕti → ϕ̂ in L1, and from the bound
(3.20) we infer that ϕ̂ is in L∞. Moreover restricting ω̂ to any smooth fiber Xy we
see that √−1∂∂ϕ̂|Xy ≥ 0,

and the maximum principle implies that ϕ̂ is constant on each fiber, and so descends
to a bounded function ϕ̂ on Y \f(S). We will show that ϕ̂ satisfies the same equation
(3.68) as ψ, and so by uniqueness ϕ̂ = ψ. To this end we first fix a compact set
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K ⊂ Y \f(S), and we will show that ϕ̂ satisfies (3.68) on K. Since K is arbitrary,
this will prove the Theorem.

We then fix η a smooth function with support contained in K, and we will also
denote by η its pullback to X via f . Recall that we have called χ the Ricci-flat
metric in the class [ω1], and Ω = χn. Then from the Monge-Ampère equation (3.17)
we have

(3.71)
∫

X
ηΩ =

1
at

∫

X
η(ω0 + tωX +

√−1∂∂ϕt)n,

where the constants at are equal to
∫
X ωn

t∫
X ωn

1

,

and behave like (3.18). We can also write

(3.72)
∫

X
ηΩ =

∫

X
ηFωn−m

SF ∧ ωm
0 .

We are now going to estimate 1
at

∫
X η(ω0 + tωX +

√−1∂∂ϕt)n. We have

1
at

∫

X
η(ω0 + tωX +

√−1∂∂ϕt)n =
1
at

∫

X
η

(
(ω0 +

√−1∂∂ϕt) + (tωX +
√−1∂∂(ϕt − ϕt)

)n

=
1
at

∫

X
η

n∑

k=0

(
n

k

)
(ω0 +

√−1∂∂ϕt)k ∧ (tωX +
√−1∂∂(ϕt − ϕt))n−k

First of all observe that the form ω0 +
√−1∂∂ϕt is the pullback of a form on Y , and

it can be wedged with itself at most m times, so all terms in the sum with k > m
are zero. Next, we claim that all the terms with k < m go to zero as t → 0. To
see this, start by observing that on the compact set K the estimate (3.53) gives a
constant C (that depends on K) such that

(3.73) −CωX ≤ √−1∂∂ϕt ≤ CωX .

Moreover from the equation

∂∂ϕt = f∗(∂∂ϕt ∧ ωn−m
X )

together with (3.73), (3.36), we see that on f(K) we have

(3.74) −CωY ≤ √−1∂∂ϕt ≤ CωY .

We also need to use (3.33) which on K gives

(3.75) sup
K
|ϕt − ϕt| ≤ Ct.
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Then any term with k < m is equal to
(
n
k

)

at

∫

X
η(ω0 +

√−1∂∂ϕt)k ∧ (tωX +
√−1∂∂(ϕt − ϕt))n−k,

and it can be expanded into

(
n
k

)

at

n−k∑

i=0

(
n− k

i

)∫

X
η(ω0 +

√−1∂∂ϕt)k ∧ (tωX)n−k−i ∧ (
√−1∂∂(ϕt − ϕt))i.

On K the (1, 1)-form ω0 +
√−1∂∂ϕt is bounded by (3.74). Since at = O(tn−m) from

(3.18), we see that the term in this sum with i = 0 goes to zero. Any term with
i > 0 is comparable to
(3.76)

1
tn−m

∫

X
(ϕt−ϕt)

√−1∂∂η∧ (ω0 +
√−1∂∂ϕt)k ∧ (tωX)n−k−i∧ (

√−1∂∂(ϕt−ϕt))i−1.

Notice that all the (1, 1)-forms appearing inside the integral are bounded by (3.73),
(3.74), and that the function ϕt − ϕt is O(t) by (3.75). On K the estimate (3.22)
gives

(3.77) −Ctωy ≤ (
√−1∂∂ϕt)|Xy = (

√−1∂∂(ϕt − ϕt))|Xy ≤ Ctωy.

The form
√−1∂∂η ∧ (ω0 +

√−1∂∂ϕt)k is the pullback of a form from Y , and so we
can use (3.77) to estimate

∣∣∣∣∣

√−1∂∂η ∧ (ω0 +
√−1∂∂ϕt)k ∧ (tωX)n−k−i ∧ (

√−1∂∂(ϕt − ϕt))i−1

ωn
X

∣∣∣∣∣ ≤ Ctn−m,

and so the term (3.76) goes to zero. This proves our claim.
We are then left with only the term with k = m, which is

1
at

∫

X
η

(
n

m

)
(ω0 +

√−1∂∂ϕt)m ∧ (tωX +
√−1∂∂(ϕt − ϕt))n−m,

and if we expand the term (tωX +
√−1∂∂(ϕt − ϕt))n−m, we get

1
at

∫

X
η

(
n

m

)
(ω0+

√−1∂∂ϕt)m∧(tωX)n−m+
1
at

∫

X

√−1∂∂η∧(ω0+
√−1∂∂ϕt)m∧. . . ,

and the second term is zero because ∂∂η is the pullback of a form from the base.
We are then left with the term

(3.78)
1
at

∫

X
η

(
n

m

)
(ω0 +

√−1∂∂ϕt)m ∧ (tωX)n−m,
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which we need to further estimate. Using (3.73) we see that, up to taking a further
subsequence, the functions ϕti converge to ϕ̂ in the C1,β(K) topology, and (3.75)
implies that the functions ϕti also converge to ϕ̂ uniformly. We can then rewrite
(3.78) as

tn−m
(

n
m

)

at

∫

X
η(ω0 +

√−1∂∂ϕt)m ∧ ωn−m
X .

Using (3.18) we see that as t goes to zero the coefficient
tn−m(n

m)
at

converges to

∫
X ωn

1∫
X ωm

0 ∧ ωn−m
X

.

On the other hand we have
∫

X
η(ω0 +

√−1∂∂ϕt)m ∧ ωn−m
X =

m∑

k=0

(
m

k

) ∫

X
ηωm−k

0 ∧ (
√−1∂∂ϕt)k ∧ ωn−m

X .

The term with k = 0 is independent of t, while any term with k > 0 can be written
as

(3.79)
∫

X
ϕt

√−1∂∂η ∧ ωm−k
0 ∧ (

√−1∂∂ϕt)k−1 ∧ ωn−m
X .

The (n, n)-form
√−1∂∂η ∧ ωm−k

0 ∧ (
√−1∂∂ϕt)k−1 ∧ ωn−m

X is supported in K and
is uniformly bounded by (3.74), and the functions ϕti converge uniformly to ϕ̂, and
so along the sequence ti the term (3.79) has the same limit as

∫

X
ϕ̂
√−1∂∂η ∧ ωm−k

0 ∧ (
√−1∂∂ϕt)k−1 ∧ ωn−m

X .

But this is equal to
∫

X
ϕt

√−1∂∂η ∧ ωm−k
0 ∧ (

√−1∂∂ϕt)k−2 ∧√−1∂∂ϕ̂ ∧ ωn−m
X ,

and repeating the same argument k− 1 times we see that along the sequence ti the
term (3.79) converges to

∫

X
ηωm−k

0 ∧ (
√−1∂∂ϕ̂)k ∧ ωn−m

X .

It follows that along the sequence ti the term (3.78) converges to
∫
X ωn

1∫
X ωm

0 ∧ ωn−m
X

∫

X
η(ω0 +

√−1∂∂ϕ̂)m ∧ ωn−m
X ,



CHAPTER 3. DEGENERATIONS OF CALABI-YAU METRICS 66

and using (3.71), (3.72) we get
∫

X
ηFωn−m

SF ∧ ωm
0 =

∫
X ωn

1∫
X ωm

0 ∧ ωn−m
X

∫

X
η(ω0 +

√−1∂∂ϕ̂)m ∧ ωn−m
X .

We then integrate first along the fibers and get

∫

Y
ηFωm

Y

(∫

Xy

ωn−m
SF,y

)
=

∫
X ωn

1∫
X ωm

0 ∧ ωn−m
X

∫

Y
η(ωY +

√−1∂∂ϕ̂)m

(∫

Xy

ωn−m
y

)
,

and since ωy is cohomologous to ωSF,y, we get
∫

Y
ηFωm

Y =

∫
X ωn

1∫
X ωm

0 ∧ ωn−m
X

∫

Y
η(ωY +

√−1∂∂ϕ̂)m,

which is just the weak form of (3.68). This shows that any weak limit ω̂ of ω̃t

as t → 0 satisfies (3.68) weakly, and we have already remarked that we can write
ω̂ = ωY +

√−1∂∂ϕ̂ with ϕ̂ in L∞. By KoÃlodziej’s uniqueness of L∞ weak solutions
of (3.68) (see [SoT2, Theorem 3.2]), we must have ϕ̂ = ψ, and so the whole sequence
ω̃t converges weakly to ω as t → 0. Then the bound (3.21) implies that ϕt actually
converges to ψ in the C1,β

loc topology on X\S.

3.6 Examples

In this section we will give some examples where Theorems 3.1.1 and 3.1.2 apply.
The constructions are well-known and come from algebraic geometry.

Let’s look at the case n = 2 first, the case n = 1 being trivial. The only projective
Calabi-Yau surfaces are tori, bi-elliptic, Enriques and K3 surfaces. If X is a torus
and L is a nef and big line bundle on X, then L is ample, and so Theorem 3.1.1
is vacuous in this case. Similarly if X is bi-elliptic, then X is a finite unramified
quotient of a torus, so a nef and big line bundle on X pulls back to a nef and big line
bundle on a torus. But this must be ample, and so the original line bundle is ample
too (Corollary 1.2.28 in [La]) and Theorem 3.1.1 is again empty. If X is an Enriques
surface, then X is an unramified 2 : 1 quotient of a K3 surface, so the study of
Ricci-flat metrics on X is reduced to the case of a K3 surface. Finally let’s see that
there exist projective K3s that admit a nef and big line bundle that is not ample, to
which Theorem 3.1.1 applies. For example let Y be the quotient surface T/i where
T is the standard torus C2/Z4 and i is induced by the involution i(z, w) = (−z,−w)
of C2. The surface Y has 16 singular points, that are rational double points, and is a
Calabi-Yau model. Blowing up these 16 points gives a smooth projective K3 surface
X (called a Kummer surface), and we can take L to be the pullback of any ample
divisor on Y . The set E, being equal to the null locus of L, is readily seen to be
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the union of the 16 exceptional divisors, that are (−2)-curves. Then Theorem 3.1.1
applies, and the limit of smooth Ricci-flat metrics on X with classes approaching
c1(L) is the pullback of the unique Ricci-flat (actually flat) orbifold Kähler metric
on Y in the given class. This originally appeared as Theorem 8 in [KT]. Now we
show that conversely all examples of Theorem 3.1.1 on K3 surfaces with α = c1(L)
are of the form f : X → Y where Y is an orbifold K3 surface, kL = f∗A, for some
k ≥ 1 and some A ample divisor on Y . Let X be a projective K3 surface and L a
nef and big line bundle on X. By Theorem 3.2.4 we know that some power kL is
globally generated, and we might as well assume that k = 1. Then the contraction
map f of L contracts an irreducible curve C to a point if and only if C ·L = 0. But
since L · L > 0, the Hodge Index theorem implies that C · C < 0. The long exact
sequence in cohomology associated to the sequence

0 → OX(−C) → OX → OC → 0,

gives that H1(X,O(−C)) = 0. Serre duality on the other hand gives H2(X,O(C)) =
H0(X,O(−C)) = 0, and H1(X,O(C)) = H1(X,O(−C)) = 0. Riemann-Roch then
gives

dimH0(X,O(C)) = 2 +
1
2
C · C,

which implies that C ·C must be even. But since π(C) = C·C
2 +1, the virtual genus

of C, is nonnegative, we see that C · C = −2. This implies that π(C) = 0 and
so C is a smooth rational curve with self-intersection −2. Then the point f(C) is
a rational double point, and so Y = f(X) is an orbifold K3 surface. Notice that
Ricci-flat orbifold metrics on Y exist by [Y2, KoR].

Now we turn to examples in dimension 3. The first one is known as conifold in
the physics literature [GMS], and is described in detail in section 1.2 of [Ro], for
example. Roughly speaking, it is a 3 dimensional Calabi-Yau model Y that sits in
P4 as a nodal quintic. It has 16 singular points, that are nodes and not of orbifold
type. Moreover there exists a small resolution f : X → Y , that is a birational
morphism with X a smooth Calabi-Yau threefold, that is an isomorphism outside
the preimages of the nodes, which are 16 rational curves. If L is the pullback of any
ample divisor on Y , then L is nef and big on X, and the limit of smooth Ricci-flat
metrics on X with classes approaching c1(L) is the pullback of the unique singular
Ricci-flat metric on Y , which exists by [EGZ1]. The convergence is smooth on
compact sets outside the union of the 16 exceptional curves (which is clearly equal
to the null locus of L). There are also other 3 dimensional examples where the
singularities of Y are not isolated: one of these is described in Example 4.6 in [Wi1],
and Y has a curve C of singularities. Blowing up C gives a Calabi-Yau threefold
X; if L is the pullback of any ample divisor on Y , then the null locus of L is the
exceptional divisor S which is a smooth surface ruled over C. Again our Theorem
3.1.1 applies, and the convergence is smooth off S.
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We now discuss examples of Theorem 3.1.2. The easiest example is a complex
torus X fibering over another torus Y of lower dimension. The fibers are also tori
and they are all biholomorphic. In this case Ricci-flat metrics are just flat, and if
the volume of the fibers is shrunk to zero the flat metrics on X obviously converge
to the flat metric on Y . This is of course compatible with Theorem 3.1.2, because
in this case the Weil-Petersson metric is identically zero.

To see a more interesting example, let X be an elliptically fibered K3 surface, so
X comes equipped with a morphism f : X → P1 with generic fibers elliptic curves.
Then the pullback of an ample line bundle on P1 gives a nef line bundle L on X
with Iitaka dimension 1. In the case when all the singular fibers of f are of Kodaira
type I1, Gross-Wilson have shown in [GW] that sequences of Ricci-flat metrics on
X whose class approaches c1(L) converge in C∞ on compact sets of the complement
of the singular fibers to the pullback of a Kähler metric on P1 (minus the 24 points
which correspond to the singular fibers). Their argument relies on explicit model
metrics that are almost Ricci-flat, and so it is not well-suited to generalization to
higher dimensions. More recently Song-Tian [SoT1] gave a more direct proof of the
result of Gross-Wilson (with a weaker convergence) and they noticed that the limit
metric has Ricci curvature equal to the Weil-Petersson metric. Our Theorem 3.1.2
applies in this example, as well as in higher dimensions, although the convergence
that we prove is weaker than C∞. We conjecture that C∞ convergence always holds.

If we go back to the example of the torus, we can now choose a class on the
boundary of the Kähler cone of X which is not rational (i.e. it is not c1(L) for any
line bundle L over X). In this case there won’t be a fibration structure, but rather
a foliation : the limit cohomology class can be represented by a Hermitian matrix
which is nonnegative definite, and its kernel gives an irrational foliation of the torus.
In this case the Ricci-flat metrics converge to a smooth nonnegative form, which is
positive definite in the directions transversal to the foliation. Theorem 3.1.2 does
not apply here, and it would be very interesting to prove that a similar behaviour
occurs in general. We still expect the Ricci-flat metrics to converge smoothly on
compact sets outside a subvariety E to a limit nonnegative form ω, whose determi-
nant vanishes identically. The kernel of ω would then define a complex foliation with
singularities on X\E, whose leaves might be dense in X. The leaves of the foliation
are always complex submanifolds, but they might not vary holomorphically and the
rank of the foliation might change on different open sets: an example of McMullen
[McM] on a nonalgebraic K3 surface shows that the Ricci-flat metrics can converge
smoothly to zero on an open set of X.

Notice that if the curvature is uniformly bounded, then a result of Ruan [Rua]
implies that this picture is basically true and moreover that the foliation is holo-
morphic, so that its rank is constant on a Zariski open set. In McMullen’s example
the curvature blows up, and the resulting foliation is not holomorphic, thus showing
that Ruan’s result doesn’t hold if the curvature is unbounded.



Chapter 4

Symplectic Calabi-Yau equation

In this chapter we prove some estimates for the Calabi-Yau equation on a symplectic
manifold. In section 4.1 we provide the necessary background and state our main
results Theorems 4.1.3 and 4.1.4. In section 4.2 we explain the formalism of moving
frames and the canonical connection on almost-Hermitian manifolds. In section 4.3
we estimate a metric solving the Calabi-Yau equation in terms of a scalar function.
In section 4.4 we estimate the first derivatives of the metric in terms of the metric
itself. Theorems 4.1.3 and 4.1.4 are proved in section 4.5 and 4.6 respectively.
The key new ideas are: to use the canonical connection instead of the Levi-Civita
connection, and to use moving frames instead of normal coordinates, to perform
the computations needed to apply the maximum principle. And to use two new
Moser-iteration type arguments to prove the main theorems.

The results of this chapter are joint work with B. Weinkove and S.-T. Yau and
can be found in [TWY]. A survey of these and related topics is [TW].

4.1 Symplectic Calabi-Yau equation

Calabi’s conjecture [Ca1], proved thirty years ago by Yau [Y2], states that any
representative of the first Chern class of a compact Kähler manifold (M,ω) can be
uniquely represented as the Ricci curvature of a Kähler metric in a fixed cohomology
class. This can be restated in terms of volume forms as follows. For any volume
form σ satisfying

∫
M σ =

∫
M ωn, there exists a unique Kähler form ω̃ in [ω] solving

(4.1) ω̃n = σ,

where n is the complex dimension of the manifold. We call (4.1) the Calabi-Yau
equation.

Recently, Donaldson [Do5] has described how the Calabi-Yau theory could be
generalized in a natural way in the setting of two-forms on four-manifolds. His
program, if carried out, would lead to many new and exciting results in symplectic
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geometry. A necessary element of this program is to obtain estimates for the Calabi-
Yau equation on symplectic four-manifolds with a compatible but non-integrable
almost complex structure. In this chapter we will make some progress towards
Donaldson’s program by showing that the estimates for (4.1) can be reduced to
an integral bound of the potential function, and that all the estimates indeed hold
under a curvature assumption.

Before stating the results precisely, we will recall some basic terminology. An
almost-Kähler manifold is a symplectic manifold (M,ω) together with a compatible
almost complex structure J , meaning that ω and J satisfy the two conditions

ω(X,JX) > 0, for all X 6= 0(4.2)
ω(JX, JY ) = ω(X, Y ), for all X, Y.(4.3)

Associated to this data is a Riemannian metric g given by g(X, Y ) = ω(X, JY ). We
call ω an almost-Kähler form, and g an almost-Kähler metric. On the other hand,
if the first condition (4.2) holds, but not necessarily the second (4.3), then we say
that ω tames J . In this case, we can still define a Riemannian metric g by

g(X, Y ) =
1
2

(ω(X, JY ) + ω(Y, JX)) .

Observe that g is an almost-Hermitian metric, meaning that g(JX, JY ) = g(X,Y )
for all vectors X and Y .

In [Do5], Donaldson made the following conjecture.

Conjecture 4.1.1. Let (M, Ω) be a compact symplectic four-manifold equipped with
an almost complex structure J tamed by Ω. Let σ be a smooth volume form on M .
If ω̃ ∈ [Ω] is a symplectic form on M which is compatible with J and solves the
Calabi-Yau equation

(4.4) ω̃2 = σ,

then there are C∞ a priori bounds on ω̃ depending only on Ω, J and σ.
More precisely, we have the following. For each k = 0, 1, 2, . . ., there exists a

constant Ak depending smoothly on the data Ω, J and σ such that

(4.5) ‖ω̃‖Ck(gΩ) ≤ Ak.

If this conjecture were to hold, it would imply, by the arguments of [Do5] (see
also the description in [TW]), the following result.

Conjecture 4.1.2. Let M be a compact 4-manifold with b+(M) = 1 and let J be
an almost complex structure on M . If there exists a symplectic form on M taming
J then there exists a symplectic form compatible with J .
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Moreover, Conjecture 4.1.1 would also imply a Calabi-Yau theorem on almost-
Kähler 4-manifolds (M, ω) with b+(M) = 1: given a normalized volume form σ
there would exist a unique almost-Kähler form ω̃ ∈ [ω] satisfying ω̃2 = σ. For other
applications of Conjecture 4.1.1, and to see how it relates to Donaldson’s broader
program, see [Do5] and [TW].

We now state our results. Our first result says that, in any dimension, all the a
priori bounds for Conjecture 4.1.1 can be reduced to an integral bound of a scalar
potential function. Namely, given any symplectic form Ω and almost-Kähler form
ω̃ with [ω̃] = [Ω], define a smooth real-valued function ϕ by

(4.6)
1
2n

∆̃ϕ = 1− ω̃n−1 ∧ Ω
ω̃n

, sup
M

ϕ = 0,

where ∆̃ is the usual Laplacian on functions associated to the almost-Kähler metric
g̃. Then we have the following result.

Theorem 4.1.3. Let α > 0 be given. Let M be a compact 2n-manifold equipped
with an almost complex structure J and a taming symplectic form Ω. Let σ be a
smooth volume form on M with

∫
M σ =

∫
M Ωn. Then if ω̃ is an almost-Kähler form

with [ω̃] = [Ω] and solving the Calabi-Yau equation

(4.7) ω̃n = σ,

there are C∞ a priori bounds on ω̃ depending only on Ω, J , σ, α and

Iα(ϕ) :=
∫

M
e−αϕΩn,

for ϕ defined by (4.6).

We make a few remarks. The function ϕ is precisely the usual Kähler potential
in the case that ω̃ and Ω are Kähler forms, and it coincides with the ‘almost-
Kähler potential’ ϕ1 in the terminology of [We2] if they are both almost-Kähler.
A general result in Kähler geometry [Hö, Ti1], which is independent of the Calabi-
Yau equation, says the quantity Iα(ϕ) is always uniformly bounded if Ω and ω̃ are
Kähler, as long as α is sufficiently small (where the bounds depend only on M , Ω,
J and α). Indeed, the supremum of all such α so that this quantity can be bounded
independent of ω̃ ∈ [Ω] is known as the alpha-invariant and has been much studied
[Ti1, TiY]. In particular this gives a different proof of the C0 estimate of Yau’s
theorem in the Kähler case.

As remarked in [Do5], Conjecture 4.1.2 is false in dimensions six or higher. The
deformation argument used to infer it from the first conjecture crucially uses four
dimensions. It is still possible, as far as we know, for Conjecture 4.1.1 to hold in all
dimensions. However it is also quite possible that a four dimensional argument will
be needed to remove the dependence on Iα(ϕ) in Theorem 4.1.3.
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Now let g be the almost-Hermitian metric associated to Ω and J . There exists
a canonical connection ∇ associated to (M, J, g). This differs from the Levi-Civita
connection, and it is described in section 4.2. Under a positivity condition on the
curvature of this connection, we can solve Donaldson’s conjecture. More precisely,
define a tensor

Rijk`(g, J) = Rj

ik`
+ 4N r

` j
N i

r k
,

where Rj

ik`
is the (1,1) part of the curvature of ∇ and N represents the Nijenhuis

tensor (for precise definitions, see section 4.2). We write R ≥ 0 if the tensor Rijk`

is nonnegative in the Griffiths sense: Rijk`X
iXjY kY ` ≥ 0 for all (1,0) vectors X

and Y .

Theorem 4.1.4. If R(g, J) ≥ 0, Conjecture 4.1.1 holds.

In fact under this condition we can prove Conjecture 4.1.1 in any dimension 2n.
Note that if g were Kähler and the bisectional curvature of g positive, then we would
have R > 0. Hence the condition holds on CPn if the pair (Ω, J) is not too far from
the Fubini-Study symplectic form paired with the standard complex structure.

It will be convenient to reformulate Donaldson’s conjecture as follows. Let g̃ be
an almost-Kähler metric with Kähler form ω̃ satisfying (4.1). Write σ/n! = eF dVg

where dVg is the volume form associated to g and F is a smooth function on M .
Then (4.1) can be written locally as

(4.8) det g̃ = e2F det g,

Finding bounds on g̃ depending only on g, J and F is equivalent to solving the
conjecture.

4.2 Almost-Hermitian manifolds and the canonical con-
nection

In this section, we give some background on almost-Hermitian manifolds, almost-
and quasi-Kähler manifolds, the canonical connection and its torsion and curvature.

4.2.1 Almost-Hermitian metrics and connections

Let M be a manifold of dimension 2n with an almost complex structure J and a
Riemannian metric g satisfying

g(JX, JY ) = g(X,Y ),

for all tangent vectors X and Y . We say that (M, J, g) is an almost-Hermitian
manifold.



CHAPTER 4. SYMPLECTIC CALABI-YAU EQUATION 73

Write TRp M for the (real) tangent space of M at a point p. In the following we will
drop the subscript p. Denote the complexified tangent space by TCM = TRM ⊗C.
Extending g and J linearly to TCM , we see that the complexified tangent space can
be decomposed as

TCM = T ′M ⊕ T ′′M,

where T ′M and T ′′M are the eigenspaces of J corresponding to eigenvalues
√−1

and −√−1 respectively. Extending J to forms, we can uniquely decompose m-forms
into (p, q)-forms for each p, q with p + q = m.

Choose a local unitary frame {e1, . . . , en} for T ′M with respect to the Hermitian
inner product induced from g, and let {θ1, . . . , θn} be a dual coframe. The metric g
can be written as

g = θi ⊗ θi + θi ⊗ θi.

Remark 4.2.1 Here and henceforth, we sum over pairs of repeated indices. Such
pairs of indices can appear either as one raised and one lowered or, otherwise, one
barred and one unbarred.

Let ∇ be an affine connection on TRM , which we extend linearly to TCM . We
say that ∇ is an almost-Hermitian connection if

∇J = ∇g = 0.

This is equivalent to a connection on the principal U(n)-bundle of unitary frames
over M . Since every principal bundle has a connection (see e.g., [KN]), we see that:

Lemma 4.2.1. Almost-Hermitian connections always exist on almost-Hermitian
manifolds.

From now on, assume that ∇ is almost-Hermitian. Observe that for i = 1, . . . , n,

J(∇ei) =
√−1∇ei,

and hence ∇ei ∈ T ′M ⊗ (TC(M))∗. Then locally there exists a matrix of complex
valued 1-forms {θj

i }, called the connection 1-forms, such that

∇ei = θj
i ej .

Applying ∇ to g(ei, ej) and using the condition ∇g = 0 we see that {θj
i } satisfies

the skew-Hermitian property
θj
i + θi

j = 0.

Now define the torsion Θ = (Θ1, . . . ,Θn) of ∇ by

(4.9) dθi = −θi
j ∧ θj + Θi, for i = 1, . . . , n.
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Notice that the Θi are 2-forms. Equation (4.9) is known as the first structure
equation. Define the curvature Ψ = {Ψi

j} of ∇ by

(4.10) dθi
j = −θi

k ∧ θk
j + Ψi

j .

Note that {Ψi
j} is a skew-Hermitian matrix of 2-forms. Equation (4.10) is known as

the second structure equation.

4.2.2 The canonical connection

We have the following lemma (see e.g., [Ga, KoS]).

Lemma 4.2.2. There exists a unique almost-Hermitian connection ∇ on (M, J, g)
whose torsion Θ has everywhere vanishing (1, 1) part.

Such a connection is known as the second canonical connection and was first
introduced by Ehresmann and Libermann in [EL]. It is also sometimes referred to
as the Chern connection, since when J is integrable it coincides with the connection
defined in [Ch]. We will call it simply the canonical connection.

Define functions T i
jk and N i

j k
by

(Θi)(2,0) = T i
jkθ

j ∧ θk

(Θi)(0,2) = N i
j k

θj ∧ θk,

with T i
jk = −T i

kj and N i
j k

= −N i
k j

.

Lemma 4.2.3. The (0,2) part of the torsion is independent of the choice of metric.

Indeed (Θi)(0,2) can be regarded as the Nijenhuis tensor of J . For a proof of this
lemma, see section 4.3.

Let’s consider now the real (1, 1) form

ω =
√−1θi ∧ θi.

We say that (M, J, g) is almost-Kähler if dω = 0, and that it is quasi-Kähler if
(dω)(1,2) = 0. An almost-Kähler or quasi-Kähler manifold with J integrable is a
Kähler manifold. Observe from the first structure equation,

dω =
√−1(Θi ∧ θi − θi ∧Θi)

=
√−1(N i

j k
θi ∧ θj ∧ θk −N i

j k
θi ∧ θj ∧ θk

+ T i
jkθ

i ∧ θj ∧ θk − T i
jkθ

i ∧ θj ∧ θk).

Thus we have the following alternative definitions using the torsion of the canonical
connection.
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Lemma 4.2.4. An almost-Hermitian manifold (M,J, g) is almost-Kähler if and
only if

T i
jk = 0,

(4.11) Ni j k + Nj k i + Nk i j = 0,

where Ni j k = N i
j k

, and is quasi-Kähler if and only if

T i
jk = 0.

In particular on a quasi-Kähler manifold the torsion of the canonical connection
has only a (0, 2) component

Θi = N i
j k

θj ∧ θk.

4.2.3 Curvature identities

Let (M, J, g) be an almost-Hermitian manifold and let∇ be the canonical connection
with torsion Θ and curvature Ψ. Define Rj

ik`
, Ki

jk` and Ki
jk `

by

(Ψj
i )

(1,1) = Rj

ik`
θk ∧ θ`

(Ψi
j)

(2,0) = Ki
jk`θ

k ∧ θ`

(Ψi
j)

(0,2) = Ki
jk `

θk ∧ θ`,

with Ki
jk` = −Ki

j`k and Ki
jk `

= −Ki
j` k

. We define the Ricci curvature and scalar

curvature of the canonical connection to be the tensors Rk` = Ri
ik`

and R = Rkk

respectively.
We will now derive some curvature identities. Applying the exterior derivative

to the first and second structure equations, we obtain the first Bianchi identity,

(4.12) dΘi = Ψi
j ∧ θj − θi

j ∧Θj ,

and second Bianchi identity,

(4.13) dΨi
j = Ψi

k ∧ θk
j − θi

k ∧Ψk
j .

Let us rewrite these. First, define T i
jk,p, T i

jk,p by

(4.14) dT i
jk + θi

pT
p
jk − T i

pkθ
p
j − T i

jpθ
p
k = T i

jk,pθ
p + T i

jk,pθ
p,

and N i
j k,p

and N i
j k,p

by

(4.15) dN i
j k

+ θi
pN

p

j k
−N i

p k
θp
j −N i

jp
θp
k = N i

j k,p
θp + N i

j k,p
θp.
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Then the first Bianchi identity can be written as

dT i
jk ∧ θj ∧ θk − T i

jkθ
j
p ∧ θp ∧ θk + T i

jkΘ
j ∧ θk + T i

jkθ
j ∧ θk

p ∧ θp

−T i
jkθ

j ∧Θk + dN i
j k
∧ θj ∧ θk −N i

j k
θj
p ∧ θp ∧ θk

+N i
j k

θj ∧ θk
p ∧ θp + N i

j k
Θj ∧ θk −N i

j k
θj ∧Θk

= Ki
jk`θ

k ∧ θ` ∧ θj + Ri
jk`

θk ∧ θ` ∧ θj + Ki
jk `

θk ∧ θ` ∧ θj

−T j
k`θ

i
j ∧ θk ∧ θ` −N j

k `
θi
j ∧ θk ∧ θ`.

After substituting from (4.14) and (4.15), and comparing bidegrees, we arrive at the
following four identities:

(T i
jk,` + 2T i

pjT
p
k` −Ki

jk`)θ
j ∧ θk ∧ θ` = 0

(T i
jk,`

+ 2Np

j k
N i

p `
−Ri

jk`
)θj ∧ θk ∧ θ` = 0

(2T i
pjN

p

k `
+ N i

k `,j
−Ki

jk `
)θj ∧ θk ∧ θ` = 0

(N i
j k,`

+ 2N i
p j

T p
k`)θ

j ∧ θk ∧ θ` = 0,

which are equivalent to:

T i
jk,` + T i

k`,j + T i
`j,k + 2T i

pjT
p
k` + 2T i

pkT
p
`j + 2T i

p`T
p
jk = Ki

jk` + Ki
k`j + Ki

`jk(4.16)

2T i
jk,`

+ 4Np

j k
N i

p `
= Ri

jk`
−Ri

kj`
(4.17)

2T i
pjN

p

k `
+ N i

k `,j
= Ki

jk `
(4.18)

N i
j k,`

+ N i
k `,j

+ N i
` j,k

+ 2N i
p j

T p
k` + 2N i

p k
T p

`j + 2N i
p `

T p
jk = 0.(4.19)

By a similar reasoning, we obtain the following from the second Bianchi identity:

(Ki
jk`,p + 2T q

k`K
i
jqp −Ri

jkqN
q

` p
)θk ∧ θ` ∧ θp = 0

(Ki
jk`,p −Ri

jkp,` + Ri
jqpT

q
k` + 2Ki

jq pN
q

k `
)θk ∧ θ` ∧ θp = 0

(Ri
jk`,p

+ Ki
j` p,k

+ 2Ki
jqkN

q

` p
−Ri

jkqT
q
`p)θ

k ∧ θ` ∧ θp = 0

(Ki
jk `,p

+ Ri
jqk

N q

` p
+ 2Ki

jq pT
q
k`)θ

k ∧ θ` ∧ θp = 0,

where Ki
jk`,p, Ki

jk`,p etc. are defined in the obvious way. The above four identities
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can be rewritten as

Ki
jk`,p + Ki

j`p,k + Ki
jpk,` + 2T q

k`K
i
jqp + 2T q

`pK
i
jqk

+ 2T q
pkK

i
jq` −Ri

jkqN
q

` p
−Ri

j`qN
q

p k
−Ri

jpqN
q

k `
= 0(4.20)

2Ki
jk`,p −Ri

jkp,` + Ri
j`p,k + 2Ri

jqpT
q
k` + 4Ki

jq pN
q

k `
= 0(4.21)

Ri
jk`,p

−Ri
jkp,`

+ 2Ki
j` p,k

+ 4Ki
jqkN

q

` p
− 2Ri

jkqT
q
`p = 0(4.22)

Ki
jk `,p

+ Ki
j` p,k

+ Ki
jp k,`

+ Ri
jqk

N q

` p
+ Ri

jq`
N q

p k
+ Ri

jqpN
q

k `

+ 2Ki
jq pT

q
k` + 2Ki

jq k
T q

`p + 2Ki
jq `

T q
pk = 0.(4.23)

Now assume that (M, J, g) is quasi-Kähler, so that the (2,0) part of the torsion
vanishes. Then (4.17), (4.18) and (4.21) above simplify to

(4.24) 4Np

j k
N i

p `
= Ri

jk`
−Ri

kj`
,

(4.25) N i
k `,j

= Ki
jk `

,

(4.26) 2Ki
jk`,p + 4Ki

jq pN
q

k `
= Ri

jkp,` −Ri
j`p,k.

Recall that the curvature matrix {Ψi
j} is skew-Hermitian, hence

(4.27) Ki
jk` = Kj

i` k
, Ri

jk`
= Rj

i`k
.

From this we compute

Ri
jk`

= Ri
kj`

+ 4N i
p `

Np

j k

= Rk
i`j

+ 4N i
p `

Np

j k

= Rk
`ij

+ 4N i
p `

Np

j k
+ 4Np

i `
Nk

p j

= R`
kji

+ 4N i
p `

Np

j k
+ 4Np

i `
Nk

p j
,(4.28)

giving us the following formula for the Ricci curvature

(4.29) Rk` = Ri
ik`

= R`
kii

+ 4N i
p `

Np

i k
+ 4Np

i `
Nk

p i
.
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4.2.4 The canonical Laplacian

Suppose that (M,J, g) is almost-Hermitian and let ∇ be its canonical connection.
Let f be a function on M . We define the canonical Laplacian ∆ of f by

∆f =
∑

i

((∇∇f)(ei, ei) + (∇∇f)(ei, ei)) .

This expression is independent of the choice of unitary frame.
Define fi and fi by

(4.30) df = fiθ
i + fiθ

i.

Writing ∂f and ∂f for the (1,0) and (0,1) parts of df respectively we see that
∂f = fiθ

i and ∂f = fiθ
i. Applying the exterior derivative to (4.30) and using the

first structure equation we obtain

0 = dfi ∧ θi − fiθ
i
j ∧ θj + fiΘi + dfi ∧ θi − fi θ

i
j ∧ θj + fiΘi

= (dfi − fjθ
j
i ) ∧ θi + (dfi − fjθ

j
i ) ∧ θi + fiΘi + fiΘi.(4.31)

Define fik, fik, fik and fi k by

dfi − fjθ
j
i = fikθ

k + fikθ
k

dfi − fjθ
j
i = fikθ

k + fi kθ
k.

Taking the (1,1) part of (4.31) we see that

fikθ
k ∧ θi + fikθ

k ∧ θi = 0,

and hence
fik = fki.

Now calculate

∇∇f = ∇(fiθ
i + fiθ

i)

= dfi ⊗ θi − fiθ
i
j ⊗ θj + dfi ⊗ θi − fiθ

i
j ⊗ θj

= (fijθ
j + fijθ

j)⊗ θi + (fijθ
j + fi jθ

j)⊗ θi.

Hence

(4.32) ∆f = fii + fii = 2fii.

There are other ways of writing ∆f .
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Lemma 4.2.5.

∆f = −2
∑

i

(d∂f)(1,1)(ei, ei)(4.33)

= 2
∑

i

(d∂f)(1,1)(ei, ei)(4.34)

= −√−1
∑

i

(d(Jdf))(1,1)(ei, ei),(4.35)

where J acts on a 1-form α by (Jα)(X) = α(J(X)) for a vector X.

Proof. Calculate

d∂f = d(fiθ
i)

= (fikθ
k + fikθ

k + fjθ
j
i ) ∧ θi − fiθ

i
j ∧ θj + fiΘi

= fikθ
k ∧ θi + fikθ

k ∧ θi + fiΘi.(4.36)

Hence

(d∂f)(1,1) = −fikθ
i ∧ θk,(4.37)

and (4.33) follows from (4.32). For (4.34), just observe that ∂ = d− ∂ and d2 = 0.
For (4.35), recall that Jθi = −√−1θi. Then

d(Jdf) = d(J(fiθ
i + fiθ

i))

= −√−1d(fiθ
i − fiθ

i)
= −√−1d(∂f − ∂f)
= −2

√−1d∂f,

and this completes the proof.

Finally we have the following lemma.

Lemma 4.2.6. If the metric g is quasi-Kähler then the canonical Laplacian is equal
to the usual Laplacian of the Levi-Civita connection of g.

Proof. In fact, the Laplacian of the Levi-Civita connection applied to a function f
is given by the trace of the map F : TM → TM defined by

F (X) = ∇X(gradgf) + τ(gradgf, X),

where∇ is the canonical connection and τ is its torsion (see for example [KN] p.282).
But if g is quasi-Kähler τ is just the Nijenhuis tensor, which maps T ′′M ⊗ T ′′M →
T ′M and so the second term above has trace zero.
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4.3 Estimate of the metric

In this section we will prove an estimate on an almost-Kähler metric g̃ solving (4.8),
in terms of the potential function ϕ. Recall that ϕ is defined by (4.6), which can be
rewritten as

(4.38) ∆̃ϕ = 2n− trg̃g,

since

(4.39) trg̃g = 2n
ω̃n−1 ∧ Ω

ω̃n
.

To see (4.39), observe that

gij =
1
2

(
ΩikJ

k
j + ΩjkJ

k
i

)
,

and so we have
trg̃g = g̃ijgij = J̃ ikΩik,

where J̃ ik = g̃ilJ k
l . Working in a coordinate system in which ω̃ = 2(dx1 ∧ dx2 +

· · ·+ dx2n−1 ∧ dx2n) and g̃ij = δij at a fixed point p in M we see that

J̃ ikΩik = 2n
ω̃n−1 ∧ Ω

ω̃n
,

as required.
The estimate we wish to prove in this section is:

Theorem 4.3.1. Let g̃ be an almost-Kähler metric solving the Calabi-Yau equation
(4.8), where g is an almost-Hermitian metric. Then there exist constants C and A
depending only on J , R, the lower bound of Rijkl, sup |F | and the lower bound of
∆F such that

trgg̃ ≤ CeA(ϕ−infM ϕ).

We introduce some notation. Let (M,J) be an almost complex manifold with
two almost-Hermitian metrics g and g̃. Let θi and θ̃i be local unitary coframes for
g and g̃ respectively. Denote by ∇ and ∇̃ the associated canonical connections. We
will use Θ̃, Ψ̃ etc. to denote the torsion, curvature and so on with respect to ∇̃.
Define local matrices (ai

j) and (bi
j) by

θ̃i = ai
jθ

j(4.40)

θj = bj
i θ̃

i,(4.41)

so that ai
jb

k
i = δk

j . Define a function u by

u = ai
ja

i
j =

1
2
trg g̃.

We will prove Theorem 4.3.1 using the maximum principle. The key result which
we need for this is the following lemma.
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Lemma 4.3.2. Suppose that g is almost-Hermitian and g̃ is quasi-Kähler and solves
the Calabi-Yau equation (4.8). Then

(4.42) ∆̃ log u ≥ 1
u

(
∆F − 2R + 8N `

p i
Np

` i
+ 2ap

i a
p
jb

k
qb

`
qRijk`

)
,

where Rijk` = Rj

ik`
+ 4N r

` j
N i

r k
.

To prove this lemma, we use some general identities (Lemmas 4.3.3 and 4.3.4
below) which are independent of the Calabi-Yau equation.

First, differentiating (4.40) and using the first structure equations we obtain

−θ̃i
k ∧ θ̃k + Θ̃i = dai

j ∧ θj − ai
jθ

j
k ∧ θk + ai

jΘ
j .

Using (4.41) and rearranging, we have

(bj
kdai

j − ai
jb

`
kθ

j
` + θ̃i

k) ∧ θ̃k = Θ̃i − ai
jΘ

j .(4.43)

Taking the (0, 2) part of this equation, we see that

(4.44) Ñ i
j k

= br
jb

s
ka

i
tN

t
r s,

which shows that the (0, 2) part of the torsion is independent of the choice of the
metric (thus giving the proof of Lemma 4.2.3).

By the definition of the canonical connection, the right hand side of (4.43) has
no (1,1)-part. Hence there exist functions ai

k` such that

(4.45) bj
kdai

j − ai
jb

`
kθ

j
` + θ̃i

k = ai
k`θ̃

`,

which can be rewritten as

(4.46) dai
m − ai

jθ
j
m + ak

mθ̃i
k = ai

k`a
k
mθ̃`.

Note that ai
k`ẽiθ̃

kθ̃` can be interpreted as the difference of the two connections
∇̃ − ∇. Also, if g and g̃ are quasi-Kähler, from (4.43) we see that we have ai

k` = ai
`k.

We will now calculate a formula for ∆̃u.

Lemma 4.3.3. For g and g̃ almost-Hermitian metrics, and ai
j, ai

k`, bi
j as defined

above, we have

1
2
∆̃u = ai

k`a
i
p`a

k
j a

p
j − ai

ja
k
j R̃

i
k``

+ ai
ja

i
rb

q
`b

s
`R

r
jqs.

Proof. Applying the exterior derivative to (4.46), using the first and second structure
equations and simplifying, we have

− ai
jΨ

j
m + ak

j`a
j
mθ̃` ∧ θ̃i

k + ak
mΨ̃i

k = ak
mdai

k` ∧ θ̃`

− ai
k`a

j
mθ̃k

j ∧ θ̃` + ai
k`a

k
jpa

j
mθ̃p ∧ θ̃` − ai

k`a
k
mθ̃`

j ∧ θ̃j + ai
k`a

k
mΘ̃`.
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Multiplying by bm
r and rearranging, we obtain

(dai
r` + ai

k`a
k
rj θ̃

j + ak
r`θ̃

i
k − ai

k`θ̃
k
r − ai

rj θ̃
j
`) ∧ θ̃`

= −bm
r Ψj

mai
j + Ψ̃i

r − ai
r`Θ̃

`.(4.47)

Define ai
r`p and ai

r`p by

(4.48) dai
r` + ai

k`a
k
rj θ̃

j + ak
r`θ̃

i
k − ai

k`θ̃
k
r − ai

rj θ̃
j
` = ai

r`pθ̃
p + ai

r`pθ̃
p.

Then taking the (1,1) part of (4.47) we see that

(4.49) ai
r`pθ̃

p ∧ θ̃` = (−R̃i
r`p + ai

jb
m
r bq

`b
s
pR

j
mqs)θ̃p ∧ θ̃`,

where we recall that by definition

(Ψ̃i
r)

(1,1) = −R̃i
r`pθ̃

p ∧ θ̃`

(Ψj
m)(1,1) = −Rj

mqsθ
s ∧ θq.

Note that

du = ai
jdai

j + ai
jdai

j .(4.50)

Then we see that from (4.46),

du = ai
j(a

i
k`a

k
j θ̃

` + ai
mθm

j − ak
j θ̃

i
k) + ai

j(ai
k`a

k
j θ̃

` + ai
mθm

j − ak
j θ̃

i
k).

= ai
ja

i
k`a

k
j θ̃

` + ai
ja

i
k`a

k
j θ̃

`.(4.51)

Hence ∂u = ai
ja

i
k`a

k
j θ̃

`. Applying the exterior derivative to this and substituting
from (4.46), (4.48) and (4.49) we have,

d∂u = ai
k`a

i
ja

k
pqa

p
j θ̃

q ∧ θ̃` + ai
k`a

k
j a

i
pqa

p
j θ̃

q ∧ θ̃`

+ ai
ja

k
j (a

i
k`pθ̃

p + ai
k`pθ̃

p − ai
r`a

r
kpθ̃

p) ∧ θ̃` + ai
ja

k
j a

i
k`Θ̃

`

= ai
k`a

k
j a

i
pqa

p
j θ̃

q ∧ θ̃` + ai
ja

k
j a

i
k`pθ̃

p ∧ θ̃`

+ ai
ja

k
j (−R̃i

k`p + ai
rb

m
k bq

`b
s
pR

r
mqs)θ̃p ∧ θ̃` + ai

ja
k
j a

i
k`Θ̃

`.

Hence

(d∂u)(1,1) = ai
k`a

k
j a

i
pqa

p
j θ̃

q ∧ θ̃` − ai
ja

k
j R̃

i
k`pθ̃

p ∧ θ̃` + ai
ja

i
rb

q
`b

s
pR

r
jqsθ̃

p ∧ θ̃`.

Then from the definition of the canonical Laplacian, we have proved the lemma.

Now let ν = det(aj
i ) and set v = |ν|2 = νν, which is the ratio of the volume

forms of g̃ and g. We have the following lemma.
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Lemma 4.3.4. For g and g̃ almost-Hermitian metrics, and v as above, the following
identities hold.

(i) (d∂ log v)(1,1) = −Rk`θ
k ∧ θ` + R̃k`a

k
i a

`
jθ

i ∧ θj

(ii) ∆ log v = 2R− 2R̃k`a
k
i a

`
i .

Proof. This proof is essentially contained in [GH], but we include it here for the
reader’s convenience. Write νi

j for the (i, j)th cofactor of the matrix (aj
i ), so that

νi
j = νbi

j . Then
dν = νi

jdaj
i .

From (4.46) we have

dai
m − ai

jθ
j
m + ak

mθ̃i
k = ai

k`a
k
ma`

rθ
r.

Hence

dν = νi
j(a

j
pqa

p
i a

q
kθ

k + aj
kθ

k
i − ak

i θ̃
j
k)

= νkθ
k + ν(θi

i − θ̃i
i),(4.52)

for νk = νi
ja

j
pqa

p
i a

q
k. Now

dv = νdν + νdν

= ν(νkθ
k + ν(θi

i − θ̃i
i)) + ν(νkθk + ν(θi

i − θ̃i
i))

= ννkθ
k + ννkθk.

Hence ∂v = ννkθ
k. Define vk and vk by dv = vkθ

k +vkθ
k. Then vk = ννk. Applying

the exterior derivative to (4.52) and using the second structure equation we have

0 = d(νkθ
k) + dν ∧ (θi

i − θ̃i
i) + νd(θi

i − θ̃i
i)

= d(νkθ
k) + νkθ

k ∧ (θi
i − θ̃i

i) + ν(Ψi
i − Ψ̃i

i).

Multiplying by ν and using (4.52) again we have

0 = νd(νkθ
k) + νkθ

k ∧ (ν`θ` − dν) + v(Ψi
i − Ψ̃i

i)

= d(ννkθ
k) + νkν`θ

k ∧ θ` + v(Ψi
i − Ψ̃i

i).

Consider the (1,1) part

(d∂v)(1,1) = −νkν`θ
k ∧ θ` − v(Ψi

i − Ψ̃i
i)

(1,1)

= −vkv`

v
θk ∧ θ` − vRk`θ

k ∧ θ` + vR̃k`a
k
i a

`
jθ

i ∧ θj .(4.53)

We also have

d∂ log v =
d∂v

v
+

∂v ∧ ∂v

v2
,

which combines with (4.53) to give (i). From the definition of the canonical Lapla-
cian we immediately obtain (ii).
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Using Lemmas 4.3.3 and 4.3.4 we can now prove Lemma 4.3.2.

Proof of Lemma 4.3.2. Recall that the Calabi-Yau equation (4.8) is

(4.54) det g̃ = e2F det g,

for smooth F , where g is almost-Hermitian and g̃ is almost-Kähler. Note that this
equation can be rewritten in terms of v as

(4.55) log v = F.

First we prove the following equality, which will also be useful in its own right later:

(4.56) ∆̃u = 2ai
k`a

i
p`a

k
j a

p
j + ∆F − 2R + 8N `

p i
Np

` i
+ 2ap

i a
p
jb

k
qb

`
qRijk`.

From Lemma 4.3.3, Lemma 4.3.4 and the identity (4.29),

∆̃u = 2(ai
k`a

i
p`a

k
j a

p
j + ai

ja
i
rb

q
`b

s
`R

r
jqs)

+ ∆F − 2R + 8ai
ja

k
j

(
Ñ `

p i
Ñp

` k
+ Ñp

` i
Ñk

p `

)
.

Using (4.44), we have

ai
ja

k
j

(
Ñ `

p i
Ñp

` k
+ Ñp

` i
Ñk

p `

)
= N `

p i
Np

` i
+ ak

sa
k
j b

t
`b

r
`N

p

t j
N s

p r,

giving (4.56).
To obtain (4.42), we compute,

∆̃ log u =
1
u

(
∆̃u− |du|2g̃

u

)

=
1
u

(
2ai

k`a
i
p`a

k
j a

p
j + 8N `

p i
Np

` i
+ 2ap

i a
p
jb

k
qb

`
qRijk`

+ ∆F − 2R− |du|2g̃
u

)
.

To complete the proof of Lemma 4.3.2, it remains to prove the inequality

(4.57) |du|2g̃ ≤ 2uai
k`a

i
p`a

k
j a

p
j .

From (4.51) we have
|du|2g̃ = 2u`u`,
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where u` = ai
ja

i
k`a

k
j = ai

jB
i
`j , where Bi

`j = ai
k`a

k
j . Then using the Cauchy-Schwarz

inequality,

u`u` =
∑

i,j,`,p,q

ai
jB

i
`ja

p
qB

p
`q

≤
∑

i,j,p,q

(∑

`

|ai
jB

i
`j |2

)1/2 (∑

`

|ap
qB

p
`q|2

)1/2

=


∑

i,j

(∑

`

|ai
j |2|Bi

`j |2
)1/2




2

=


∑

i,j

|ai
j |

(∑

`

|Bi
`j |2

)1/2



2

≤

∑

i,j

|ai
j |2





∑

i,j,`

|Bi
`j |2




= uai
k`a

i
p`a

k
j a

p
j ,

which gives (4.57).

Finally, we can give the proof of Theorem 4.3.1.

Proof of Theorem 4.3.1. Note that from the Calabi-Yau equation and the arithmetic-
geometric means inequality, u = 1

2trgg̃ is bounded below away from zero by a positive
constant depending only on inf F . Hence there exists a constant C ′ depending only
on J , inf F , ∆F and R such that

(4.58)
∣∣∣∣
1
u

(
∆F − 2R + 8N `

piN
p

`i

)∣∣∣∣ ≤ C ′.

Choose A′ sufficiently large such that

Rijk` + A′δijδk` ≥ 0,

where the nonnegativity is in the Griffiths sense (as in the paragraph immediately
before the statement of Theorem 4.1.4). Then

(4.59)
1
u

2ap
i a

p
jb

k
qb

`
qRijk` ≥ −1

u
2A′ap

i a
p
i b

k
qb

k
q = −A′trg̃g.

Combining (4.58) and (4.59) with Lemma 4.3.2 we obtain

∆̃ log u ≥ −C ′ −A′trg̃g,
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We apply the maximum principle to (log u− 2A′ϕ). Suppose that the maximum of
this quantity is achieved at a point x0. Then at this point, using (4.38),

0 ≥ ∆̃(log u− 2A′ϕ) ≥ −C ′ + A′trg̃g − 4A′n.

Hence

(trg̃g)(x0) ≤ 4A′n + C ′

A′
.

Using the inequality

∑n
i=1 λi∏n
i=1 λi

=
n∑

i=1

1

λ1 · · · λ̂i · · ·λn

≤ 1
(n− 1)!

(
n∑

i=1

1
λi

)n−1

,

which holds for any set of real numbers λi > 0, we see that

(4.60)
trg g̃

2

√
det g

det g̃
≤ 1

(n− 1)!

(
trg̃g

2

)n−1

.

Hence, using the Calabi-Yau equation again, u can be bounded from above in terms
of trg̃g and supF , and so we obtain an estimate

u(x0) ≤ C ′′.

It follows that for any x ∈ M ,

log u(x)− 2A′ϕ(x) ≤ log C ′′ − 2A′ inf
M

ϕ,

and, after exponentiating, this proves the theorem.

Remark 4.3.2 Notice that if we assume R(g, J) > 0 in Theorem 4.3.1 then we
easily obtain a uniform bound u ≤ C. To see this, note that by assumption there
exists a positive constant Â so that

1
u

2ap
i a

p
jb

k
qb

`
qRijk` ≥

1
u

2Â ap
i a

p
i b

k
qb

k
q ≥ Âtrg̃g.

Combining this inequality with Lemma 4.3.2 and (4.58) we obtain

∆̃ log u ≥ −C ′ + Âtrg̃g.

Applying the maximum principle to log u, we see that at the maximum of log u,
the quantity trg̃g is bounded from above and hence so is log u. Thus we obtain a
uniform bound u ≤ C.
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4.4 First derivative estimate of g̃

In this section we give an estimate on the derivative of an almost-Kähler metric g̃
solving the Calabi-Yau equation (4.8). This is a generalization of the third order
estimate of [Y2] (see also [PSS] for a succinct proof of the parabolic version of this
estimate). Define

S =
1
4
|∇g̃|2g̃,

where ∇ is the canonical connection associated to g, J . Then we have the following
theorem.

Theorem 4.4.1. Let g̃ be a solution of (4.8) and suppose that there exists a constant
K such that

sup
M

(trg g̃) ≤ K.

Then there exists a constant C0 depending only on g, J , F and K such that

S ≤ C0.

Before we prove this theorem, we will need a number of lemmas.

Lemma 4.4.2. S can be written as

(4.61) S = ai
k`a

i
k`,

where ai
k` is defined by

(4.62) dai
m − ai

jθ
j
m + ak

mθ̃i
k = ai

k`a
k
mθ̃`.

Proof. To see (4.61) we calculate as follows:

∇
(
θ̃i ⊗ θ̃i

)
= ∇(ai

jθ
j)⊗ θ̃i + θ̃i ⊗∇(ai

jθ
j)

= (dai
j)b

j
k ⊗ θ̃k ⊗ θ̃i − ai

jθ
j
kb

k
` ⊗ θ̃` ⊗ θ̃i

+ (dai
j)b

j
k ⊗ θ̃i ⊗ θ̃k − ai

jb
k
` θ

j
k ⊗ θ̃i ⊗ θ̃`

= (da`
j − a`

rθ
r
j )b

j
k ⊗ θ̃k ⊗ θ̃` + (dak

j − ak
rθ

r
j )b

j
` ⊗ θ̃k ⊗ θ̃`

= (a`
rsa

r
j θ̃

s − ar
j θ̃

`
r)b

j
k ⊗ θ̃k ⊗ θ̃`

+ (ak
rsa

r
j θ̃

s − ar
j θ̃

k
r )bj

` ⊗ θ̃k ⊗ θ̃`

= a`
ksθ̃

s ⊗ θ̃k ⊗ θ̃` + ak
`s θ̃s ⊗ θ̃k ⊗ θ̃`.

Then since g̃ = θ̃i ⊗ θ̃i + θ̃i ⊗ θ̃i, (4.61) follows immediately.

The following lemma gives a general formula for the Laplacian of S.
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Lemma 4.4.3. We have

1
2
∆̃S =

∣∣ai
k`p − ai

r`a
r
kp

∣∣2
g̃
+ |ai

k`p|2g̃ + ai
k`a

i
r`R̃

r
kpp + ai

k`a
i
kjR̃

j
`pp − ai

k`a
r
k`R̃

i
rpp

+ 2Re
(

ai
k`

(
bm
k bq

`b
s
pR

j
mqsa

i
rpa

r
j − ai

jb
q
`b

s
pR

j
mqsa

r
kpb

m
r

− ai
jb

m
k bs

pR
j
mqsa

r
`pb

q
r + ai

jb
m
k bq

`b
s
pb

u
pRj

mqs,u − R̃ki,`

+4Ñp

q i,`
Ñ q

p k
+ 4Ñp

q i
Ñ q

p k,`
+ 4Ñp

q i,`
Ñk

p q + 4Ñp

q i
Ñk

p q,`

+4Ñ i
q p,kÑ

q

p `
+ 2Ñk

` p,ip

))
.(4.63)

Proof. First, recall from (4.47) and (4.48) that ai
r`p and ai

r`p are defined by

(4.64) dai
r` + ai

k`a
k
rj θ̃

j + ak
r`θ̃

i
k − ai

k`θ̃
k
r − ai

rj θ̃
j
` = ai

r`pθ̃
p + ai

r`pθ̃
p,

and that

(ai
r`pθ̃

p + ai
r`pθ̃

p) ∧ θ̃` = −bm
r Ψj

mai
j + Ψ̃i

r − ai
r`Θ̃

`.(4.65)

Define functions ai
r`p,q, a

i
r`p,q, a

i
r`p,q, and ai

r`p,q by the formulas

(4.66) dai
r`p + ak

r`pθ̃
i
k − ai

r`q θ̃
q
p − ai

k`pθ̃
k
r − ai

rjpθ̃
j
` = ai

r`p,q θ̃
q + ai

r`p,q θ̃
q,

(4.67) dai
r`p + ak

r`pθ̃
i
k − ai

r`q θ̃
q
p − ai

k`pθ̃
k
r − ai

rjpθ̃
j
` = ai

r`p,q θ̃
q + ai

r`p,q θ̃
q.

Applying the exterior derivative to (4.64), using the last two definitions, and can-
celing many terms we get

ai
r`p,q θ̃

q ∧ θ̃p + ai
r`p,q θ̃

q ∧ θ̃p + ai
rlp,q θ̃ ∧ θ̃p + ai

rlp,q θ̃
q ∧ θ̃p

+ ai
r`pΘ̃

p + ai
r`pΘ̃p

= − ak
rpa

i
s`a

s
ktθ̃

t ∧ θ̃p + ak
rpa

i
k`sθ̃

s ∧ θ̃p + ak
rpa

i
k`sθ̃

s ∧ θ̃p

− ai
k`a

k
spa

s
rtθ̃

t ∧ θ̃p + ai
k`a

k
rptθ̃

t ∧ θ̃p + ai
k`a

k
rptθ̃

t ∧ θ̃p

+ ai
k`a

k
rpΘ̃

p − ai
k`Ψ̃

k
r − ai

rpΨ̃
p
` + ak

r`Ψ̃
i
k,(4.68)

which will be useful later. To calculate the canonical Laplacian of S with respect to
g̃, first compute

∂S = ai
k`∂ai

k` + ai
k`∂ai

k`

=
(
ai

k`a
i
k`p + ai

k`a
i
k`p − ai

k`a
i
r`a

r
kp

)
θ̃p.
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Then compute

d(∂S) =
(
ai

k`pa
i
k`q θ̃

q + ai
k`pa

i
k`q θ̃

q − ai
k`pa

i
r`a

r
kq θ̃

q + ai
k`a

i
k`p,q θ̃

q

+ ai
k`a

i
k`p,q θ̃

q + ai
k`pa

i
k`q θ̃

q + ai
k`pa

i
k`q θ̃

q − ai
k`pa

i
r`a

r
kq θ̃

q

+ ai
k`a

i
k`p,q θ̃

q + ai
k`a

i
k`p,q θ̃

q − ai
k`qa

i
r`a

r
kpθ̃

q − ai
k`qa

i
r`a

r
kpθ̃

q

+ ai
r`a

r
kpa

i
j`a

j
kq θ̃

q − ai
k`a

r
kpa

i
r`q θ̃

q − ai
k`a

r
kpa

i
r`q θ̃

q

+ ai
k`a

r
kpa

i
j`a

j
rq θ̃

q − ai
k`a

i
r`a

r
kpq θ̃

q − ai
k`a

i
r`a

r
kpq θ̃

q(4.69)

+ ai
k`a

i
r`a

r
jpa

j
kq θ̃

q
) ∧ θ̃p +

(
ai

k`a
i
k`p + ai

k`a
i
k`p − ai

k`a
i
r`a

r
kp

)
Θ̃p,

and hence

(d(∂S))(1,1) =
(
ai

k`pa
i
k`q − ai

k`pa
i
r`a

r
kq + ai

k`a
i
k`p,q + ai

k`pa
i
k`q

+ ai
k`a

i
k`p,q − ai

k`qa
i
r`a

r
kp + ai

r`a
r
kpa

i
j`a

j
kq

− ai
k`a

r
kpa

i
r`q − ai

k`a
i
r`a

r
kpq

)
θ̃q ∧ θ̃p.(4.70)

Then taking the (1,1) part of (4.68) we see that

ai
k`p,q θ̃

q ∧ θ̃p =
(
ai

k`q,p + ai
r`qa

r
kp + ai

r`a
r
kpq

+ ai
r`R̃

r
kpq + ai

kjR̃
j
`pq − ar

k`R̃
i
rpq

)
θ̃q ∧ θ̃p.(4.71)

Multiplying (4.71) by ai
k`, substituting into (4.70) and using the formula for the

Laplacian, we obtain

1
2
∆̃S = ai

k`pa
i
k`p − ai

k`pa
i
r`a

r
kp + ai

k`pa
i
k`p − ai

r`a
r
kpa

i
k`p

+ ai
r`a

r
kpa

i
s`a

s
kp − ai

k`a
r
kpa

i
r`p − ai

k`a
i
r`a

r
kpp

+ ai
k`a

i
k`p,p + ai

k`a
r
kpa

i
r`p + ai

k`a
i
r`a

r
kpp

+ ai
k`a

i
r`R̃

r
kpp + ai

k`a
i
kjR̃

j
`pp − ai

k`a
r
k`R̃

i
rpp + ai

k`a
i
k`p,p

= ai
k`pa

i
k`p + ai

k`pa
i
k`p − 2Re(ai

k`pa
i
r`a

r
kp)

+ ai
r`a

r
kpa

i
s`a

s
kp + ai

k`a
i
r`R̃

r
kpp + ai

k`a
i
kjR̃

j
`pp − ai

k`a
r
k`R̃

i
rpp

+ 2Re(ai
k`a

i
k`p,p).

Completing the square, we obtain

1
2
∆̃S =

∣∣ai
k`p − ai

r`a
r
kp

∣∣2
g̃
+ |ai

k`p|2g̃ + ai
k`a

i
r`R̃

r
kpp + ai

k`a
i
kjR̃

j
`pp

− ai
k`a

r
k`R̃

i
rpp + 2Re(ai

k`a
i
k`p,p).(4.72)
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To calculate the last term, take the (1,1) part of (4.65) to obtain

(4.73) ai
k`p = ai

jb
m
k bq

`b
s
pR

j
mqs − R̃i

k`p.

Now recall from (4.46) that

(4.74) dai
m − ai

jθ
j
m + ak

mθ̃i
k = ai

k`a
k
mθ̃`.

Similarly we have

(4.75) dbj
k + br

kθ
j
r − bj

i θ̃
i
k = −bj

ia
i
k`θ̃

`.

Taking the exterior derivative of (4.73), using (4.66), (4.67), (4.74) and (4.75) we
get

ai
k`p,tθ̃

t + ai
k`p,tθ̃

t = ai
jb

m
k bq

`b
s
pR

j
mqs,uθu + ai

jb
m
k bq

`b
s
pR

j
mqs,uθu

− R̃i
k`p,tθ̃

t − R̃i
k`p,tθ̃

t + bm
k bq

`b
s
pa

r
ja

i
rtR

j
mqsθ̃

t

− bm
r bq

`b
s
pa

i
ja

r
ktR

j
mqsθ̃

t − bm
k bq

rb
s
pa

i
ja

r
`tR

j
mqsθ̃

t

− bm
k bq

`b
s
ra

i
ja

r
ptR

j
mqsθ̃

t,(4.76)

whose (1, 0) part gives

ai
k`p,t = bm

k bq
`b

s
pR

j
mqsa

i
rta

r
j − ai

jb
q
`b

s
pR

j
mqsa

r
ktb

m
r − ai

jb
m
k bs

pR
j
mqsa

r
`tb

q
r

+ ai
jb

m
k bq

`b
s
pb

u
t Rj

mqs,u − R̃i
k`p,t.(4.77)

Now from (4.25),(4.26) and (4.29)

R̃i
k`p,p = R̃i

kpp,` − 2K̃i
kp`,p − 4K̃i

kq pÑ
q

p `

= R̃ki,` − 4Ñp

q i,`
Ñ q

p k
− 4Ñp

q i
Ñ q

p k,`
− 4Ñp

q i,`
Ñk

p q

− 4Ñp

q i
Ñk

p q,`
− 2K̃i

kp`,p − 4Ñ i
q p,kÑ

q

p `
,(4.78)

and using (4.25) again we see that

K̃i
kp`,p = Ñk

` p,ip
.(4.79)

Combining (4.72), (4.77), (4.78) and (4.79) gives (4.63).

To deal with the terms involving derivatives of Ñ i
j k

in (4.63) we need another
lemma.
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Lemma 4.4.4. We have

(i) Ñ i
j k,m

= br
jb

s
kb

`
mai

tN
t
r s,` + br

jb
s
ka

`
tN

t
r sa

i
`m

(ii) Ñ i
j k,m

= br
jb

s
kb

`
mai

tN
t
r s,`

− br
`b

s
ka

i
tN

t
r sa

`
jm − br

jb
s
`a

i
tN

t
r sa

`
km

(iii)
∣∣∣ai

k`Ñ
k
` p,ip

∣∣∣
g̃
≤ C(S + 1) +

1
2

∣∣ai
k`p − ai

r`a
r
kp

∣∣2
g̃
,

for a constant C depending only on g, J , supM trg g̃ and supM trg̃g.

Proof. Recall from (4.44) that we have

Ñ i
j k

= br
jb

s
ka

i
tN

t
r s.

Applying the exterior derivative to this and using (4.74), (4.75) and (4.15) we obtain

Ñ i
j k,m

θ̃m + Ñ i
j k,m

θ̃m

= br
jb

s
kb

p
mai

tN
t
r s,pθ̃

m + br
jb

s
kb

p
mai

tN
t
r s,pθ̃

m + ai
`mbr

jb
s
ka

`
tN

t
r sθ̃

m

− a`
jmbr

`b
s
ka

i
tN

t
r sθ̃

m − a`
kmbr

jb
s
`a

i
tN

t
r sθ̃

m.(4.80)

Equating the (1, 0) and (0, 1) parts of (4.80) gives (i) and (ii). For (iii), apply the
exterior derivative to (i) and substitute from (4.64) to get

Ñ i
j k,mp

= br
jb

s
kb

`
mbq

pa
i
tN

t
r s,`q + br

jb
s
kb

q
pa

`
ta

i
`mN t

r s,q − br
jb

s
kb

`
qa

i
ta

q
mpN

t
r s,`

+ br
jb

s
kb

`
maq

ta
i
qpN

t
r s,` + br

jb
s
ka

`
tN

t
r sa

i
`mp.(4.81)

The only term that is not comparable to
√

S is the last one. To deal with this we
first compute, using (4.24), (4.28) and (4.11)

R̃i
jk`

= R̃`
kji

+ 4Ñ i
p `

Ñp

j k
+ 4Ñp

i `
Ñk

p j

= R̃`
jki

+ 4Ñ `
p i

Ñp

k j
+ 4Ñ i

p `
Ñp

j k
+ 4Ñp

i `
Ñk

p j

= R̃`
jki

+ 4Ñ` p iÑp k j + 4Ñi ` pÑp k j + 4Ñp i `Ñp k j + 4Ñp i `Ñj p k

= R̃`
jki

+ 4Ñp

i `
Ñ j

p k
,
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and use this, (4.25), (4.26) and (4.27) to compute

2Ñk
` p,ip

= 2K̃i
kp`,p

= 4K̃k
iqpÑ

q

p `
+ R̃i

kpp,` − R̃i
k`p,p

= 4K̃k
iqpÑ

q

p `
+ R̃p

kpi,`
− R̃p

k` i,p
+ 4Ñ q

i p,`
Ñk

q p + 4Ñ q

i p
Ñk

q p,`

− 4Ñ q

i p,p
Ñk

q `
− 4Ñ q

i p
Ñk

q `,p

= 2Ñk
` p,pi

+ 4Ñ i
p q,kÑ

q

p `
− 4Ñp

i q,k
Ñ q

p `
+ 4Ñ q

i p,`
Ñk

q p + 4Ñ q

i p
Ñk

q p,`

− 4Ñ q

i p,p
Ñk

q `
− 4Ñ q

i p
Ñk

q `,p
.(4.82)

This means that, up to an error comparable to
√

S, we can interchange the last two
covariant derivatives on Ñ . Finally recall from (4.43) that

ai
k`θ̃

` ∧ θ̃k = ai
jT

j
pqb

p
kb

q
` θ̃

` ∧ θ̃k,

and so

(4.83) ai
k` = ai

`k + 2ai
jb

p
kb

q
`T

j
pq.

From (4.82), (4.81), (4.44) and (4.83),
∣∣∣ai

k`Ñ
k
` p,ip

∣∣∣
g̃
≤ C(S + 1) +

∣∣∣ai
k`Ñ

k
` p,pi

∣∣∣
g̃

≤ C(S + 1) +
∣∣∣ai

k`Ñ
q

` p
ak

qpi

∣∣∣
g̃

≤ C(S + 1) +
∣∣∣ai

k`Ñ
q

` p
(ak

qpi − ak
rpa

r
qi)

∣∣∣
g̃
+

∣∣∣ai
k`a

k
rpa

r
qiÑ

q

` p

∣∣∣
g̃

≤ C(S + 1) +
1
2

∣∣∣ak
qpi − ak

rpa
r
qi

∣∣∣
2

g̃
+

∣∣∣ai
k`a

k
rpa

r
qiÑ

q

` p

∣∣∣
g̃

≤ C(S + 1) +
1
2

∣∣∣ak
qpi − ak

rpa
r
qi

∣∣∣
2

g̃
+

∣∣∣ai
k`a

k
rpa

r
iqÑ

q

` p

∣∣∣
g̃
,

where the constant C differs from line to line, and where we have used the inequality

2ab ≤ εa2 +
1
ε
b2,

for any ε > 0 and any real numbers a and b. Finally, using (4.11) we can see that
the term ai

k`a
k
rpa

r
iqÑq ` p vanishes:

ai
k`a

k
rpa

r
iqÑq ` p =

1
3
(ai

k`a
k
rpa

r
iq + ai

kpa
k
rqa

r
i` + ai

kqa
k
r`a

r
ip)Ñq ` p

=
1
3
ai

k`a
k
rpa

r
iq(Ñq ` p + Ñp q ` + Ñ` p q) = 0,

and this completes the proof.
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We can now prove the following lemma.

Lemma 4.4.5. Let g̃ be an almost-Kähler metric solving the Calabi-Yau equation
(4.8) and suppose that there exists a constant K such that

sup
M

(trg g̃) ≤ K.

Then there exist constants C1, C2 depending only on g, J , F and K such that

(4.84) ∆̃S ≥ −C1S − C2.

Proof. By assumption, the ai
j and bi

j are uniformly bounded. From (4.55) and (4.37)
we have

(d∂ log v)(1,1) = −Fpqθ
p ∧ θq.

Then from Lemma 4.3.4, we have

R̃k` = −Fpqb
p
kb

q
` + Rpqb

p
kb

q
` .

It follows that |R̃k`|2g̃ ≤ C and |R̃k`,p|2g̃ ≤ C(S + 1), for a constant C depending only
on g, J , F and K. Then the inequality (4.84) follows from Lemma 4.4.3 and Lemma
4.4.4.

Finally, we complete the proof of Theorem 4.4.1.

Proof of Theorem 4.4.1. Following [Y2] we apply the maximum principle to S +
C ′u, for a constant C ′ to be determined later. Note that from (4.56), we have

∆̃u ≥ C−1
3 S − C4,

for positive constants C3 and C4 depending only on g, J , F and K. Choose C ′ =
C3(C1 + 1) then from Lemma 4.4.5 we see that

∆̃(S + C ′u) ≥ S − C2 − C ′C4,

and then by the maximum principle S is bounded from above by C0 = C2 +C ′C4 +
C ′K.

4.5 Proof of Theorem 4.1.3

Let g̃ solve the Calabi-Yau equation (4.8). We will write dVg for the volume form
associated to the metric g. We have the following lemma.

Lemma 4.5.1. For every α > 0 there exists a constant C depending only on
(M, J, g), F and α such that

− inf
M

ϕ ≤ C + log
(∫

M
e−αϕdVg

)1/α

.
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Proof. Let δ > 0 be a small constant. In the following C will denote a uniform
constant, depending only on δ and the fixed data, which may change from line to
line. Define w = e−Bϕ for B = 1

1−δA, where A is the constant in Theorem 4.3.1.
Write γ = 1− δ > 0. Notice that for any smooth function f we have that

(4.85) |df |2g ≤ trg g̃|df |2g̃.

For p ≥ 1, from Theorem 4.3.1 and the Calabi-Yau equation,
∫

M
|dwp/2|2gdVg ≤ −C

∫

M
(trg g̃)de−

Bpϕ
2 ∧ Jde−

Bpϕ
2 ∧ ω̃n−1

≤ −Cp2e−Bγ infM ϕ

∫

M
e−B(p−γ)ϕdϕ ∧ Jdϕ ∧ ω̃n−1

= C
p2

p− γ
‖w‖γ

C0

∫

M
d

(
e−B(p−γ)ϕ

)
∧ Jdϕ ∧ ω̃n−1

≤ Cp‖w‖γ
C0

∫

M
wp−γ∆̃ϕ ω̃n

≤ Cp‖w‖γ
C0

∫

M
wp−γdVg,

using (4.85) and the fact that ∆̃ϕ ≤ 2n from (4.38). The Sobolev inequality gives
us, for β = n

n−1 , and any f ∈ C∞(M),

(∫

M
f2βdVg

)1/β

≤ C

(∫

M
|df |2gdVg +

∫

M
f2dVg

)
.

Applying this to f = wp/2, we obtain

(∫

M
wpβdVg

)1/β

≤ C

(∫

M
|dwp/2|2gdVg +

∫

M
wpdVg

)

≤ Cp‖w‖γ
C0

∫

M
wp−γdVg.

Raising to the power 1/p we have

(4.86) ‖w‖pβ ≤ C1/pp1/p‖w‖γ/p
C0 ‖w‖(p−γ)/p

p−γ ,

where ‖ ‖q denotes the Lq norm with respect to dVg (we also allow 0 < q < 1,
defined in the obvious way). By the same iteration as in [We1] we replace p with
pβ + γ in (4.86) to obtain for k = 1, 2, . . .,

(4.87) ‖w‖pkβ ≤ C(k)‖w‖1−a(k)
C0 ‖w‖a(k)

p−γ ,
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where

pk = pβk + γ(1 + β + β2 + · · ·βk−1)

C(k) = C(1+β+···+βk)/pkp
βk/pk
0 p

βk−1/pk
1 · · · p1/pk

k

a(k) =
(p− γ)βk

pk
.

Set p = 1. There exists ` = `(n) > 0 such that βk ≤ pk ≤ β`+k. Then a(k) → a ∈
(0, 1) as k →∞. Moreover,

C(k) ≤ C(1+β+···+βk)/βk
β`β(`+1)/β · · ·β(`+k)/βk

,

and so

log C(k) ≤ K1 log C + log β

k∑

i=0

` + i

βi
≤ K2,

for some uniform constants K1 = K1(n) and K2 = K2(n,C). Hence, letting k →∞
in (4.87) and recalling that p = 1, we have

‖w‖C0 ≤ C‖w‖δ.

Choosing δ sufficiently small completes the proof of the lemma.

We can now give the proof of Theorem 4.1.3.

Proof of Theorem 4.1.3. From this lemma, Theorem 4.3.1 and Theorem 4.4.1 we
have the estimate

‖g̃‖C1 ≤ C,

where C depends on Ω, J, σ, α and Iα(ϕ). It remains to prove the higher order
estimates. Following [We2], define a 1-form a by the equations

ω̃ = Ω− 1
2
d(Jdϕ) + da,

and d∗g̃a = 0, where d∗g̃ is the formal adjoint of d associated to g̃. Note that a is
defined only up to the addition of a harmonic 1-form. From the definition of ϕ it
follows that da∧ ω̃n−1 = 0. Let’s call P : Λ2(M) → Λ2(M) the map that associates
to a 2-form γ its (2, 0) + (0, 2) part, so that

Pγ(X, Y ) =
1
2
(γ(X, Y )− γ(JX, JY )).

Since ω̃ is compatible with J we have Pω̃ = 0, but in general PΩ 6= 0. Now set
f = ϕ in (4.31) and take the (2, 0) part to get

ϕijθ
j ∧ θi + ϕkN

k
j i

θj ∧ θi + ϕkT
k
jiθ

j ∧ θi = 0.
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Applying P to (4.36),

Pd(Jdϕ) = 2
√−1Pd∂ϕ

= 2
√−1

(
ϕijθ

j ∧ θi + ϕkT
k
jiθ

j ∧ θi + ϕkN
k
j i

θj ∧ θi
)

= 2
√−1

(
ϕkN

k
j i

θj ∧ θi − ϕkN
k
j i

θj ∧ θi
)

,

which involves only one derivative of ϕ. Now the 1-form a satisfies the following
system

(4.88)





da ∧ ω̃n−1 = 0
Pda = −PΩ +

√−1
(
ϕkN

k
j i

θj ∧ θi − ϕkN
k
j i

θj ∧ θi
)

d∗g̃a = 0,

which is elliptic (its symbol is injective, although not invertible if n > 2).
Note that the kernel of (4.88) consists of the harmonic 1-forms. Indeed, da ∧

ω̃n−1 = 0 and Pda = 0 together imply that ∗da = −cnω̃n−2 ∧ da for some universal
constant cn. Then if a is in the kernel of (4.88), we have ‖da‖2

L2(g̃) = 0 after
integrating by parts. Since d∗g̃a = 0, we see that a is harmonic with respect to g̃.

Fix any 0 < β < 1. Since g̃ is uniformly bounded in Cβ, we can apply the elliptic
Schauder estimates to (4.38) to get a bound

‖ϕ‖C2+β ≤ C‖∆̃ϕ‖Cβ ≤ C.

Here there should be a term like ‖ϕ‖Cβ on the right hand side, but since (4.38) and
(4.88) depend only on the gradient of ϕ, we are free to add a constant to ϕ so that it
is perpendicular to the kernel of ∆̃. Hence ‖ϕ‖C2+β ≤ C and so the right hand side
of (4.88) is bounded in C1+β, and the coefficients of the system have a Cβ bound, so
assuming that a is orthogonal to the harmonic 1-forms, the elliptic estimates applied
to (4.88) give C2+β bounds on a. By differentiating the Calabi-Yau equation in a
direction ∂/∂xi we obtain

(4.89) ∆̃(∂iϕ) + {lower order terms} = 2∂iF + gpq∂igpq,

where the lower order terms may contain up to two derivatives of ϕ or a, and so are
bounded in Cβ. Applying the Schauder estimates again we get ‖ϕ‖C3+β ≤ C, and
using (4.88) again we get ‖a‖C3+β ≤ C. Now a bootstrapping argument using (4.89)
and (4.88) gives the required higher order estimates. This completes the proof of
Theorem 4.1.3.

4.6 Proof of Theorem 4.1.4

As before, let g̃ be an almost-Kähler metric solving (4.8). Let g be an almost-
Hermitian metric with the property that R(g, J) ≥ 0.
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Proof of Theorem 4.1.4. By the argument of the last section, it suffices to prove a
uniform upper bound for u = 1

2trgg̃. From Lemma 4.3.2, we have

∆̃u ≥ −C,

for a constant C depending only on the fixed data. We claim that this is enough to
bound u uniformly from above. Indeed, for p > 0,

∫

M
|dup/2|2gdVg ≤ −C

∫

M
udup/2 ∧ Jdup/2 ∧ ω̃n−1

= −Cp2

∫

M
up−1du ∧ Jdu ∧ ω̃n−1

= −Cp

∫

M
d(up) ∧ Jdu ∧ ω̃n−1

= Cp

∫

M
upd(Jdu) ∧ ω̃n−1

= −Cp

∫

M
up(∆̃u)ω̃n

≤ Cp

∫

M
updVg.

Hence ∫

M
|dup/2|2gdVg ≤ Cp

∫

M
updVg.

Then from the Sobolev inequality, we obtain

‖u‖Lpβ ≤ C1/pp1/p‖u‖Lp ,

for β = n
n−1 . Replacing p with pβ, iterating, and then setting p = 1

n−1 we obtain

‖u‖C0 ≤ C‖u‖
L

1
n−1

.

Using (4.60) and the Calabi-Yau equation (4.1) we can bound

‖u‖
L

1
n−1

≤ C‖trg̃g‖L1 .

But this last quantity is bounded, because from (4.39) and the Calabi-Yau equation
(4.1), ∫

M
trg̃gdVg ≤ C

∫

M

ω̃n−1 ∧ Ω
ω̃n

Ωn ≤ C

∫

M
ω̃n−1 ∧ Ω = C[Ω]n.

This completes the proof of Theorem 4.1.4.
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Birkhäuser, Boston, 1999.

[GW] Gross, M., Wilson, P.M.H. Large complex structure limits of K3 surfaces, J.
Differential Geom. 55 (2000), no. 3, 475–546.

[HM] Hacon, C., McKernan, J. On the existence of flips, preprint,
arXiv:math/0507597.

[Ha1] Hamilton, R.S. Three-manifolds with positive Ricci curvature, J. Differential
Geom. 17 (1982), no. 2, 255–306.

[Ha2] Hamilton, R.S. A compactness property for solutions of the Ricci flow, Amer.
J. Math. 117 (1995), no. 3, 545–572.

[HW] Headrick, M., Wiseman, T. Numerical Ricci-flat metrics on K3, Classical
Quantum Gravity 22 (2005), no. 23, 4931–4960.

[He] Hebey, E. Sobolev spaces on Riemannian manifolds, Lecture Notes in Mathe-
matics, 1635, Springer-Verlag, Berlin, 1996.
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