
Experimental Evaluation of Hash Function
Performance on Embedded Devices

Matthew Fritter, Nadir Ould-Khessal, Scott Fazackerley, Ramon Lawrence
Department of Computer Science
University of British Columbia

Abstract—With embedded devices collecting, manipulating,
and transmitting growing amounts of data in various Internet of
Things applications, it is increasingly important to process data
on device for performance and energy efficiency. A common data
processing function is computing hash functions for use in hash-
based data structures and algorithms. The limited computation
and memory resources of embedded devices results in different
performance characteristics compared to general purpose com-
puters. This research implements and experimentally evaluates
the performance of non-cryptographic hash functions. Seven hash
function algorithms were chosen on the basis of implementation
complexity, popularity, and compatibility with microcontroller
architecture. These functions were implemented in C/C++ for the
ATmega328P 8-bit microcontroller used in the Arduino Uno, and
on the Microchip PIC24 16-bit microcontroller. Some optimiza-
tions were implemented to reduce memory usage. Experimental
results demonstrate that there are platform specific performance
differences.

Index Terms—hash function, Arduino, embedded software,
performance, Internet of Things

I. INTRODUCTION

Hash functions on microcontrollers are useful in data stor-
age and transmission applications, such as hash table data
structures or checksums for verifying data quality. Microcon-
troller hardware constraints affect hash algorithm performance.
Many cryptographic or otherwise complex hashing algorithms
that are commonly used in desktop computing are impractical
to implement on a microcontroller. Small RAM sizes inhibit
the use of algorithms with large key sizes, such as SHA-512
or RSA-1024, where the key itself would take up a significant
portion of the memory. Hash functions that require multiple
rounds of calculation, such as MD5 [1], also present a problem
as the low clock speeds result in long computation times.

The contribution of this work is an experimental evaluation
of non-cryptographic hash functions on two popular, general
purpose microcontrollers: the 8-bit ATmega328P used in the
Arduino Uno, and the 16-bit Microchip PIC24. The results
demonstrate that there are platform-specific differences to hash
function performance, which implies certain functions should
be preferably used over others depending on the platform.

The remainder of the paper provides background on em-
bedded hardware platforms with focus on the ATmega328P
and PIC24. Section 3 presents the experimental evaluation and
results, and the paper closes with future work and conclusions.

II. BACKGROUND

The volume and diversity of embedded devices is rapidly
increasing especially as the Internet of Things expands [2],
[3]. Increasingly, embedded devices are performing more
substantial data processing rather than just data collection
and transmission as there is an advantage to processing data
on an embedded device rather than transmitting it over the
network for processing [4]. Projects such as MicroSearch [5]
and IonDB [6] have aimed to provide an efficient means of
indexing and searching data on embedded devices through
hash-based data structures.

A. Embedded Hardware Platforms

The Arduino Uno [7] uses the 8-bit AVR ATmega328P-PU
microcontroller. It has 32 KB of flash program memory, 2 KB
of SRAM, 1 KB EEPROM, and supports clock speeds up to
20 MHz. The Uno is programmed in a language called Wiring
that is a subset of C/C++, with Arduino-specific libraries
providing extra functionality [7]. The Arduino was designed
to be an easily programmable prototyping tool for students,
however it has since become a popular and inexpensive option
for rapid prototyping and sensor deployment in a variety of
fields. The Arduino platform has been used for cognitive
science technologies [8], automation of laboratory procedures
[9], and remote surveillance robots [10]. Code can be stripped
of Arduino dependencies and compiled via alternate toolchains
to most standard AVR microcontrollers.

Microchip PIC24 is a family of 16-bit microcontrollers
that offers a good balance of low cost, low power and high
performance. The PIC24FJ1024 chip was used to implement
and test the hash functions, as the chip offers the largest
program memory (1 MB) in the PIC24 family along with
32 KB SRAM. The test environment had a 32 MHz operating
frequency that produces an instruction cycle of 16 MHz, as
two cycles are needed to execute an instruction. The chip also
includes a 17 bit by 17 bit Single Cycle Multiplier and a 32 bit
by 16 bit hardware divider [11]. The project was developed
using the Microchip Explorer 16/32 development board. The
MCU is mounted to the board as a plug-in module. The board
itself offers several development hardware tools including an
in-circuit programmer, serial to USB interface, I2C interface
and a 16X2 LCD display [12]. Project development used the
Microchip MPLAB X IDE and Microchip XC16 C compiler.



TABLE I
MICROCONTROLLER SPECIFICATIONS

ATmega328P-PU PIC24FJ1024

Program Memory 32 KB 1024 KB
SRAM 2 KB 32 KB

Architecture 8-bit RISC Harvard 16-bit Modified Harvard
IPS 20 MIPS@20MHz 16 MIPS@32MHz

ALU 8-bit 16-bit
Hardware Multiplier 8-bit × 8-bit 17-bit × 17-bit

Hardware Divider None 32-bit × 16-bit
Multi-bit Shift None 15-Bit Shift/Cycle

B. Hash Functions

A hash function maps an input value of variable size to a
fixed size key value. Good hash functions minimize the chance
of two different inputs producing the same key, known as a
collision, by ensuring that small changes to the input induce
large changes in the output, and that key values are evenly dis-
tributed across the output range of the hash function. A variety
of both non-cryptographic [13] and cryptographic [14] hash
functions have been developed to meet different requirements
for collision resistance, domain size, and performance. Non-
cryptographic hash functions are commonly used in a variety
of data structures, including hash maps and bloom filters, as
well as for search, indexing, and data integrity verification.

The hash functions chosen in this study are either in
common use or had published standards, such as CRC-32,
MD5, and Lookup3 (see Table II). MD5 has popularity in
non-cryptographic applications and a key size of 128 bits. All
other algorithms were standardized to a 32-bit key length.

Previous research into hash function performance has pri-
marily been in the fields of cryptography [14] or on server
computer systems. Previous work in hash algorithm per-
formance on embedded devices has largely focused on the
cryptographic hash functions, particularly algorithms associ-
ated with the Secure Hash Algorithm (SHA) and Advanced
Encryption Standards (AES) [15]. MD5 performance on 8-bit
microcontrollers has been tested as part of a larger suite of
cryptographic functions, although the hardware used for the
testing had greater memory and storage capacities [16], and
our results produced a more compact and better performing
MD5 implementation.

III. EXPERIMENTAL EVALUATION

All implementations were written in C/C++ and were iden-
tical for both platforms. Where possible exact code implemen-
tations from original author implementations were used. All
functions were tested with known input/output pairs to ensure
correct functionality before analysis. Analysis was performed
by measuring the time taken to hash a byte array, ranging
from 1 to 256 bytes in length. The byte array was randomly
generated at runtime. Time was calculated for one thousand
executions of the hash function for each length of input bytes.
For this evaluation, the focus is on hash algorithm performance
and not other factors like output key distribution.

A. Arduino Results

The Arduino results are shown in Figure 1, which graphs
the average time to calculate a single hash in milliseconds
as a function of the input length. CRC-32 provided the best
performance per hash, followed by the Pearson hashing algo-
rithm. All hash algorithms except for MD5 provided similar
performance for small input sizes. The slower performance of
the FNV-1a algorithm is due to performing multiplication with
the prime number 0x1000193 for every byte, whereas Jenkins
requires an XOR on every byte, in addition to shifts and
additions. The SDBM algorithm provided performance similar
to FNV-1a. The stepped nature of Lookup3’s performance is
explained by the block-wise system it uses; time per hash
increases every twelve bytes as the algorithm is required to
perform another mixing step, which requires six executions of
the rotation function and six subtraction, XOR, and addition
steps. MD5, the sole cryptographic hashing function tested,
required far more time per hash than the other algorithms,
even for the shortest input sizes. The poor MD5 performance
for small inputs is the result of MD5’s padding system, which
extends partial blocks to a full 512 bits. Like Lookup3, the
time required stays fairly constant during the block, but jumps
when a second block is added, as each additional block
requires another sixty-four rounds of mixing. For larger inputs,
there is a difference of about 2 times for the faster algorithms
(CRC-32, Pearson) compared to the others.

Due to the memory constraints of the ATmega328P, the
compiled program size and global variable SRAM usage were
recorded for all algorithms on the Arduino, shown in Fig 2 and
Fig 3. These statistics are provided by the Arduino IDE after
compilation, using the avr-size utility. Compiled program size
is based on the compiled binary and includes the Arduino boot-
loader and initialized data, while the SRAM usage includes
initialized and uninitialized global variables. Algorithms with
particularly high global variable SRAM usage, ranging from
23% for the Pearson algorithm to 60% for CRC-32, were
considered as candidates for optimization.

B. PIC24 Results

The same test benchmark as the ATmega328P was used with
a randomly generated input message of variable byte length
processed through each hashing function while measuring the
time taken over 1000 executions. Two 32-bit hardware timers
of elapsed processor time in ticks gave an accurate running
time of each algorithm. Most of the selected algorithms, with
exception of MD5, did not require extensive RAM, but did
require 16-bit arithmetic and logical operations and were as
such much faster running on a 16-bit chip. The effective
instruction speed of the PIC24 was 16 MHz, about the same
as the Arduino, so differences in performance are related to
their 8-bit versus 16-bit architectures.

The PIC24 results are shown in Fig 4 and Fig 5. For most
hash functions, the average time per hash was lower on the
PIC24, due primarily to better support for 32-bit data types
and more available SRAM. CRC-32 and SDBM provided the
best performance, with FNV-1a and Jenkins only marginally



TABLE II
HASH FUNCTIONS

Function Description

CRC-32 [17] Cyclic Redundancy Check ; 32-bit output. Outlined in RFC 1952 for use in the GZIP Utility.
FNV-1a [18] Developed in 1991 ; variable-length output. Used in a wide variety of applications, including DNS servers and search indexing.
Jenkins [19] Developed by Bob Jenkins ; 32-bit output. Used in Perl 5.8.0 as the internal hashing algorithm.

Lookup3 [20] Developed by Bob Jenkins in 2006 ; 32-bit output. Specifically designed for hash table lookup.
MD5 [1] 128-bit output ; Formerly used cryptographically, still in widespread use non-cryptographically.

Pearson [21] Developed by Peter K. Pearson in 1990 ; 8 bit output ; chained to produce 32-bit output. Uses 256-byte lookup table.
SDBM [22] Developed by Ozan Yigit in 1989 as part of SDBM, an open-source database software. Also used in Berkeley DB.

Fig. 1. Arduino Performance of Hash functions

Fig. 2. Compiled Program Size for Arduino

slower. Lookup3 provided performance that spiked between
being faster than CRC-32, and slower than FNV-1a; this is
the result of Lookup3 using a 12-byte block system and use
of fall-through switch cases dependent on the number of bits
in the last block. The Pearson and MD5 algorithms were major

Fig. 3. Global Variable Memory Usage for Arduino

Fig. 4. PIC24 Performance for Lookup3, CRC-32, Jenkins, SDBM, and FNV-
1a functions

outliers, both having worse performance on the PIC24 than on
the ATmega328P. The Pearson hash algorithm had an average
time per hash of more than double the next slowest PIC24
function (FNV-1a) and the ATmega328P Pearson implementa-



Fig. 5. PIC24 Performance for Pearson and MD5 functions

tion. The PIC24 MD5 implementation was approximately 30
percent slower than the ATmega328P MD5 function. Given
that the source code for both implementations was identical,
this performance difference must be related to differences in
compiler optimization and processor execution.

C. Memory Optimizations

Some functions were memory optimized to reduce SRAM
usage on the ATmega328P with a trade-off on execution time.
Algorithms that rely on arrays of precomputed values such as
the CRC-32, MD5, and Pearson hashing functions can occupy
large percentages of the available SRAM, making practical
use difficult when considering the memory requirements of
the program beyond the hash function implementation. The
CRC-32 precomputed table for example, is an array of 256
32-bit unsigned integers of total size 1024 bytes, leaving only
1024 bytes of SRAM for other program variables.

Two distinct strategies were used to minimize memory
usage. The first strategy employed was to replace precomputed
arrays with a function that computes the required value at
runtime for a given input. This is done with the optimized
version of CRC-32, replacing the array of 256 32-bit constants
with a function that calculates individual CRC constants on the
fly. This increased the average execution time of the CRC-
32 algorithm by approximately 6 times, but is preferable in
many cases to using 1024 bytes of SRAM. Fig 6 shows
similar performance between the PIC24 and the Arduino for
the CRC-32 algorithm when using a constant array, but heavily
decreased performance when using the memory-optimized
version. This method could also apply to the precomputed
array of the floor of sines used in MD5, but implementation is
complicated by the need for 64-bit math support. In this case,
a second memory optimization strategy was used, shifting
the MD5 precomputed array to the program memory. This
is supported by the avr/pgmspace library included in avr-
libc, which allows constants to be stored in the 32 KB flash

Fig. 6. Comparison of CRC-32 Performance on Arduino and PIC24

program memory and accessed as needed [23]. Accessing
from flash has slower read times and requires extra cycles
per instruction to load data compared to SRAM. However,
when compiled using the default Arduino toolchain of avr-
gcc and avr-g++, the memory-optimized version of the MD5
algorithm performed slightly better than the original, with the
performance difference increasing marginally for each 512-bit
block. The 256 byte lookup table used in the Pearson hash
function was similarly moved to the program memory, which
had a minor negative impact on performance. A performance
comparison of the optimized and non-optimized functions is
shown in Fig 7. These results demonstrate that the trade-off of
moving the lookup tables to flash versus SRAM is a reasonable
strategy.

No memory optimization was performed on the PIC24 code,
as the increased size of the SRAM (32 KB) was enough to
allow the required constant arrays to be stored in memory.

IV. CONCLUSIONS AND FUTURE WORK

In conclusion, many popular non-cryptographic hashing
algorithms can be effectively implemented on microcontroller
hardware. The contribution of this work is the experimental
evaluation of the algorithms on various platforms, and the
insight that relative performance is platform-specific. Analysis
indicates that choice of a fast hashing algorithm is hard-
ware and compiler dependent, as some hash functions, such
Pearson and MD5, are faster on the ATmega382P, while
SDBM provided greater performance on the PIC24. CRC-32
was found to be fastest on both platforms, but memory use
optimization of the algorithm impacted performance heavily
on the ATmega382P. However, memory optimization was
shown to be effective in reducing the footprint of the MD5
and Pearson hash functions at minimal cost, and actually
increasing the average time per hash performance of the MD5
algorithm. For applications where a hash function is needed
frequently, such as a hash table or index system, the simpler



Fig. 7. Comparison of Arduino Performance for Optimized and Non-
Optimized Functions

Jenkins, SDBM, and FNV-1a algorithms have consistently
good performance across both test platforms. Future work will
expand the scope to include more hash functions, investigate
the cause of the outlier results such as MD5 on PIC24,
and perform additional analysis to identify optimal hashing
algorithms for other platforms.

REFERENCES

[1] R. L. Rivest, “The MD5 Message-Digest Algorithm,” Internet
Requests for Comments, RFC 1321, April 1992. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1321.txt

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[3] Y. Qin, Q. Z. Sheng, N. J. Falkner, S. Dustdar, H. Wang,
and A. V. Vasilakos, “When things matter: A survey on data-
centric internet of things,” Journal of Network and Computer
Applications, vol. 64, pp. 137 – 153, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804516000606

[4] G. J. Pottie and W. J. Kaiser, “Wireless Integrated Network Sensors,”
Commun. ACM, vol. 43, no. 5, pp. 51–58, May 2000. [Online].
Available: http://doi.acm.org/10.1145/332833.332838

[5] C. Tan, B. Sheng, H. Wang, and Q. Li, “Microsearch,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 9, no. 4,
pp. 1–29, Mar 1, 2010. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1721709

[6] S. Fazackerley, E. Huang, G. Douglas, R. Kudlac, and R. Lawrence,
“Key-value store implementations for Arduino microcontrollers,”
in IEEE 28th Canadian Conference on Electrical and Computer
Engineering, 2015, pp. 158–164. [Online]. Available: http://dx.doi.org/
10.1109/CCECE.2015.7129178

[7] J. M. Hughes, Arduino: A Technical Reference, 1st ed. O’Reilly
Media, 2016. [Online]. Available: http://lib.myilibrary.com?ID=922911

[8] T. Schubert, A. D’Ausilio, and R. Canto, “Using Arduino
microcontroller boards to measure response latencies,” Behavior
Research Methods, vol. 45, no. 4, pp. 1332–1346, Dec 2013. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/23585023

[9] J. A. Arizaga, J. de la Calleja, R. Hernandez, and A. Benitez,
“Automatic control for laboratory sterilization process based on arduino
hardware,” in IEEE 22nd International Conference on Electrical
Communications and Computers, 2012, pp. 130–133. [Online].
Available: http://ieeexplore.ieee.org/document/6189895

[10] M. S. Shah and P. B. Borole, “Surveillance and rescue robot
using Android smartphone and the Internet,” in IEEE International
Conference on Communication and Signal Processing, 2016, pp. 1526–
1530. [Online]. Available: http://ieeexplore.ieee.org/document/7754413

[11] “Pic24fj1024ga610/gb610 family datasheet,” 2015. [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/30010074e.pdf

[12] “Explorer 16/32 development board datasheet,” 2016. [Online]. Avail-
able: http://ww1.microchip.com/downloads/en/DeviceDoc/40001854A.
pdf

[13] C. Estebanez, Y. Saez, G. Recio, and P. Isasi, “Performance of the most
common non-cryptographic hash functions,” Software: Practice and
Experience, vol. 44, no. 6, pp. 681–698, Jun 2014. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/spe.2179/abstract

[14] M. A. AlAhmad and I. F. Alshaikhli, “Broad view of cryptographic
hash functions,” International Journal of Computer Science Issues
(IJCSI), vol. 10, no. 4, p. 239, Jul 1, 2013. [Online]. Available:
https://search.proquest.com/docview/1471054558

[15] J. Balasch, B. Ege, T. Eisenbarth, B. Gérard, G. Zheng, T. Güneysu,
S. Heyse, S. Kerckhof, F. Koeune, T. Plos, T. Pöppelmann, F. Regazzoni,
F.-X. Standaert, G. V. Assche, R. V. Keer, L. van Oldeneel tot Oldenzeel,
and I. von Maurich, “Compact Implementation and Performance
Evaluation of Hash Functions in ATtiny Devices,” ser. Lecture Notes
in Computer Science, vol. 7771. Berlin Heidelberg: Springer-Verlag,
2013. [Online]. Available: http://hdl.handle.net/2078.1/129985

[16] K. J. Choi and J.-I. Song, “Investigation of feasible cryptographic
algorithms for wireless sensor network,” in 8th International Conference
on Advanced Communication Technology, vol. 2. IEEE, 2006, p.
1381. [Online]. Available: http://ieeexplore.ieee.org/document/1625834

[17] L. P. Deutsch, J.-L. Gailly, M. Adler, L. P. Deutsch, and
G. Randers-Pehrson, “Gzip file format specification version 4.3,”
Internet Requests for Comments, RFC Editor, RFC 1952, May
1996, http://www.rfc-editor.org/rfc/rfc1952.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1952.txt

[18] G. Fowler, L. Noll, K.-P. Vo, and D. Eastlake, “The
FNV Non-Cryptographic Hash Algorithm,” Working Draft,
IETF Secretariat, Internet-Draft draft-eastlake-fnv-03, March 2012,
http://www.ietf.org/internet-drafts/draft-eastlake-fnv-03.txt. [Online].
Available: http://www.ietf.org/internet-drafts/draft-eastlake-fnv-03.txt

[19] J. Hietaniemi, “Perl 5.8.0 perldelta,” 2002. [On-
line]. Available: http://search.cpan.org/dist/perl-5.8.0/pod/perldelta.pod#
Performance Enhancements

[20] B. Jenkins, “Lookup3.c,” 2006. [Online]. Available: http://burtleburtle.
net/bob/c/lookup3.c

[21] P. Pearson, “Fast hashing of variable-length text strings,” pp. 677–680,
Jun 1, 1990. [Online]. Available: http://dl.acm.org/citation.cfm?id=
78978

[22] Y. Ozan, “Sdbm.bun.” [Online]. Available: http://www.cse.yorku.ca/
∼oz/sdbm.bun

[23] “avr/pgmspace.h: Program space utilities,” 2016. [Online].
Available: http://www.nongnu.org/avr-libc/user-manual/group avr
pgmspace.html


