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Preface

Inductive programming is concerned with the automated construction of com-
puter program code – typically including control structures like branching and
recursion or loops – from incomplete specifications such as input/output exam-
ples. Inferred programs must be correct with respect to the provided examples
in a generalizing sense: they should neither be equivalent to them, nor inconsis-
tent. Applications in the focus of inductive programming are, among others, au-
tomated software development, algorithm design, end-user programming, cogni-
tive modeling, and self-programming intelligent agents. Inductive programming
is studied in different communities such as artificial intelligence, evolutionary
computation, and programming languages and systems and has been tackled by
different approaches like syntactic recurrence detection in sets of input/output
terms, inductive reasoning, generate-and-test search in program spaces, and SAT
and SMT solving.

The Workshop on Approaches and Applications of Inductive Programming
(AAIP) series aims at bringing together researchers who are interested in in-
ductive programming and to advance fruitful interaction between the different
communities with respect to inductive programming approaches and algorithms,
challenge problems, and potential applications. This year, AAIP took place in
Odense, Denmark, July 19, in conjunction with the ACM SIGPLAN Sympo-
sium on Principles and Practice of Declarative Programming (PPDP 2011) and
the International Symposium on Logic-Based Program Synthesis and Transfor-
mation (LOPSTR 2011). Previous instances of AAIP took place in conjunction
with the ACM SIGPLAN International Conference on Functional Programming
(ICFP 2009), the European Conference on Machine Learning (ECML 2007), and
the International Conference on Machine Learning (ICML 2005).

This proceedings volume contains the five papers presented at the workshop.
They cover machine learning approaches to inductive programming, genetic pro-
gramming, and the combination of analytical and generate-and-test induction of
recursive functional programs. The workshop was enriched by an invited talk
by Ras Bodik from University of California Berkeley. His topic was inductive
program synthesis using SAT and SMT solving, especially in the context of Pro-
gramming by Sketching.

We thank the program committee members for a smooth review process and
for providing meaningful reviews, the local organizers of the Odense Summer
on Logic and Programming event for their organizational support, our invited
speaker Ras Bodik for a revealing talk, and all authors of this volume for con-
tributing to the AAIP workshop.
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Applying distances between terms to both flat
and hierarchical data

J.A. Bedoya-Puerta C. Ferri J. Hernández-Orallo
M.J. Ramı́rez-Quintana
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Camı́ de Vera s/n, 46022 València, Spain.
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Abstract. Terms are the basis for functional and logic programming
representations. In turn, functional and logic programming can be used
for knowledge representation in a variety of applications (knowledge-
based systems, data mining, etc.). Distances between terms provide a
very useful tool to compare terms and arrange the search space in many
of these applications. However, distances between terms have special fea-
tures which have precluded them from being used for other datatypes,
such as hierarchical data or propositional data. In this paper, we explore
the use of distances between terms in different scenarios: propositional
data using the names of the attributes to construct the term tree (hier-
archy), deriving the term tree by using attribute similarity and, finally,
functional data representing hierarchies. In order to do this, we perform
transformations from the original data representation to XML, thus al-
lowing the use of term distances to directly handle objects of different
degrees of ‘hierarchisation’, from flat data to fully hierarchical data.

Keywords: Distance functions, classification, term-based representation, hi-
erarchical data, granular computing, XML data.

1 Introduction

Tree structures and functional terms have strong similarities. A term in func-
tional (or logic) programming can be represented as an ordered tree. Trees can
be used to represent information or knowledge (e.g. ontologies), and some very
popular languages for information representation are based on trees or hier-
archies, such as XML and related functional-alike structures [4]. So, inductive
programming can be applied to this kind of information representation in a much
more natural way than other paradigms which learn from examples with a flat
structure (tabular data, text, etc.).

Although semantics are crucial to understand the role of a term or an atom
wrt. a program, we can also analyse terms in an isolated, purely syntactical,
way. In knowledge representation, terms and atoms may represent objects and
its syntactical structure and content provides semantic information by itself.
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Similarities (or dissimilarities) between objects are useful to understand how
close they are. Distances (also called metrics) are measures of dissimilarity with
some special properties such as symmetry and the triangle inequality, which
make them more advantageous for many algorithms, because the search space
can be reduced by triangularisation. Distance-based methods are a popular and
powerful approach to inductive inference, since distances are a proper way to
measure dissimilarity. The great advantage of these methods is that the same
algorithm or technique can be applied to different sorts of data, as long as a
similarity function has previously been defined over them [11].

There are distances for virtually any kind of object, including complex or
highly structured ones, such as tuples, sets, lists, trees, graphs, images, sounds,
web pages, ontologies, etc. One challenging case in machine learning, but more es-
pecially in the area of inductive programming, is the distance between first-order
atoms and terms. Although atoms and terms can be used to represent many of
the previous datatypes (and consequently, a distance between atoms/terms vir-
tually becomes a distance for any complex/structured data), they are specially
suited for term-based or tree-based representations. In this way, distances be-
tween atoms may not only be useful in the area of inductive logic programming
(ILP) [12] (e.g. first-order clustering [3]) or inductive programming in general,
but also in other areas where structured (hierarchical) information is involved
such as learning from ontologies or XML documents. For instance, if an XML
document represents a set of cars, or houses, or customers, we may be interested
in obtaining the similarities between the objects, or to cluster them according
to their distances.

In this paper, we define a transformation procedure to convert semi-structured
data to a (functional) term-based representation in XML which is suitable for
term distances. We handle different degrees of structure, from purely flat data
(from which we derive a hierarchy in two different ways) to originally hierarchical
data. The advantage of term distances is that they are able to consider context
and, some of them, are able to consider repetitions. This may be important
in some problems where the discrepancies of some arguments are more or less
similar depending on whether they appear in other contexts and also the depth
where discrepancy appears. We also need to address some issues about order in
XML documents, since terms are always ordered. Once this transformation is
done we can directly apply term-based distances.

We perform experiments with Nienhuys-Cheng’s distance [13] and Estruch et
al’s distance [5]. We first apply our approach to two flat datasets from the UCI
repository which have some implicit hierarchy that the transformation uses and
the distances are able to exploit. Second, we use some techniques from granular
computing to obtain a clustering (dendrogram) of attributes to construct a hi-
erarchy which is again exploited by the term distances. We compare the results
to an approach not using the hierarchical structure of these problems by using
Euclidean distances. Third, we also work with an originally hierarchical prob-
lem, which is converted from a functional representation (in Lisp) to an XML
representation. In all cases, experiments are performed with a distance-weighted
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k-nearest neighbour algorithm, using several exponents for the attraction func-
tion (the distance weight). We see that in some cases these term distances can
highly improve the results over a flat approach.

This paper is organised as follows. Section 2 introduces the notation and anal-
yses some previous distances proposed in the literature for trees, semi-structured
data and terms, and very especially the two distances we will use, Nienhuys-
Cheng’s distance [13] and Estruch et al’s distance [5]. Section 3 introduces the
transformation from semi-structured data into the common XML representation
which is suitable for term distances. Section 4 includes experiments on several
datasets showing the cases where these distances can work better than a flat Eu-
clidean distance (in case the latter can be used). Section 5 concludes the paper
and relates to future work.

2 Preliminaries and related work

2.1 Notation

Let L be a first order language defined over the signature Σ = 〈C,F , Π〉 where
C is a set of constants, and F (respectively Π) is a family indexed on N (non
negative integers) being Fn (Πn) a set of n−adic function (predicate) symbols.
Atoms and terms are constructed from the Σ as usual. An expression is either
a term or an atom. The root symbol and the arity of an expression t is given
by the functions Root(t) and Arity(t), respectively. Thus, letting t = p(a, f(b)),
Root(t) = p and Arity(t) = 2. By considering the usual representation of t as a
labelled tree, the occurrences are finite sequences of positive numbers (separated
by dots) representing an access path in t. We assume that every occurrence
is always headed by a (implicit) special symbol λ, which denotes the empty
occurrence. The set of all the occurrences of t is denoted by O(t). In our case,
O(t) = {λ, 1, 2, 2.1}. We use the (indexed) lowercase letters o′, o, o1, o2, . . . to
represent occurrences. The length of an occurrence o, Length(o), is the number
of items in o (λ excluded). For instance, Length(2.1) = 2, Length(2) = 1 and
Length(λ) = 0. Additionally, if o ∈ O(t) then t|o represents the subterm of t at
the occurrence o. In our example, t|1 = a, t|2 = f(b), t|2.1 = b. In any case, we
always have that t|λ = t. By Pre(o), we denote the set of all prefix occurrences of
o different from o. For instance, Pre(2.1) = {λ, 2}, Pre(2) = {λ} and Pre(λ) =
∅. Two expressions s and t are compatible (denoted by the Boolean function
Compatible(s, t)) iff Root(s) = Root(t) and Arity(s) = Arity(t). Otherwise, we
say that s and t are incompatible (¬Compatible(s, t)).

2.2 Distances over terms

Since in this paper we are not interested in dealing with non-ground terms, and
we require a normalised distance which produces a single number in order to
be able to compare term distances with Euclidean distances, we will only work
with the following distances over atoms/terms: the Nienhuys-Cheng’s distance
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[13] and the Estruch et al.’s distance [5]. Apart from them, J. Ramon et al.
[15] defined another distance between non-ground atoms that relies on the least
general generalisation (lgg) operator [14] and that computes a pair of real values
as the distance between two atoms. A comparison of the three distances in terms
of different characteristics, namely context sensitivity, ability to take repeated
differences, complexity of differences and variables into account, composability,
use of weights and normalisation, can be found in [5]. As mentioned, J. Ramon
et al’s distance will not be used because it does not retrun a real number but a
pair, and it cannot be used in many algorithms using distances.

In what follows we briefly review the Nienhuys-Cheng’s distance and the
Estruch et al.’s distance. The first one is a bounded distance which takes the
context in that differences occur into account but disregarding the number of
times that these differences take place or their syntactic complexity. On the other
hand, the distance proposed by Estruch et al. is a bounded distance for (non-
)ground terms/atoms which takes the context of the differences into account,
but also their syntactic complexity and how many times these differences occur.

Definition 1. (Nienhuys-Cheng distance [13]) Given two ground expres-
sions s = s0(s1, . . . , sn) and t = t0(t1, . . . , tn), the Nienhuys-Cheng distance
between them, denoted by dN (s, t), is recursively defined as

dN (s, t) =





0, if s = t
1, if ¬Compatible(s, t)
1
2n

∑n
i=1 d(si, ti), otherwise

For instance, if s = p(a, b) and t = p(c, d) then dN (s, t) = 1/4 · (d(a, c) +
d(b, d)) = 1/4(1 + 1) = 1/2. Note that dN takes the depth of the symbol oc-
currences into account in such a way that differences occurring close to the root
symbols count more.

Besides the context, Estruch et al.’s distance also considers other factors
related to the occurrences where the differences appear and their complexity. In
order to do this, the authors defined the concept of the set of syntactic differences
of expressions s and t as:

O?(s, t) = {o ∈ O(s) ∩O(t) : ¬Compatible(s|o, t|o) and
Compatible(s|o′ , t|o′),∀o′ ∈ Pre(o)}

Then, the complexity of the syntactic differences between s and t is calculated
on the number of symbols the subterms (in s and t) at the occurrences o ∈
O?(s, t) have. For this purpose, a special function called Size′ is provided:

Definition 2. (Size of an expression) Given an expression t = t0(t1, . . . , tn),
we define the function Size′(t) = 1

4Size(t) where,

Size(t0(t1, . . . , tn)) =

{
1, n = 0

1 +
∑n

i=1 Size(ti)

2(n+1) , n > 0
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The context value of an occurrence o in an expression t, C(o; t), is used to
consider the relationship between t|o and t in the sense that, a high value of
C(o; t) corresponds to a deep position of t|o in t or the existence of superterms
of t|o with a large number of arguments. This concept is formalised as follows:

Definition 3. (Context value of an occurrence) Let t be an expression.
Given an occurrence o ∈ O(t), the context value of o in t, denoted by C(o; t), is
defined as

C(o; t) =

{
1, o = λ
2Length(o) ·∏∀o′∈Pre(o)(Arity(t|o′) + 1), otherwise

It is proved in [5] that if o ∈ O?(s, t) then C(o; s) = C(o; t). So, in those
cases, the context of an occurrence o ∈ O?(s, t) is denoted as C(o).

Repeated differences are handled through an equivalence relation (∼) on the
set O?(s, t) defined as follows:

∀oi, oj ∈ O?(s, t), oi ∼ oj ⇔ s|oi = s|oj and t|oi = t|oj
which produces a non-overlapping partition of O?(s, t) into equivalence classes.
Also, an order relation (≤) in every equivalence class O?i (s, t) is defined as
∀oj , ok ∈ O?i (s, t), oj ≤ ok ⇔ C(oj) ≤ C(ok).

Additionally, the previous concepts are used to define another function which
simply associates weights to occurrences in such a way that the greater C(o), the
lower the weight o is assigned, i.e., the less meaningful the syntactical difference
referred by o is. Thus, given two expressions s and t, the weight function w is:

∀o ∈ O?i (s, t), w(o) =
3fi(o) + 1

4fi(o)

where i = π(o), π(o) is the index of the equivalence class o belongs to, and fi(o)
is the position that o has according to ≤.

Finally, the distance by Estruch et al. is defined as:

Definition 4. (Estruch et al. distance [5] ) Let s and t be two expressions,
the distance between s and t is,

dE(s, t) =
∑

o∈O?(s,t)

w(o)

C(o)

(
Size′(s|o) + Size′(t|o)

)

For example, let s = p(a, a) and t = p(f(b), f(b)) be two expressions. Then,
O?(s, t) = {1, 2}. Also, C(1) = C(2) = 2 · (2 + 1) = 6.

The sizes of the subterms involved in the computation of the distance are:

Size′(a) = 1/4 and Size′(f(b)) = 5/16

There is only one equivalence class O? = O?1(s, t). Assume that the occurrence
1 is ranked first, w(1) = 1 and w(2) = 7/8. Finally,

dE(s, t) =
1

6

(1

4
+

5

16

)
+

7

48

(1

4
+

5

16

)
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2.3 Distances over trees and semi-structured data

The edit distance and the tree alignment distance are two well-known distances
for comparing trees based on operations of deleting, inserting and relabeling
nodes [2]. Given a cost function associated to each editing operation, the edit
distance between two trees T1 and T2 is calculated as the cost of the optimal
sequence of operations needed to transform T1 into T2, where a sequence is
optimal if its cost in minimum. Analogously, the tree alignment distance between
T1 and T2 is obtained by inserting nodes labeled by an empty label until both
trees are isomorphic, then the resulting trees are superimposed giving a tree
whose nodes are labeled by a pair of labels. Finally, the distance is given by the
sum of the cost of each pair (using a certain cost function). Therefore, in both
cases, the more complex the differences are, more symbols or nodes we need to
edit or added, and, thus, the greater the computed distance is. In fact, many
distances between trees that have been proposed only depend on this factor, since
neither the presence of repeated differences nor their context have an effect on
the value computed by the metric.

On the other hand, distances over semi-structured data (HTML, XML, and
so on) have been mainly used for clustering documents and for detecting changes
in XML documents. All these problems have been tackled by representing the
documents as trees and, then, by applying tree distances. For instance, some
approaches use the edit distance or some variant of it [17], [6], [18].

However, tree distances are not appropriate when each example is represented
as a set, vector or hierarchy of features, since we need to align the features
depending on their position and not merely by insert and delete operations. For
instance, given the terms t1 = student(course(′A′)), t2 = student(course(′B′))
and t3 = teacher(course(′A′)), and considering the tree edit distance, t2 and t3
are at the same distance of term t1 (only one relabeling operation is needed to
transform t2 or t3 into t1). However, t1 and t2 are “more similar” than t1 and
t3 since they match up at the most external label (student). As we have shown
in the previous section, for distances between atoms or terms, two subterms are
just different when the topmost element of their tree representation is different.
Also, the deeper the differences occur, the more similar the expressions are, and
the lower their distance is. In this regard, we think that term distances may be
more suitable, if the right transformation is applied to use them appropriately.
Hence, in the rest of the paper we focus on them.

3 Transforming semi-structured data into a term-based
representation using XML

Since we want to apply term distances to different kinds of data, from flat data
to fully hierarchical data, we require a common language for representing all
these types of data. Such a common language is XML.

Although we want to handle any degree of structure, we can distinguish two
extreme situations:
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– Flat data: Many datasets are given as a table of attribute-value pairs. How-
ever, a detailed inspection shows that some attributes are related to others
and a hierarchy can be induced from them.

– Hierarchical data at source: Some other datasets consist of data with a hier-
archical structure which is represented by a tree, a functional term (e.g. in
Haskell or Lisp) or an “is-in” hiearchy.

Intermediate cases can be handled as well by using a mixture of the procedures.

3.1 Schema definition

XML documents and functional terms are not the same thing, so we need to
make some decisions in order to use XML to represent functional terms, and
also to adapt the previous types of data to a common representation. One of the
key issues is how to handle depth, repetition and order, since some components
in XML have order and some others not, and repetitions are allowed.

Given a hierarchy we have to be very careful when using term distances since
some parts of the hierarchy might be empty, and we need to determine how an
empty part is compared to a non-empty part. In other words, the structure may
have different number of elements at the same level; therefore it is necessary to
ensure that distance calculations are not affected by the absence of features or
their order. This difficulty requires the creation of a general schema that allows
each instance, with its own features, to be properly adjusted, without losing any
element or content, and in a defined order. The schema we propose is an XML
document that contains labels without content of all the elements that could
exist for a given example.

Fig. 1. Hierarchies using differents elements.

For instance, Figure 1 shows two hierarchies with different elements. Thus, the
element <EXTERNAL> does not exist in the first hierarchy (left), whereas the
element <PIGMENTATION> exists for the second hierarchy (right), but not
for the first one. It is therefore necessary to create a schema that contains an
integrated structure for both cases. The schema created for this example is:

<COLOUR></INTERNAL/></EXTERNAL/></COLOUR></PIGMENTATION/>

This allows, not only to have a general structure, but also to ensure the
format, so that each instance must follow the schema. However, it is necessary to
consider that not all instances can be easily adapted to XML; e.g. elements that
are leaves with content cannot be directly adapted when the schema requires a
subtree. In this situation, the element is added regardless of the schema structure.
However, this fact does not affect the distance calculations because they are
considered as different features.
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Even though there are differences between a representation based in terms
and one represented in XML, it is possible to convert one representation into
the other. In XML, every term is represented as an element composed by a label
and a value. That way, it is possible to convert a term into an XML element
adding a label and inserting the term as the value. It is also possible to convert
an XML document into a term disregarding the label and representing the value
as a term. For instance, in Figures 2 and 4 below, we see how an XML document
can represent two different types of hierarchies.

3.2 Deriving hierarchical XML schemas from flat data

Flat data refers to attribute-value problems which are common in databases,
machine learning, data mining, and other areas. In other words, data is presented
in the form of a table of scalar values. In many cases, however, some structure
can be inferred from these datasets, either because it was originally there and it
still distills after the flattening process or because there are some features which
can be grouped together according to some reason.

In fact, deriving a hierarchy from flat data is one of the problems that the
area known as granular computing deals about [1]. In this work we consider three
possible sources of structures from flat representations:

1. Value equality: Many datasets are given as flat data, but a detailed inspection
shows that some attributes are related by the values they take. For instance,
if two variables X1 and X2 can take the values low,medium, high, there is
clearly a connection between them that can be exploited, especially through
the use of equalities. For instance, we can define a condition or a rule using
X1 = X2 which only makes sense if the datatypes are equal. This is the same
as when variable repetitions are allowed in terms, like f(a,X,X).

2. Name-induced hierarchies: In many cases we can find simple structures in
the hierarchy of attributes, because of their names or their semantics. For
instance, cap-shape, cap-surface and cap-color are attributes that contain
‘cap’ sub-features. In this way, sets of feature hierarchies can be created.

3. Attribute-similarity hierarchy: In other occasions, even if the names and
values might be different, we can establish relations between the attributes
which can be used to induce a structure. One approach is what is known
as Watanabe-Kraskov variable agglomeration tree [16][9], which constructs a
dendrogram (a hierarchical tree) using a similarity metric between attributes.

We will explore option 1 by the use (or not) of repetitions and, then, by applying
the Estruch et al. distance and the Nienhuys-Cheng distance, respectively. We
determine these relations in the Soybean dataset. The other two options will
require specific transformations. Let us start with the name-induced hierarchy
case.

Figure 2 shows an example of a hierarchy which is induced from the names of
the original attributes. The dataset is ‘mushroom’, a flat dataset from the UCI
machine learning repository [7], which has no structure originally (see Figure 2,
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Fig. 2. Name-induced hierarchy for the mushroom dataset. Left: the original attributes.
Right: the induced hierarchy using common names.

left). After a grouping of common name prefixes we get a hierarchy, which is
finally represented as an XML document (Figure 2, right). This document can
then be processed as a functional term, e.g.:

Mushroom(EDIBLE,BRUISES,ALMOND,SEVERAL,WOODS,cap(CONVEX,SMOOTH,WHITE),

gill(FREE,CROWDED,NARROW,WHITE), stalk(TAPERING,BULBOUS,surface(SMOOTH,SMOOTH),

color(WHITE,WHITE)),veil(PARTIAL,WHITE),ring(ONE,PENDANT),spore(print(BROWN)))

A second approach, which does not rely on the names of the attributes,
is based on the idea of finding the similarities among attributes (previously
referred as option 3). In the case of numerical attributes, this is typically done
through correlation measures. In the case of nominal attributes, other measures
of association can be used, such as a chi-square test. In any case, once the
similarity matrix is given, we can convert it into a dissimilarity matrix and
construct a dendrogram, as mentioned above.

This process is illustrated in Figure 3, where we see (on the left) a den-
drogram for the 22 attributes of the mushroom dataset, using the chi-square
measure as (dis)similarity. From this dendrogram, instead of using the whole
hierarchy, which would place some variables too deep in the hierarchy (and very
low weight), we can just arrange them by using the longest segments into only
four groups, as we see in Figure 3 (right). This process can be automatised [10].

From there, we place each variable in a group, leading to this term:

Mushroom(g1(WHITE,WHITE, PENDAT, AMOND, WHITE), group2(g2(PARTIAL,WHITE,

SMOOTH, BROWN, SEVERAL), group3(g3(SMOOTH, WOODS, ONE, WHITE )), group4(

g4(TAPERING, FREE,CROWDED,NARROW, BRUISES, BULBOUS, CONVES, SMOOTH))))

3.3 Deriving hierarchical XML schemas from hierarchical data

Apparently, this situation seems more direct, but we need to determine whether
order, repetitions and labels are relevant, in order to determine the features and
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Fig. 3. Attribute-similarity hierarchy for the mushroom dataset. Left: the completed
dendrogram. Right: the simplified hierarchy derived from it.

place them correctly in the XML document. A specific problem, as mentioned
above, is how to treat empty parts in the hierarchy and how to compare them
with non-empty parts. Our approach is based on a common schema for all the
examples and the assumption that the based distance between an empty part
and any non-empty part is 1 (and not given by the size of the non-empty part).

Figure 4 shows the ‘sponge’ dataset from the UCI repository [7], a complex
dataset which enjoys a rich structure. Note that classical propositional methods
are not applicable to this dataset. On the left of this figure we see the original
hierarchy and on the right we see part of the resulting XML document (part of
a single example). With this conversion, we can apply term distances.

4 Experiments

In this section we include some results using the distances introduced in section
2 with the several transformations seen in the previous section.

The simplest and most suitable algorithm for analysing the effect of the
distances and transformations is the k-nearest neighbour (k-nn) algorithm, which
just classifies an instance in the most common class of the k-nearest examples
using the distance. The value of k in the following experiment is calculated as
the square root of the number of examples, which is a common choice in k-nn.
We use a weighted k-nn variant, using an attraction function which gives more
or less weight to each of the k-most nearest examples, defined as 1

di where d is
the distance and i is the attraction parameter. A non-weighted k-nn is just given
when i = 0. The greater i is, the less important k is. In the experiments, we will
use several values for i, varying from 0 to 3. We consider three distances: the
Nienhuys-Cheng distance, the Estruch et al. distance and the Euclidean distance,
which are denoted by dN , dE and dU , respectively.

For the experimental evaluation, three datasets from the UCI repository [7]
were used; two of them, Mushroom and Soybean, are flat and are used in several
ways (flat and hierarchised by using two different methods); the third one, the
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Fig. 4. Complex hierarchy for the sponge dataset. Left: the original hierarchy. Right:
the hierarchy as an XML document.

Demospongiae (sponge) dataset, is a Lisp document which was transformed to
XML by preserving the hierarchy and the values between attributes. For the
Mushroom and Soybean datasets the tables include the means of a 10-fold cross
validation experiment. In order to test the significance of these results, we per-
form a paired t-test between the methods (confidence 95%). If the difference of
one method to another is significant, we include its acronym (dN , dE , dU ) in the
cell. In the sponge dataset we used a 60% of training examples and a 40% for
test examples.

4.1 Mushroom dataset

This dataset includes descriptions of hypothetical samples corresponding to 23
species of gilled mushrooms in the Agaricus and Lepiota Family. Each species is
identified as definitely edible, definitely poisonous, or of unknown edibility and
not recommended. First, we compare the three distances using a flat schema, i.e.
without using any kind of hierarchy, and with different values of i. These results
are shown in Table 1. Here, the differences between distances are not significant.

Table 2 shows the results using the hierarchy induced from the attribute
names. With this setting, we can find some differences. The performance of
Estruch et al’s and Nienhuys-Cheng’s distance is optimum, while Euclidean in-
creases the accuracy when we increase the value of i.

Finally, using the other method of grouping by considering the similarity
between attributes, based on the chi-square measure (ChiSquaredAttributeEval
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i=0 i=1 i=2 i=3
% % % %

dN 93.0 94.9 95.6 95.8

dE 93.0 94.9 95.6 95.8

dU 93.0 94.4 94.9 95.5

Table 1. Accuracies for mushroom without hierarchies.

i=0 i=1 i=2 i=3
% % % %

dN 99.8 99.8 99.9 99.9

dE 99.8 99.8 99.8 99.8

dU 93.0 94.4 94.9 95.5

Table 2. Accuracies for mushroom with a hierarchy derived from the attribute names.

+ Ranker in Weka [8]) and the groups shown in Figure 3, we get the results shown
in Table 3. Here, again, the distances between terms exploit this structure and
get much better results than the Euclidean distance. Using similarity between
attributes in the Euclidean distance could improve significantly its performance.

4.2 Soybean dataset

The soybean dataset is another ‘flat’ dataset and we do similarly as for the
mushroom dataset. This dataset contains 307 instances and each instance has
35 attributes. Table 4 shows the results of three distances using the plain version
of the dataset. In this case, the Euclidean distance obtains worse results than
the two term distances. Table 5 shows the performance using a hierarchy which
is derived from the attribute names. Here the behaviour of the three distances
is similar and the differences are not statistically significant.

Finally, we used chi-square (ChiSquaredAttributeEval + Ranker in Weka [8])
to calculate the similarities, and grouping the variables from the dendrogram in
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i=0 i=1 i=2 i=3
% % % %

dN 99.5 99.8 100 100

dE 99.5 100 100 100

dU 93.0 94.4 94.9 95.5

Table 3. Accuracies for mushroom with a hierarchy according to the similarity between
attributes.

i=0 i=1 i=2 i=3
% % % %

dN 75.3 91.3 93.9 95.8

dE 75.3 91.3 93.9 95.8

dU 75.3 87.1 91.3 92.6

Table 4. Accuracies for soybean without hierarchies.

a similar way as we did with mushroom. With this process, we get the results
shown in Table 6. In this setting, the atom-based distances obtain much better
results than the Euclidean distance. Using similarity between attributes in the
Euclidean distance could improve significantly its performance.

4.3 Demospongiae Dataset

Finally, we use the 503 examples of the Demospongiae dataset, which is originally
hierarchical. Each instance is represented as a tree using terms in the language
Lisp. Each tree has a depth between 5 and 8 levels and its number of leaves
varies between 17 and 51 (see Figure 4).

From this dataset, a well formed XML structure that preserves the original
structure was extracted, as discussed in the previous section. In order to do the
transformation from Lisp, each line in Lisp was converted into one or several
well-formed XML elements by assigning names and values to the elements for
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i=0 i=1 i=2 i=3
% % % %

dN 78.6 89.6 92.6 93.2

dE 76.0 88.0 91.6 93.5

dU 75.3 87.1 91.3 92.6

Table 5. Accuracies for soybean with a hierarchy derived from the attribute names.

i=0 i=1 i=2 i=3
% % % %

dN 86.1 99.0 99.4 99.4
dU dU dU dU

dE 86.1 99.0 99.4 99.4
dU dU dU dU

dU 75.3 87.1 91.3 92.6
dNdE dNdE dNdE dNdE

Table 6. Accuracy results of soybean with a hierarchy according to the similarity
between attributes.

each feature described in Lisp in accordance to their hierarchy and order. Some
specific processing was required:

– Each example in Lisp defined by label “define-episode” and an identifier
“sponge :ID SPONGE-0” was transformed into an XML element:<DEFINE-
EPISODE>, which in turn adds a child element: <SPONGE ID>SPONGE-
0</SPONGE ID>.

– Each feature definition as “EXTERNAL-FEATURES DEFINE (EXTERNAL-
FEATURES” was converted into a main element container of various ele-
ments in XML: <EXTERNAL-FEATURES>.

– Each simple feature such as “(BODY-SIZE SMALL)” was converted into an
element <BODY-SIZE>SMALL</BODY-SIZE>.

– Additionally collections such as “(SET) GREY WHITISH”, were converted
to XML as follows<SET1>GREY</SET1><SET2>WHITISH</SET2>.

Table 7 shows the classification results using the XML document. With this
dataset we cannot apply directly Euclidean distance. We can see that (for val-
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ues of i greater than 0) Estruch et al.’s distance shows a better accuracy than
Nienhuys-Cheng’s distance. This is the best example to illustrate the differences
between these two atom-based distances because data is purely semi-structured,
and we perceive the effect of repetition. In the end, this dataset is useful to take
advantage of the intrinsic properties of atom-based distances.

i=0 i=1 i=2 i=3
% % % %

Nienhuys-
Cheng 60.9 71.3 74.3 73.8
distance

Distance
between 60.9 73.3 78.7 77.7
atoms

Table 7. Accuracies for the sponge dataset using its original hierarchy.

5 Conclusions

Tree distances are not generally appropriate for handling hierarchical datasets
since they typically do not consider attribute names (the value for variable
X3 = a can be matched with the same value for a different variable). In ad-
dition, they are based on the number of transformations to convert one tree into
another, which is a meaningless concept in many hierarchy comparisons. We
have seen that term distances, although initially defined in the area of inductive
programming, can be used in a broader range of applications, provided we are
able to find apropriate transformations for their term-based representation.

In this paper we have seen three transformations to adapt different degrees
of structures and hierarchical data to be used with term distances. We have
seen a method for constructing the hierarchy from the attribute names. This
does not seem to provide good results. A second method uses the similarity
between the attributes to construct a dendrogram from which a hierarchy is
constructed. This second method improves the results of the flat dataset. A
third, different transformation takes place when the original dataset has already
a hierarchy. Here we can see the relevance of using repetitions or not. All these
transformations are applied over XML schemas, so any dataset with any mixture
or degree of flat and hierarchical information could be transformed and used with
the term distances.

Summing up, we have seen a promising application of term distances to
different types of datasets, which suggests that the use of term distances can
be broader than it is now. In fact, as a future work, we plan to investigate
the use of these distances for clustering and for other tasks. Nonetheless we
believe that distances may have more potential applications in general inductive
programming and also in other areas in programming language theory, such
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as debugging (as a measure of the magnitude of the error), termination (to
find similar traces or similar rewriting terms), program analysis (to find similar
parts in the code that could be generalised), and program transformation (to
approximate the distance between two terms).
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Verified Stack-Based Genetic Programming
via Dependent Types?

Larry Diehl

http://github.com/larrytheliquid/dtgp/tree/aaip11

Abstract. Genetic Programming (GP) can act as a powerful search
tool for many kinds of Inductive Programming problems. Much research
has been done exploring the effectiveness of various term representa-
tions, genetic operators, and techniques for intelligently navigating the
search space by taking type information into account. This paper ex-
plores the less familiar concept of formally capturing the invariants typ-
ically assumed by GP implementations. Dependently Typed Program-
ming (DTP) extends the type-level expressiveness normally available
in functional programming languages to arbitrary propositions in intu-
itionistic logic. We use DTP to express and enforce semantic invariants
relevant to GP at the level of types, with a special focus on type-safe
crossover for strongly typed stack-based GP. Given the complexity in-
volved in GP implementations and the potential for introducing logic
and runtime errors, we hope to help researchers avoid erroneously at-
tributing evolutionary explanations to GP run phenomena by using a
verified implementation.

1 Introduction

The goal of this work is not to come up with a novel GP algorithm with respect
to evolutionary performance, but rather give an example of a non-trivial but
verified and simple-to-understand GP implementation. As GP algorithms and
techniques increase in complexity and sophistication, it becomes more important
to verify that the parts and the whole of the algorithm are doing what is ex-
pected. Towards this end we present the groundwork of basic verified GP, with
special emphasis on correctness of the crossover operation.

While the earliest work in Genetic Programming used tree structures as
candidate solutions to a problem, many alternative representations have been
developed since (e.g., linear, graph, grammar-based). Flat linear structures are
conceptually simpler than nested trees and intimately familiar to functional pro-
grammers, yet still provide competitive evolutionary results compared to tree
representations [9]. As such, we will concentrate on developing a stack-based
genetic programming algorithm.

Researchers concerned with formal methods have produced many different
theorem provers that could be used to prove GP correctness properties. However,

? Accepted for presentation at the 4th International Workshop on Approaches and
Applications of Inductive Programming.
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typical GP researchers are more familiar with programming languages than proof
assistants. Dependently typed languages such as Agda [6] are a nice fit because
they are expressive enough at the type level to enforce invariants present in GP,
while retaining the look and feel of a programming language rather than a proof
assistant.

After a general overview of stack languages and dependent types, the struc-
ture of the paper will follow a common classification scheme for GP:

– parameters: We will start with a non-dependently typed representation,
and investigate how to use standard affair dependent typing to ensure the
population size parameter is adhered to.

– representation: We will then modify our term representation to use pre-
cise dependent types, encoding arity information in the types of candidate
programs.

– evaluation function: We will then introduce an evaluation function for
evolved terms that is assured to terminate and not otherwise diverge, by
taking advantage of the host language’s totality requirement.

– genetic operators: We will then encode the property of transitivity into
the types of functions related to crossover, ensuring that ill-typed programs
never enter the population.

– initialization procedure: Finally, we will illustrate a basic procedure to
initialize our population, taking care to only randomly select programs that
match the type signature of the goal program.

1.1 Stack Languages

In stack-based languages such as Forth [3] there is no distinction made between
“constants” and “procedures”. Instead, each syntactic element is referred to as a
“word”. Every word can be modeled as a function which takes the previous stack
state as a value and returns the subsequent, possibly altered, state. For example,
consider a small language in the boolean domain, consisting of true, not, and
and. A word such as true (that would typically be considered a constant) has
no requirements on the input stack, and merely returns the input stack plus a
boolean value of “true” pushed on top. On the other hand, and requires the
input stack to have at least two elements, which it pops off and evaluates before
pushing their logical conjunction back onto the stack to replace them.

For monotypic languages like our example, simple typing rules emerge which
assign two natural numbers to each each word. The first represents the required
input stack length (the precondition), while the second represents the output
stack length (the postcondition). A sequence of such words forms a stack pro-
gram, for which an aggregate input/output pair exists.

During genetic operations such as crossover, stack programs must be manipu-
lated in some manner to produce offspring for the next generation. Tchnernev [8]
showed how to use arity information related to the consumed/produced stack
sizes to only perform crossover at points that will produce well-typed terms.
Tchnernev [9] has documented many different approaches to do this, but for
simplicity of presentation we will use 1-point crossover.
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1.2 Dependent Types

Dependently typed languages allow arguments in type signatures to labeled (sim-
ilar to value-level variable bindings) and used elsewhere in type signature to de-
clare dependencies between types and values. This paper will use the dependently
typed language Agda [6] for all of its examples. 1 Agda is a purely functional
language like Haskell [2], but it is distinctively total (rather than partial) and
has a more expressive type system (allowing the type-checker to enforce more
properties).

At compile time, Agda programs must pass two checks to prove their total-
ity. Termination checking is accomplished by checking for structurally decreas-
ing recursive calls. Coverage checking is accomplished by requiring that every
type-correct value of a function’s arguments is accounted for in the function’s
definition. Consequently, Agda programs do not fail to terminate 2 or crash due
to unexpected input.

Thanks to totality of the language, any “value level” function can also be
used in type signatures to compute more precise typing requirements (without
running into undecidability of type-checking issues).

2 Parameters

For purposes of pedagogy, we will first consider how to represent a population
of terms/programs in a typical non-dependent functional programming style.
Thereafter, we will extend the example to use dependent types. 3

2.1 Population List

First, let’s create a new type representing the possible words to be used for some
evolutionary problem.

data Word : Set where

true not and : Word

This simple example language is intended to operate on the boolean domain
using well-known constants and functions. Of course, a stack program is not
merely a single word, but a sequence of them that we would like to execute in
order. The familiar cons-based list can serve as a container for several words, so
let us type it out.

1 It should be possible to translate examples to similar languages such as Epigram [4]
or Idris [1].

2 Agda programs can succeed to not terminate via coinductive definition and corecur-
sion, if controlled non-termination is what we want.

3 For a complete and proper tutorial on dependently typed programming in Agda, see
[6]
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data List (A : Set) : Set where

[] : List A

_::_ : A → List A → List A

Term : Set

Term = List Word

Notice in particular the A : Set part of the list type. Set is the type of
types in Agda, and A is a label that acts like a variable, but at the level of type
signatures. In other words, we have created a polymorphic list type which is pa-
rameterized by the kind of data it can contain. Term is a specific instantiation of
lists that can hold the Words of our example language. Below are some examples
of programs we can now represent.

notNot : Term

notNot = not :: not :: []

anotherTrue : Term

anotherTrue = not :: not :: true :: []

nand : Term

nand = not :: and :: []

GP requires us to work on not one but a collection of several terms, referred
to as the population. Normally, this might be represented as a list of lists of
terms.

Population : Set

Population = List Term

While the type above is certainly functional, it leaves room for error. This
brings us to our first example of preserving some GP invariant with the help of
dependent types. Namely, the population that GP acts upon is expected to be
a certain size, and it should stay that size as GP progresses from one generation
to the next.

2.2 Population Vector

In the dependently typed world, an easy and effective way to ensure that some
invariant is held is to create a type that can only possibly construct values
that satisfy said invariant (“correctness-by-construction”). In our case, we would
like the population size parameter to be some natural number that we specify
when configuring the run. This brings us to one of the canonical examples of
a dependent type, the vector. We have already seen how the list type takes
a parameter to achieve polymorphism. Vectors take an additional parameter
representing their length.
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data Vec (A : Set) : N → Set where

[] : Vec A zero

_::_ : {n : N} → A → Vec A n → Vec A (suc n)

Population : N → Set

Population n = Vec Term n

The empty vector has a constant length of zero. The length of a vector
produced by “cons” is the successor of whatever the length of the tail is. Given
such an inductive definition of a type, the natural number index of any given
vector can be nothing but its length. Just like our definition of Term, Population
is just a specific instantiation of a more general type (Vec).

As an example, here is a small population of the three terms presented earlier.

pop : Population 3

pop = notNot :: anotherTrue :: nand :: []

Once again, note that the type requires a population of exactly three terms.
If we were to supply any more or less, a type error would occur at compile
time. We have effectively moved checking of certain semantic properties of our
program to compile time, meaning much less can go wrong while the program
is running. 4

Now that we have seen how to construct a dependent type, let us see how
a function operating on Vec can make use of its properties. During selection,
GP will need to retrieve a candidate program from the population. An all-too-
common error (taught even in introductory level programming courses) is in-
dexing outside the bounds of a container structure. What means do we have to
prevent this from occurring? Ideally, the type of the parameter used to lookup a
member should have exactly as many values as the length of our vector. This way,
a bijection would exist between the lookup index type and the vector positions.

data Fin : N → Set where

zero : {n : N} → Fin (suc n)

suc : {n : N} → Fin n → Fin (suc n)

lookup : {A : Set} {n : N} → Fin n → Vec A n → A

lookup zero (x :: xs) = x

lookup (suc i) (x :: xs) = lookup i xs

The type of finite sets Fin has exactly n possible values for any Fin n. In the
lookup function the natural number index is shared between the finite set and
vector parameters. The effect of this sharing is that every finite set argument
has exactly as many possible constructions as the length of the vector argument,

4 In fact, the only other causes for concern are logic errors due to bad encodings by
the programmer. Typical runtime errors due to non-termination or lack of coverage
are disallowed by the compiler.
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statically preventing any “index out of bounds” errors from occurring. Since our
Population is merely a specific kind of vector, we are able to use the safe lookup
when defining a function for the selection process.

3 Representation

In the previous section we represented the terms in our population as unadorned
lists of words. In order to perform type-safe crossover in a manner described by
[8], the type of our terms will need to be more telling.

3.1 Typing Derivation

It should come as no surprise that when we implement a type-safe version of
crossover, we will need to pay close attention to the types of the terms that
we are manipulating. Just as Vec had an extra natural number parameter for
its length, we desire a Term type with an extra parameter for the size of the
consumed/input stack, and another for the size of the produced/output stack.

Before showing a generalized list-like Term type for arbitrary languages, we
will take a look at a more traditional embedding of a typing relation into Agda.

data Term (inp : N) : N → Set where

[] : Term inp inp

true : {out : N} → Term inp out → Term m (1 + out)

not : {out : N} → Term inp (1 + out) → Term m (1 + out)

and : {out : N} → Term inp (2 + out) → Term m (1 + out)

Recall that the first parameter is the consumed stack size and the second
is the produced stack size. The empty term [] consumes some value inp and
produces a stack of the same size, acting as an identity program. Note also that
it has no premise, so it can be considered a type-theoretical axiom.

The other three constructors are parameterized by a previous Term value,
representing the premise of each typing rule. This Term representation should
be understood as follows: When considering Term 2 1 as a type alone, 2 and 3

represent the input and output stack sizes respectfully. Within the context of a
constructor with a Term premise, the “output” position of the premise represents
that word’s precondition while the “output” position of the conclusion represent’s
the word’s postcondition.

The true rule states that if we have some term which consumes some value
inp, and produces another arbitrary value out, then the conclusion allows us to
infer the existence of another term which has the same input and one additional
output. In other words, true has a precondition that will always hold and a
postcondition stating that the value in the precondition will be incremented by
one.

In the not rule, the premise’s precondition requires that the previous output
be more than just any arbitrary out. Instead, the previous output stack size
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must be at least one, but can be greater. Because the out parameter was given
in braces, Agda treats this as an implicit argument that can be unified/inferred
according to other types in context. In this way, 1 + out can represent several
values such as 1 + 0 or 1 + 7. The conclusion of not allows us to infer the
existence of the another term of output stack size 1 + out. This fits with our
informal mental model of not requiring at least one argument to pop off the
stack, and pushing the logical negation back on.

Finally, and follows the same pattern, except it requires at least two values
and produces just one, leaving the output stack size exactly one less than what
it was previously.

As typing derivations, our previous list-based terms look like the following
(note that we have overloaded the constructors of the Word and Term types).

notNot : Term 1 1

notNot = not (not [])

anotherTrue : Term 0 1

anotherTrue = not (not (true []))

nand : Term 2 1

nand = not (and [])

andAnd : Term 3 1

andAnd = and (and [])

Our terms now have the extra consumption/production values in their type.
The andAnd term shows how the representation correctly composes the types of
several terms. The first and requires two values and produces one, which satisfies
one of the second and’s requirements, resulting in a final type of Term 3 1.

We can highlight that the input stack remains constant throughout subterms,
with an exploded view of each of the subterms in andAnd.

a : Term 3 3

a = []

b : Term 3 2

b = and a

c : Term 3 1

c = and b

3.2 Syntactic Non-Uniqueness

To avoid confusion, we will point out that in our representation, multiple syn-
tactically identical terms can have different types. Specifically, what can change
is the original number of arguments on the stack that the bottommost empty
constructor provides.
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empty : Term 42 42

empty = []

nand’ : Term 6 5

nand’ = not (and [])

andAnd’ : Term 10 8

andAnd’ = and (and [])

Being able to represent multiple different types with a syntactically identical
subterm is a property that we will later exploit when defining functions to safely
split and recombine terms for crossover.

3.3 Derivation Abstraction

When writing functions over term types, it would be tedious to provide a case
for every word in the language. Correspondingly, we will extract the common
parts among the constructors of our language into a generic Term, which can be
thought of as abstracting out each of the typing rules presented above.

The trick is to use module parameters for the type of Words, as well as func-
tions for the premise/precondition and conclusion/postcondition of each rule.
The result is a generic list-like Term structure, and has the affect of making the
library not tied to any particular language to evolve.

module DTGP (Word : Set) (pre post : Word → N → N) where

data Term (inp : N) : N → Set where

[] : Term inp inp

_::_ : {n : N} (w : Word) → Term inp (pre w n) → Term inp (post w n)

pre : Word → N → N

pre true n = n

pre not n = 1 + n

pre and n = 2 + n

post : Word → N → N

post true n = 1 + n

post not n = 1 + n

post and n = 1 + n

open import DTGP Word pre post

Just like a List or a Vec, our new Term now only has an empty case and
a cons ( :: ) case. Now we can rewrite our examples to look just like their
List counterparts, except with the extra useful consumption/production natural
numbers in their types.
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notNot : Term 1 1

notNot = not :: not :: []

anotherTrue : Term 0 1

anotherTrue = not :: not :: true :: []

nand : Term 2 1

nand = not :: and :: []

andAnd : Term 3 1

andAnd = and :: and :: []

4 Evaluation Function

When comparing relative performance between evolved terms, one typically
needs to evaluate them to determine fitness . We will proceed to write an eval-
uation function for the example language we have used so far. Rest soundly
knowing that Agda will perform a termination and coverage check to prove the
totality of functions. Notice that the example below has a case for every possible
term and input vector, and uses the structurally smaller tail of the input term
in recursive calls.

eval : {inp out : N} → Term inp out → Vec Bool inp → Vec Bool out

eval [] is = is

eval (true :: xs) is = true :: eval xs is

eval (false :: xs) is = false :: eval xs is

eval (not :: xs) is with eval xs is

... | o :: os = ¬ o :: os

eval (and :: xs) is with eval xs is

... | o2 :: o1 :: os = (o1 ∧ o2) :: ns

eval (or :: xs) is with eval xs is

... | o2 :: o1 :: os = (o1 ∨ o2) :: os

In addition to the term to evaluate, eval takes a vector of booleans 5 whose
length inp is equal to the number of inputs the term expects. The return type
of the function is another vector of bools out, matching the evaluated term’s
output. Both of these properties are of course enforced statically, giving more
assurance that our algorithm is doing what we expect.

4.1 Fitness Function

Once again, we use a module to accept a general scoring/fitness function as a
parameter. Below is an example of a function that assigns a program (which

5 Do not be confused by the true/false constructors of the Bool type and Term types.
Agda can differentiate between overloaded constructor names, according to the type
they have in context.
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accepts two inputs and produces one output) a score equal to the number of
provided examples for which it satisfies even parity.

module Evolution {inp out : N} (score : Term inp out → N) where

score : Term 2 1 → N

score xs = count (λ is → head (eval xs is) == evenParity is)

((true :: true :: []) :: (true :: false :: []) ::

(false :: true :: []) :: (false :: false :: []) :: [])

open Evolution score

5 Genetic Operators

When writing genetic operators, e.g. Tchnernev’s [8] 1-point crossover, we need
to take subsections of different terms and recombine them in a safe manner.
Tchernev points out that we need to split parent terms at a point of equal
output stacks to achieve safe recombination. This leads to a question: what is
the criterion for a safe append of two arbitrary terms after they have been split
in this manner?

5.1 Transitive Append

Terms may have different initial input stacks, and produce different outputs
according to their contained words. A safe append of two terms illustrates the
transitive property.

_++_ : {inp mid out : N} → Term mid out → Term inp mid → Term inp out

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

bc : Term 2 1

bc = and :: []

ab : Term 3 2

ab = and :: []

ac : Term 3 1

ac = bc ++ ab

If an attempt is made to append two terms whose input and output require-
ments do not satisfy one another, a compile error will occur. Using a function
with a such an informative type gives a high degree of confidence that we are
doing the right thing, when used inside another function such as a crossover. As
we shall soon see, the type of this function in fact gives us more than simple
confidence.
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5.2 Transitive Split

Now that we have a function to safely recombine terms in a transitive way, we
need to come up with a compatible way to split a crossover parent. In DTP a
view [5] is a general technique for using a specialized type to reveal structural
information about another type. In our case, we want to view a term as an-
other type representing the two subsections it was split into. The following is a
derivative of the TakeView type in [7].

data Split {inp out : N} (mid : N) :

Term inp out → Set where

_++’_ : (xs : Term mid out) (ys : Term inp mid) → Split B (xs ++ ys)

The type above captures exactly how we would like split terms to be repre-
sented, such that they can be transitively recombined. The mid natural number
index reveals the satisfied pre/post condition point a term was split at, and the
term index is the value we are splitting. The constructor carries the two sub-
terms which share mid in a way that the resulting type can recombine the two
via xs ++ ys.

Given two parent terms split in such a way, crossover needs to produce two
offspring that swap the subterms at the splits. Functions for both of these swaps
can be straightforwardly defined.

swap1 : {inp mid out : N} {xs ys : Term inp out} →
Split mid xs → Split mid ys → Term inp out

swap1 (xs ++’ ys) (as ++’ bs) = xs ++ bs

swap2 : {inp mid out : N} {xs ys : Term inp out} →
Split mid xs → Split mid ys → Term inp out

swap2 (xs ++’ ys) (as ++’ bs) = as ++ ys

Dependent Pairs Given some term and a natural number, we would like to
split the term at an indexed position represented by the number. This function
will be the key to determining the split in the female parent of a crossover. Split
is specific enough to tell us the shared mid between the two subterms. However,
for the purposes of this function, we do not care what mid is (we would actually
like for the function to determine the split point for us).

data Σ (A : Set) (B : A → Set) : Set where

_,_ : (x : A) → B x → Σ A B

A non-dependent pair, or tuple, carries 2 values of arbitrary types. In the
dependent version of pairs, the value in the first component is used to determine
the type in the second component. One common DTP technique is to use a
dependent pair to hide the index type of a return value when you don’t know or
care what it will be. For example, sometimes we would merely like to write down
a vector value and have the compiler determine the unique possible length.
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specifiedLength : Σ N (λ n → Vec Bool n)

specifiedLength = 3 , true :: false :: true :: []

discoveredLength : Σ N (λ n → Vec Bool n)

discoveredLength = _ , true :: false :: true :: []

Note the use of an anonymous function in the type. Remember that in DTP
we can do anything at the type level that we can do at the value level, including
the use of the intimately-known λ. With this dependent pair trick up our sleeves,
we are prepared to define split.

split : {inp out : N} (n : N) (xs : Term inp out) →
Σ N (λ mid → Split mid xs)

split zero xs = _ , [] ++’ xs

split (suc n) [] = _ , [] ++’ []

split (suc n) (x :: xs) with split n xs

split (suc n) (x :: ._) | _ , xs ++’ ys =

_ , (x :: xs) ++’ ys

Because we are returning a Split value, the split will always hold two sub-
terms that can be transitively combined to produce the original. In this manner,
splitting andAnd results in two and :: [] values of type Term 2 1 and Term 3

2.

5.3 Type-Preserving Crossover

With the previous types and functions defined, defining a crossover function that
takes two parent terms of the same type and returns two child terms of the same
type is not far away.

Split Female For the first step in 1-point crossover we need to split the first
parent (referred to here as the “female”) at some random6 point. Thus, we need
to know the length of the female, then choose a random number, bounded by
that length.

length : {inp out : N} → Term inp out → N

length [] = 0

length (x :: xs) = suc (length xs)

splitFemale : {inp out : N} (xs : Term inp out) → N →
Σ N (λ mid → Split mid xs)

splitFemale xs rand with rand mod (suc (length xs))

... | i = split (toN i) xs

6 To keep the example as simple as possible, here we pass the random number as a
parameter to the function. The final implementation uses a standard State monad
containing a random number seed for increased modularity and to avoid mistakenly
reusing a random number.
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Note that we use a mod function which returns a finite set representing the
modulus of its two arguments. The definition of this function can be found in
the supplementary source code, as it is not directly relevant to the explanation
at hand.

Based upon the mid index at which the female was split, the male split can
be determined by choosing a random member of all possible compatible splits.

splits : {inp out : N} (n mid : N) (xs : Term inp out) →
Σ N (λ n → Vec (Split mid xs) n)

splits zero mid xs with split zero xs

... | mid’ , ys with mid =? mid’

... | yes p rewrite p = _ , ys :: []

... | no _ = _ , []

splits (suc n) mid xs with split (suc n) xs

... | mid’ , ys with mid =? mid’ | splits n mid xs

... | yes p | _ , yss rewrite p = _ , ys :: yss

... | no _ | _ , yss = _ , yss

Propositional Equality In the definition of splits, we simultaneously split
at all possible positions within the male term, and filter out those possibilities
that will not allow for a successful transitive recombination.

It is intuitive that the algorithm must compare the target mid of the original
split to the mid’ in the current split. Normally, a comparison of two terms is
performed by passing them to a function that yields a boolean value, and han-
dling the true and false cases differently. However, we need a richer version of the
boolean type (the propositional equality type) whose values are associated with
extra type-level information that can be used to make a Split value typecheck.

Consider the yes p case (analogous to a typical true case) within the splits
zero case. We would like to return our freshly split ys value, but the type checker
will not allow it. Why is this? If we look at the type signature of splits, it
requires a Split mid xs, but ys is a Split mid’ xs. Luckily the =? comparison
function returned something more than just a boolean: it produced a constructive
proof that both compared values were in fact the same. We pass the proof p

(pattern matched as yes p) to Agda’s rewrite keyword to convince the type
checker that ys : Split mid’ xs is acceptable because mid ≡ mid’.

What can we take away from all this? The primary point of interest is that the
type checker requires formal constructive evidence in order to enforce invariants
prescribed by the programmer. In practice, this evidence is easy to work with, as
it is composed (as is everything else) of ordinary dependent types. The payoff is
confidence; the burden of verifying that a program behaves as expected is lifted
from the programmer’s shoulders and onto the type checker’s.

Split Male When we split the male parent, we choose a random member of
the type-correct splits. However, this function returns a value of type Maybe, so
that it may return nothing if there is no compatible split at all.
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splitMale : {inp out : N} (xs : Term inp out) →
(mid rand : N) → Maybe (Split mid xs)

splitMale xs mid rand

with splits (length xs) mid xs

... | zero , [] = nothing

... | suc n , xss

= just (lookup (rand mod suc n) xss)

Note that the proof complexity in the implementation of splits is isolated.
Once we have a function definition that typechecks, we can freely use it without
having to repeat any work.

Finally, we can write crossover to combine the female and male splits, and
return both children using the swaps defined earlier.

crossover : {inp out : N}

(female male : Term inp out) (randF randM : N) →
Term inp out × Term inp out

crossover female male randF randM

with splitFemale female randF

... | mid , xs with splitMale male mid randM

... | nothing = female , male

... | just ys = swap1 xs ys , swap2 xs ys

In the case where no valid male swap exists, we return the original two
parents.

6 Initialization Procedure

At the onset of our GP run, we would like for our algorithm to operate on well-
typed candidate programs. As such, the initialization function must be sure to
only generate random type-correct programs with respect to our target program
to evolve. By now, it should come as no surprise that we can (and will) enforce
this requirement statically. A simple type-safe enumeration and filter strategy is
adopted below.

6.1 Type-Safe Enumeration & Filter

First, we want to enumerate all terms up to some max length that conform to a
given input stack size, enum-inp. Then, filter-out filters this result to include
only those terms that match the desired output stack size, as well. The final list
can be used as a pool to randomly select our population from.

enum-inp : (n inp : N) → List Word → List (Σ N λ out → Term inp out)

filter-out : {inp : N} (out : N) →
List (Σ N λ out → Term inp out) → List (Term inp out)
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Dependent pairs are used once again, allowing us to return a list that is
homogenous for inp, but heterogeneous for out. In order to implement this, we
ask the user for a function that determines whether or not the precondition for a
word that we want to extend a term with can be satisfied by the current output
of said term.

module Initialization

(match : (w : Word) (out : N) → Dec (Σ N λ n → out ≡ pre w n))

where

Again, Initialization is another module, so the user is free to initialize
the population by another means.

Decidable Relations Dec is a polymorphic type constructor whose values
represent whether some proof of the type/proposition exists, or whether any such
proof would lead to bottom (“bottom”, or ⊥, is a type without constructors).

data Dec (P : Set) : Set where

yes : ( p : P) → Dec P

no : (¬p : P → ⊥) → Dec P

match uses an existential proposition (dependent pair) inside Dec, and is total
like all Agda functions. It effectively requires either a witness that the word’s
precondition satisfies the term’s output, or a proof that no such satisfying value
exists. This means that the implementor need not worry about the search for a
suitable n ending too early, as can happen with Maybe (a type used commonly
in this kind of situation).

match not zero = no ¬p where

¬p : Σ N (λ n → 0 ≡ suc n) → ⊥
¬p (_ , ())

match not (suc n) = yes (n , refl)

The example above proves that when the output of a term is 0, the precondi-
tion for not is unsatisfiable7, and shows how to find a suitable n for any output
greater than zero.

The definition of enum-inp plainly extends type-safe terms from the recursive
call with the list of words argument (treating Dec similar to Maybe/partiality).
filter-out is implemented even more straightforwardly, once again using =? to
prove that the desired output is equal to what is returned.

7 A pair of empty parentheses is Agda syntax used to indicate to the type checker
that a value for this type is uninhabitable.
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7 Conclusion

We have given an outline for a parameterized GP library whose operations are
verified using dependent types. The same library can be used to evolve languages
operating on domains besides booleans, such as the natural numbers, etc.

Dependent types can be used to enforce desired invariants by using informa-
tive data types and function type signatures. We have illustrated some basics
for creating a verified stack-based GP implementation using type-safe 1-point
crossover.

By building on a verified base, more complex GP algorithms can be created,
and evolutionary data can be analyzed with much greater confidence that errors
arising from implementation will not influence GP run behavior.

Hopefully, the examples presented herein can serve as a helpful template, to
assist authors in encoding invariants for their particular flavors of GP within the
context of dependently typed programming.

Finally, the techniques trivially extend to languages with multiple type stacks
by parameterizing the main module over the domain type (e.g. N × N), and
providing a decision procedure for said type. Taking this technique further to
evolve with arbitrary typing relations, rather than these Forth-like stacks, is
currently under investiation.
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Abstract. Inductive functional programming (IFP) is a research field ex-
tending from software science to artificial intelligence that deals with func-
tional program synthesis based on generalization from ambiguous specifi-
cations, usually given as input-output example pairs. Currently, the ap-
proaches to IFP can be categorized into two general groups: the analyti-
cal approach that is based on analysis of the input-output example pairs,
and the generate-and-test approach that is based on generation and testing
of many candidate programs. This paper proposes a new analytical induc-
tive functional programming system that generates, tests, and selects from
many program candidates. For generating many candidate programs, the
proposed system uses a new variant of Igor IIH , the exemplary analytical
inductive functional programming algorithm. This new system preserves the
efficiency features of analytical approaches, while being robust to changes
in the number of input-output examples while minimizing the possibility
of generating unintended programs. In addition, this research can be con-
sidered a milestone in the fusion of both approaches in that it provides an
analytical algorithm implemented in the same way as a generate-and-test
algorithm and reveals the strengths and weaknesses of both approaches.

1 Introduction

Inductive functional programming (IFP) algorithms automatically generate func-
tional programs from ambiguous specifications such as a set of input-output (I/O)
example pairs or a loose condition to be satisfied by inputs and outputs. The term
can include cases where no recursion is involved, as in genetic programming, but it
usually involves generation of recursive functional programs.

Currently, two approaches to IFP are under active development. One is the an-
alytical approach that performs pattern matching to the given I/O example pairs
(e.g., [1] which was used for implementing the Igor II system), and the other is the
generate-and-test approach that generates many programs and selects those that
satisfy the given condition (e.g., [2] which was used for implementing the Magic-
Haskeller system and [3] which was used for implementing the ADATE system).
Analytical methods are efficient in general, but they have limitations on how to
provide I/O relations as the specification, and, in general, the user has to provide
many I/O examples, beginning with the simplest one(s) and progressively increas-
ing their complexity. On the other hand, generate-and-test methods do not usually
have limitations on the specification to be given (except, of course, that it must be
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written in a machine-executable form1), but tend to require more time compared
to analytical methods.

This paper considers the improvements that can be made to the algorithm be-
hind Igor II [1][4], which is the state-of-the-art analytical IFP system, to generate
many program candidates by rewriting it using Spivey’s monadic interface for com-
binatorial search [5]. The resulting algorithm has the following advantages:

– It can achieve the same properties as generate-and-test methods by generating
all possible programs by using the fixed set of operators

– It could be combined with MagicHaskeller , which also uses Spivey’s monadic
interface for implementation.

The first point will be amplified by considering the example of synthesizing the
reverse function, assuming it is not known how to implement it. Igor II requires
the trace (or the set of all I/O pairs that appear during computation) of the biggest
example as the set of examples, as in Table 1.2 In this case, the first four lines
are the computational traces of the last line and, hence, cannot be omitted. In
general, it is tedious to write down all the required elements in order to generate a
desired program, or a program with the intended behavior. Moreover, it is sometimes
necessary to consider which examples are necessary in order to reduce the number
for efficiency reasons. As a result, the user sometimes has to tune the set of examples
until a desired program is obtained within a realistic time span.

On the other hand, MagicHaskeller , which is a type of generate-and-test
system that uses systematic exhaustive search for generating programs, can generate
a desired program from only one example of reverse [1, 2, 3, 4, 5] ≡ [5, 4, 3, 2, 1].
Obviously, this example has enough information to specify the intended function
— the intention of the writer of this longer example is clear, while short examples
such as reverse [ ] = [ ] or reverse [a ] = [a ] can be interpreted in many different
ways.3 MagicHaskeller often succeeds in generalization from only one example
by the minimal program length criterion, or by selecting the shortest program that
satisfies the given specification. Likewise, it can be expected that the same effect
can apply even when using an analytical approach by analytically generating many
candidate programs based on the given few examples and selecting those that satisfy
one larger example, rather than generating a single candidate.

1 Some readers may think that termination within a realistic time span is another limi-
tation on the specification. Termination of the specification does not mean termination
of the test process within a realistic time span, because the latter involves execution of
machine-generated programs which may request arbitrary computation time. For this
reason, time-out is almost indispensable for systems like MagicHaskeller , and in this
case there is no such limitation on the specification.

2 Throughout this paper, Haskell ’s notation is used for expressions.
3 Of course, the well-known reverse function is not the only function that satisfies the

longer example. For example, there can be a case where we want to change the return
value only for [ ]. This is not a problem, however, because no one would consider such
a function by only giving the example of reverse [1, 2, 3, 4, 5] ≡ [5, 4, 3, 2, 1], but most
people would add the example for [ ] in this case.

34 Susumu Katayama



2 Preparation

This section introduces related IFP systems, Igor II and MagicHaskeller .

2.1 Igor II

The algorithm behind Igor II [1] synthesizes a recursive program that generalizes
the given set of I/O examples by regarding them as term-rewriting rules through
pattern matching. Early versions by Kitzelmann were written in Maude and in-
terpreted, but recent implementations are in Haskell , named Igor IIH [4], which
is a simple port, and Igor II+ [6], which is an extension with support of cata-
morphism/paramorphism introduction. Such support is known to result in efficient
algorithms, though this paper does not deal with those morphisms and, thus, is a
counterpart of Igor II and Igor IIH .

These algorithms run in the following way:

1. Obtain the least general generalization of the set of the I/O examples by antiuni-
fication. This step extracts the common constructors and allows the uncommon
terms to be represented as variables. Here, the same variable name is assigned to
terms with the same example set. Variables that do not appear in the argument
list represent unfinished terms.

2. Try the following operators4 in order to complete the unfinished terms. Then,
expressions with the least cost are kept, and others are abandoned. The cost
function will be explained later in this section.

Case partitioning operator introduces a case partitioning based on the con-
structor set of input examples, and tries this for each argument. Now, case
bodies can include new unfinished terms. Each case can be finished by ap-
plying this algorithm recursively, supplying each field of the constructor
application as additional inputs.

Constructor introduction 5 operator introduces a constructor, if all output
examples share the same one at the outermost position. Also introduce new
functions to all fields, and supply the same set of arguments for that of the
left hand side. Again, this part can be finished by applying this algorithm
recursively, because it is possible to infer the I/O relation of the new function
by reusing the same input example list and using each field of the constructor
applications as output examples.

Defined function call operator introduces either a function from the back-
ground knowledge (namely a predefined primitive function that works as a
heuristic) if available, or a function already defined somewhere (causing a

4 The term ‘operator’ is also used for ‘operator’ in ‘binary operator’. In order to avoid
confusion, in the latter case, either its arity or Haskell ’s operator name will always be
mentioned, for example, ‘(+) operator’.

5 This is usually called ‘introducing auxiliary functions’ (e.g., [6]), but in this paper it
is called ‘constructor introduction’, because 1) it is the common constructor that is
introduced specifically by this operator, 2) auxiliary functions are introduced even by
other operators, and 3) the term ‘auxiliary function’ can be confused with the third
operator.
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Table 1. Example of synthesizing the reverse function using Igor IIH : the input source
text (taken from Version 0.7.1.3 of Igor IIH release) (left) and the resulting program
(right)

reverse [ ] = [ ]
reverse [a ] = [a ]
reverse [a, b ] = [b, a ]
reverse [a, b, c ] = [c, b, a ]
reverse [a, b, c, d ] = [d, c, b, a ]

reverse [ ] = [ ]
reverse (a0 : a1) = fun1 (a0 : a1) : fun2 (a0 : a1)
fun1 [a0 ] = a0
fun1 ( : (a1 : a2)) = fun1 (a1 : a2)
fun11 ( : (a1 : a2)) = a1 : a2
fun2 (a0 : a1) = reverse (fun5 (a0 : a1))
fun5 [ ] = [ ]
fun5 (a0 : (a1 : a2)) = a0 : fun9 (a0 : (a1 : a2))
fun9 (a0 : (a1 : a2)) = fun5 (fun11 (a0 : (a1 : a2)))

recursive call). These functions are called defined functions in both cases,
and they are also represented as a set of I/O example pairs. Now, for each
defined function f , the Igor II algorithm tries to match the set of output ex-
amples that the unfinished term should return to that of f . Then, successful
f ’s are adopted here.
Each argument of f is unknown, and thus a new function is introduced here.
Again, it can finish this part by applying this algorithm recursively, because
the I/O relation of the new function can be inferred by reusing the same
input example list and using the input examples of the defined function as
output examples.

Catamorphism introduction (optionally with Igor II+ ) introduces cata-
morphism. This can make some synthesis tractable, while it can slow down
others. This operator is not yet included in the current implementation of
the proposed algorithm.

Table 1 shows an example of synthesizing the reverse function using Igor IIH .

Limitations of Igor II The Igor II algorithm has the following problems:

– Igor IIdoes not work correctly if we omit a line in the middle of the set of
I/O examples; taking an example of reverse, if we omit the fourth line stating
reverse [a, b, c ] = [c, b, a ] from Table 1, it fails to synthesize correctly.

– There are many possible combinations while matching the target function to a
defined function. Hence, an increase in the number of I/O examples easily slows
down the synthesis.

Those problems incur a trade-off between the efficiency and the accuracy: in
order to minimize the ambiguity a big example should be included in the example
set; however, this means that all the smaller examples also have to be included, and
as a result, the efficiency is sacrificed. This is problematic especially when examples
increase in different dimensions. In fact, some functions such as multiplication can-
not be synthesized by Igor IIH due to this trade-off. The proposed system solves
this trade-off.

Cost and preference bias When searching in a broad space, in which priority
order to try options is also an important factor in order to find answers in a realistic
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Fig. 1. The structure of MagicHaskeller (left) and the proposed system (right).

time span. Igor IIdefines a cost function that returns a tuple of the number of case
distinctions, the number of open rules, etc., and the returned tuples are compared
in lexicographical order. The search is implemented statefully by keeping track of
the set of the best programs with the least cost.

Simply keeping track of the set of best programs is heap efficient, but that also
means that second-best programs measured by the given cost function are aban-
doned, thus making it difficult to salvage a right program when the best programs
are not actually those intended by the user.

2.2 MagicHaskeller

MagicHaskeller [7][8][9] is a generate-and-test method based on systematic search.
One of its design policies goes “Programming using an automatic programming sys-
tem must be easier than programming by one’s own brain”, and ease of use is its
remarkable feature compared with other methods. Unlike other methods requiring
users to write down many lines of programming task specification for each syn-
thesis, users of MagicHaskeller only need to write down the specification of
the desired function as a boolean function that takes the desired function as an
argument. For example, the reverse function can be synthesized by only writing
printOne $ λf → f "abcde" ≡ "edcba". This is achieved by not using heuristics
whose effectiveness is questionable and by enabling a general purpose primitive set
(called a component library) that can be shared between different syntheses. On
the other hand, because it searches exhaustively, its ability to synthesize big pro-
grams is hopeless. However, having heuristics and not doing an exhaustive search
does not always mean that an algorithm can synthesize big programs, unless it is
designed adequately and works well. According to benchmarks from the literature
[10] and inductive-programming.org6, at least it can be claimed that MagicHas-
kellerperforms well compared with other methods.

Figure 1(left)depicts the structure of MagicHaskeller . Its heart is the pro-
gram generator, which generates all the type-correct expressions that can be ex-
pressed by function application and λ abstraction using the functions in the given

6 http://www.inductive-programming.org/repository.html
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component library as a stream from the smallest and increasing the size. The gen-
eration is exhaustive, except that MagicHaskeller tries not to generate syntacti-
cally different but semantically equivalent expressions. The generation of expressions
with the given type is equivalent to that of proofs for the given proposition under
Curry-Howard isomorphism, and the MagicHaskeller algorithm [2] is essentially
an extension of an automatic prover algorithm that can generate infinite number of
proofs exhaustively.[9] MagicHaskeller adopts the breadth-first search for gen-
erating infinite number of proofs, and this is achieved by using a variant of Spivey’s
monad for breadth-first search [11]. All the generated expressions are compiled and
tested by the given test function. By generating a stream of expressions progres-
sively from the smallest and testing them, the most adequate generalization of the
given specification that avoids overfitting comes first by the minimal program length
criterion.

The component library corresponds to the set of axioms in a proof system under
Curry-Howard isomorphism (e.g., [12]). It should consist of total functions includ-
ing constructors and paramorphisms / catamorphisms, because permitting partial
functions in the component library may make any type inhabited and causes search
space bloat. As a result, MagicHaskellerwith the default component library can-
not generate partial functions without an inhabited type, such as head :: [a ] → a.

Early versions of MagicHaskeller try to detect and prune as many seman-
tically equivalent expressions as possible by applying known optimization rules.[2]
This involves guessing which in the component library are case functions, catamor-
phisms, or paramorphisms. Because such guessing does not work for user-defined
types, this optimization was once removed, but now it is available by an option or
by init075 action.

3 Proposed Algorithm

As mentioned in Section 1, the proposed algorithm is an Igor II -variant that gen-
erates many program candidates, which is implemented using Spivey’s monadic
framework for combinatorial search [11][5]. For this reason, Spivey’s framework is
first reviewed and then the actual implementation is described.

When describing the algorithm, first the design policy and then the (somewhat
simplified) algorithm are presented. The algorithm used for evaluation infers type
while generating programs in order to narrow the search space, though this part is
omitted in this paper.

3.1 Preparation: Monadic framework for combinatory search

Spivey [11][5] defined a very convenient interface to search strategies that simplifies
the task of writing combinatory search algorithms. It can be defined as an exten-
sion of Haskell ’s MonadPlus class (which means that the structure of the search
strategies is monadic and monoidal) with a new method wrap:

class MonadPlus m ⇒ Search m where
wrap :: m a → m a

MonadPlus class has two methods inherited from its parent Monad class, namely
return :: forall a. a → m a and (.) :: forall a b. m a → (a → m b) → m b, and
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two monoidal methods, the unit mzero :: forall a. m a and the product mplus ::
forall a. m a → m a → m a. As usual, return is used to wrap a normal value
to make a search result, . to combine two successive search operations, mzero to
represent search failure, and mplus to try two alternatives (and msum to try a list
of alternatives). In addition, wrap is used for degrading the priority of the current
action.

Other monad-related functions from the standard library are also available. For
example, the following is a code that enumerates all integers that are results of
repeated addition, subtraction, and multiplication over 1, 2, and 3, ordered from
those with small number of operators progressively.

nums :: Search m ⇒ m Int
nums = fromList [1 . . 3] ‘mplus‘

wrap (liftM3 ($) (fromList [(+), (−), (∗)]) nums nums)
fromList = msum. map return

This way, Spivey’s monadic framework makes programming tasks of combinatorial
search quite simple. One can enumerate expressions by enumerating function heads,
enumerating their arguments by recursive calls, and applying them in the lifted way.
Additionally, you may have to filter out those functions and subexpressions that do
not satisfy the given constraints during enumeration.

In spite of the simplicity, this class covers useful search strategies like breadth-
first search, depth-first search, and depth-bound search with/without iterative deep-
ening. In addition, the design choice of using wrap method makes the algorithm
applicable to best-first search without the idea of the depth in a search tree as long
as the cost takes a natural number.

3.2 The design policy

The design policy is:

– First, candidates for the head (namely, the outermost function) explaining the
examples are searched for, and then the spine (namely, the set of arguments) is
formed for each of them by recursively synthesizing all the possible subexpres-
sions to which each of the head candidates can be applied. This is in the same
way as the nums example shown in Section 3.1. Also, MagicHaskeller is
implemented in the same way.

– Case partitioning can be introduced by regarding case functions as the head;
constructor introduction by regarding constructors as the head; and call for
defined functions by regarding the functions themselves as the head.

– Antiunification has two effects: detecting common constructors and detecting
subexpressions changing together; the former can be considered as a part of case
partitioning and constructor introduction, and the latter can be implemented as
a new operator projection function introduction which finalizes the synthe-
sis of the current subexpression by finding an argument whose examples unify
with the return value examples.

– Argument subexpressions are finished to form a spine by lazy recursive calls
at once rather than explicitly representing unfinished expressions for now and
then finishing them later by recursive calls as in Igor IIH . Since lazy evaluation
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works, unbound variables can be identified with thunks, and it can be claimed
that Igor IIH explicitly implements the lazy evaluation part of the proposed
algorithm.

– All the search operators (except catamorphism introduction for now) are tried
sooner or later, and this is implemented by taking their msum.

– For now, only natural costs are used. Cost n can be introduced by applying
the wrap function (which is the function that lowers the priority by one depth
in the Spivey’s interface) n times. Case partitionings are assigned more cost
than other operators because they cost in Igor II . Constructor introduction
and projection function introduction are assigned the least cost, because they
correspond to antiunification, which supersedes other operators.

3.3 Outline of the algorithm

The simplified algorithm takes the tuple of the set of I/O pairs specifying the desired
function and the sets of I/O pairs specifying defined functions, and it returns the
prioritized set of generalized functions in the form of Spivey’s search monad. If we
call the function synthesize, it adds the current target I/O pairs to the set of defined
functions, tries the four operators (which can be achieved by just adding the four
computations with the mplus method), and calls the synthesize function recursively
in order to synthesize the arguments by solving the induction problems from the
I/O pairs that are presented by each of the operators.

3.4 Abstract definitions of the four operators

The proposed algorithm does not antiunify, and it has an additional operator, pro-
jection function introduction, instead. This section is devoted to providing with
abstract definitions of these operators.

Projection function introduction is the simplest operator. Under the condition of

∀j ∈ {1...m}. f xj1 ... xji ... xjn = xji

it induces
∀v1...vn. f v1 ... vi ... vn = vi

This operator is tried for each argument i ∈ {1...n}.

Constructor introduction extracts a common constructor among the output exam-
ples of the I/O pairs of the given target function f . Under the condition of

∀j ∈ {1...m}. f xj1 ... xjn = C yj1 ... yjq

it induces
∀v1...vn. f v1 ... vn = C (h1 v1 ... vn) ... (hq v1 ... vn)

where
∀i ∈ {1...q}.∀j ∈ {1...m}.hi xj1 ... xjn = yji
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and q is the arity of C. Further induction of h1...hq from the newly introduced I/O
pairs is required unless C is nullary.

In practice, C need not be a constructor but can be a function from a library.
When this is permitted, synthesis from, e.g.,

sum [ ] = 0
sum [x ] = x
sum [x , y ] = x + y
sum [x , y , z ] = x + (y + z )

is also possible.

Case partitioning focuses on an argument of the target function f , and puts together
I/O pairs with such actual arguments that share the same constructor. Under the
condition of

∀j ∈ {1...q}.∀k ∈ {1...pj}.

f xjk1 ... xjk(i−1) (Cj zk1 ... zkoj ) xjk(i+1) ... xjkn = yjk

it induces

∀j ∈ {1...q}.∀v1...vn.∀u1...uoj .

f v1 ... vi−1 (Cj u1 ... uoj ) vi+1 ... vn = hj v1 ... vi−1 vi+1 ... vn u1 ... uoj

where

∀j ∈ {1...q}.∀k ∈ {1...pj}.

hj xjk1 ... xjk(i−1) xjk(i+1) ... xjkn zk1 ... zkoj = yjk

Further inference of h1...hq from the newly introduced I/O pairs is required. This
operator is tried for each argument i ∈ {1..n}.

Note that this definition is slightly different from case partitioning of Igor II .
In the proposed algorithm, the number of cases is equivalent to that of construc-
tors that appear, while Igor II is more liberal about the number of cases and may
put together I/O pairs with different constructors. Also, case partitioning of the
proposed algorithm removes constructors, while that is done by antiunification of
Igor II .

Defined function introduction matches the output examples of the target function
f to those of a defined function g. Under the condition of

∀j ∈ {1...m}. f xj1 ... xjn = θj(wrj )

∀i ∈ {1...p}. g zi1 ... ziq = wi

for existing substitutions θ1...θm and r1...rm ∈ {1...p}, it induces

∀v1...vn. f v1 ... vn = g (h1 v1 ... vn) ... (hq v1 ... vn)

where
∀k ∈ {1...q}.∀j ∈ {1...m}. hk xj1 ... xjn = θj(zrjk)

Further inference of h1...hq from the newly introduced I/O pairs is required.
This operator is tried for each selection of defined function g and for each selection
of rj |j∈{1...m}. Then, the loop checker checks if g is called with a “smaller” argument
list in a well-formed sense than when g was first called.
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3.5 Implementation of the four operators

The implementation of the four operators comes from interpretation of their abstract
definitions.

All the applicable operators are tried, and if there are multiple possibilities
within the operators, all of them are tried. This can be implemented by adding all
the possibilities with mplus.

The applicability of each operator is decided by pattern matching. When the
operators is defined in the format of “Under the condition of A it infers B (where
C)” in Section 3.4, the target I/O examples for f is matched to A, and all the
corresponding B’s represent the induced programs.

Operators other than projection function introduction have the “where C” part,
which defines the I/O examples for synthesizing the subexpressions recursively.

3.6 Efficient matching using a generalized trie

For each defined function and for each output example of the target function, the
defined function introduction operator collects all the output examples of the defined
function that the target output example matches to. The naive implementation of
this process executes matching mn times for each defined function, where m denotes
the number of I/O examples of the target function, and n denotes that of the defined
function, and thus forms a bottleneck here. Our idea is to use the generalized trie
[13] indexed by the output example expressions and to put all the I/O examples into
the trie. Then, the n examples can be processed at once while descending the trie,
by collecting values whose keys match the given expression. This is possible because
the indexing of such generalized tries reflects the data structure of the index type,
unlike hash tables.

Although it is difficult to be specific about the time complexity of the resulting
algorithm, the algorithm reduces the computation time a great deal, and matching
is not the bottleneck any longer.

4 Experimental Evaluation

This section presents the results of the evaluation of the proposed system empirically
on its time efficiency and robustness to changes in the set of I/O examples. Here
the term “the proposed system” means the system that executes the algorithm
introduced in Section 3 and filters the resulting stream of programs with the user-
supplied test function. (Figure 1(right)) The reader should note that users of the
proposed system have to write the test function, as well as the I/O example pairs,
while users of MagicHaskellerhave only to write the test function.

4.1 Experiment conditions

Compared systems The proposed system was compared with the nolog release
of Igor IIH Ver. 0.7.1.2, which is the latest nolog release (or release without log-
ging overhead) at the time of writing, and with MagicHaskellerVer. 0.8.5-1.
Comparisons with other conventional inductive programming systems are omitted
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since comparisons between conventional systems including Igor IIH and Magic-
Haskeller on the same programming tasks are already in the literature ([10] and
inductive-programming.org6).

As for the search monad for the proposed system, based on preliminary exper-
iments, Spivey’s monad for breadth-first search [11] was selected over other alter-
natives that fit into Spivey [5]’s interface, such as depth-bound search and their
recomputing variants, such as the Recomp monad [2].

MagicHaskellerwas initialized with its init075 action, which means that ag-
gressive optimization without proof of exhaustiveness was enabled, like in its old
stand-alone versions. By default, MagicHaskellerdoes not look into the contents
of each component library function (or background knowledge function in the ter-
minology of analytical synthesis) but only looks at their types. With init075 action,
however, it prunes the redundant search by guessing which are consumer functions
such as case functions, catamorphisms, and paramorphisms, though some expres-
sions with user-defined types may become impossible to synthesize due to language
bias. This condition is fairer when compared with analytical approaches that know
what case functions do.

Set of programming tasks Table 2 shows the test functions of the target func-
tions used for filtering the generated programs. These test functions are higher-order
predicates that the target functions should satisfy, and they were supplied to Mag-
icHaskeller and the testing phase of the proposed system without modifications.

Their expected behaviors are not shown in this paper explicitly, mainly due to
the page limit. They are explained in the benchmark site6, though we believe that
their test functions explain what the target functions are supposed to do and that
usual human mind can generalize from the examples correctly with the hint of their
names.

The left column of Table 2 shows the set of function names that were to be
synthesized. They were selected by the following conditions:

– their I/O example pairs that are usable for synthesis are bundled in the Igor IIH

release, and
– they have already been compared with MagicHaskeller somewhere.

The second condition is about the adequacy of the task, and it was decided
not to exclude those whose evaluation is temporarily postponed at the benchmark
site6. Those programs that are too easy and require less than 0.5 second on all
the systems were also excluded from the table. All of the other functions that were
correctly answered by Igor IIH within five minutes are included, provided that they
satisfy the above conditions.

The first condition is included in order to fix the I/O example set by using
those bundled as is. In analytical synthesis, the efficiency largely depends on the
number of examples (except for the cases where the computation finishes instantly).
For example, the set of I/O example pairs bundled in Igor IIH for generating (≡)
compares two natural numbers between 0 and 2 in 9 ways — recursive programs
could not be obtained if there were only 4 examples, while the computation would
not be completed in a realistic time if there were 16 examples. Due to this problem,
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Table 2. Test functions for target functions used to filter results from MagicHas-
keller and the proposed system.

name test function

addN addN 3 [5, 7, 2] ≡ [8, 10, 5]
allodd allodd [3, 3] ∧ ¬ (allodd [2, 3]) ∧ allodd [1, 3, 5] ∧ ¬ (allodd [3, 7, 5, 1, 2])

andL
¬ (andL [True,False ]) ∧ andL [True,True ]

∧ andL [True,True,True ] ∧ ¬ (andL [False,True,True ])
concat concat ["abc", "", "de", "fghi" ] ≡ "abcdefghi"

drop drop 3 "abcde" ≡ "de"

(≡) 3 ≡ 3 ∧ ¬ (4 ≡ 6) ∧ 0 ≡ 0 ∧ ¬ (2 ≡ 0) ∧ ¬ (0 ≡ 2) ∧ ¬ (3 ≡ 5)
evenpos evenpos "abcdefg" ≡ "bdf"

evens evens [4, 6, 9, 2, 3, 8, 8] ≡ [4, 6, 2, 8, 8]
fib fib 0 ≡ 1 ∧ fib 1 ≡ 1 ∧ fib 3 ≡ 3 ∧ fib 5 ≡ 8 ∧ fib 7 ≡ 21
head head "abcde" ≡ ’a’

init init "foobar" ≡ "fooba"

(++) "foo" ++ "bar" ≡ "foobar"

last last "abcde" ≡ ’e’

lasts lasts ["abcdef", "abc", "abcde" ] ≡ "fce"

lengths lengths ["abcdef", "abc", "abcde" ] ≡ [6, 3, 5]
multfst multfst "abcdef" ≡ "aaaaaa"

multlst multlst "abcdef" ≡ "ffffff"

negateAll
negateAll [True,False,False,True ] ≡ [False,True,True,False ]

∧ negateAll [False,True,False ] ≡ [True,False,True ]
oddpos oddpos "abcdef" ≡ "ace" ∧ oddpos "abc" ≡ "ac"

reverse reverse "abcde" ≡ "edcba"

shiftl shiftl "abcde" ≡ "bcdea"

shiftr shiftr "abcde" ≡ "eabcd"

sum sum [7, 3, 8, 5] ≡ 23
swap swap "abcde" ≡ "badce"

switch switch "abcde" ≡ "ebcda"

take take 3 "abcde" ≡ "abc"

weave weave "abc" "def" ≡ "adbecf"

pragmatically it makes little sense to insist that an algorithm is quicker by some
seconds if the example set is fine-tuned.

For this reason, the same set of I/O pairs as that included in Igor IIH -0.7.1.2
was used for analytical synthesis, namely, Igor IIH and the proposed system. That
said, some I/O example sets bundled in Igor IIH -0.7.1.2 are obviously inadequate
in that they seem not to supply enough computational traces. In Section 4.3, it will
be shown what number of examples is enough and not too big for the corrected sets
of examples.

No background knowledge functions were used by Igor IIH and the proposed
system except the use of addition for the fib task.

Environment The experiments were conducted on one CPU core of the Intel R©
Xeon R©CPU X3460 2.80 GHz. The source code was built with Glasgow Haskell
Compiler Ver. 6.12.1 under the single processor setting.
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Table 3. Benchmark results (left) and results for different number of I/O examples (right).
“#exs.” means the number of examples. Each number (except those below “#exs.”)
shows the execution time in seconds, rounded to the nearest integer. This is the time
until the first program is obtained for MagicHaskeller and the proposed system. >300
represents that there was no answer in 5 minutes. Slashed-out numbers like �0 mean that
the result was wrong, that is, the behavior of the generated function to unspecified I/O
pairs did not reflect the user’s intension. ∞ means “impossible in theory” — this is only
used for MagicHaskeller , when the requested function is a partial function without
inhabited type and thus cannot be synthesized with the default primitive component set
of MagicHaskeller .

Igor IIH MagH proposed

addN 25 0 2
allodd >300 4 >300
andL 0 0 1
concat >300 3 >300
drop >300 0 0
(≡) 3 22 0
evenpos 0 8 0
evens �0 93 >300
fib >300 16 >300
head 0 ∞ 0
init 0 3 0
(++) 3 0 0
last 0 ∞ 0
lasts 0 35 0
lengths �1 1 0
multfst 0 4 0
multlst 0 1 0
oddpos 0 8 0
reverse 0 0 0
shiftl 0 4 0
shiftr 0 42 0
sum >300 0 >300
swap 0 >300 0
switch 0 >300 0
take 0 7 0
weave >300 142 0

name #exs. Igor IIH proposed

addN

3 �0 > 300
6 �0 7
9 �0 6

12 �0 2
15 �0 0
18 35 3
21 > 300 > 300

allodd

6 �0 > 300
10 �0 0
15 > 300 26
21 > 300 > 300

andL

1 �0 > 300
3 �0 0
7 0 0

15 0 1
31 > 300 > 300

concat

3 �0 0
6 �0 0
9 �0 0

13 > 300 > 300

drop

4 �0 0
6 �0 0
9 > 300 0

12 > 300 0

4.2 Efficiency evaluation

The first experiment compares the efficiency of the proposed system with that of
other systems using the same I/O examples as those bundled in the Igor IIH release
in order to make sure that the proposed system does not sacrifice the efficiency.

Table 3 (left)shows the benchmark results under the condition described in the
previous section.

Comparisons between analytical systems The proposed system successfully
avoids generating wrong functions by generating many programs and filtering them
with a test condition. For all the cases where Igor IIH generated the wrong result, it
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either returned a correct result or did not terminate. Since yielding a wrong result
is just as misleading and no better than not yielding anything, at this point the
proposed system is at least as good as Igor IIH .

In addition, the proposed system is as fast as or faster than Igor IIH except
when synthesizing andL, if the time required for human users to enter the test
condition is ignored. The reason Igor IIH is quicker than the proposed system on
andL is because it specializes defined function introduction to direct calls, or calls
with target function arguments.

On the other hand, the main reason the proposed system was faster than Igor IIH is
because a novel efficient algorithm for trying to match many expressions at once,
which was presented in Section 3.6, was developed. This algorithm does not have a
direct connection with Spivey’s monad and could be applied to Igor IIH .

Comparison with MagicHaskeller When there are some case partitionings,
MagicHaskeller tends to require more computation than analytical systems,
which is why it cannot generate swap or switch in five minutes. Although both
analytical systems and MagicHaskellerprioritize the search based on some cost
functions, current versions of MagicHaskellerdefine the cost of a function as the
number of function and constructor applications in the curried form, and thus hav-
ing some functions with a bigger arity (like case functions) results in less priority.
The cost function of MagicHaskellermay have room for tuning.

Also, MagicHaskellerwith the default component library cannot generate
partial functions without inhabited types such as head :: forall a. [a ] → a and
last :: forall a. [a ] → a.

On the other hand, since analytical systems cannot generate tail-recursive func-
tions, they generate such functions in their linear recursive form. This sometimes
results in unnecessarily complicated function definitions.

These facts could be suggested from benchmark results on conventional systems.
However, by comparing Igor IIH and MagicHaskellerwith an analytical system
implemented in the same way as MagicHaskeller , it has become even clearer
whether each difference is due to that in the implementation or that in the paradigm.
Now that it has been shown that there is an obvious difference in the strengths and
weakness of both approaches, a fusion of both approaches will hopefully improve
the overall performance.

4.3 Robustness to changes in I/O examples

The main purpose for adding a generate-and-test aspect to the analytical IFP is to
obtain a system that works as expected for a variety of I/O example sets. In this
section, the robustness of the proposed system to variation in the number of I/O
example pairs is empirically evaluated in comparison with that of Igor IIH .

In this experiment, the raw sets of I/O examples from the Igor IIH release were
not used; rather, an edited version with enough computational traces was used,
since several sets are tested for each target function. When n I/O example pairs
are required, the first n examples of the longest set of I/O examples are used.
For example, Table 4 shows the set of I/O examples used for synthesis of addN ;
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Table 4. Set of I/O examples of addN used for evaluating the robustness of the analytical
systems.

addN :: Int → [Int ] → [Int ]
addN 0 [ ] = [ ]
addN 1 [ ] = [ ]
addN 2 [ ] = [ ] -- 3 examples
addN 0 [0] = [0]
addN 0 [1] = [1]
addN 0 [2] = [2] -- 6 examples
addN 0 [0, 0] = [0, 0]
addN 0 [0, 1] = [0, 1]
addN 0 [1, 0] = [1, 0] -- 9 examples
addN 1 [0] = [1]

addN 1 [1] = [2]
addN 1 [2] = [3] -- 12 examples
addN 1 [0, 0] = [1, 1]
addN 1 [0, 1] = [1, 2]
addN 1 [1, 0] = [2, 1] -- 15 examples
addN 2 [0] = [2]
addN 2 [1] = [3]
addN 2 [2] = [4] -- 18 examples
addN 2 [0, 0] = [2, 2]
addN 2 [0, 1] = [2, 3]
addN 2 [1, 0] = [3, 2] -- 21 examples

when synthesizing from six I/O example pairs the lines from addN 0 [ ] = [ ] to
addN 0 [2] = [2] (and the line for the type signature) are used.

This experiment was only performed for the first five functions. Other conditions
are the same as those in the previous section.

Table 3 (right)shows the results of the experiments. The results clearly show the
merit of the proposed system, where, especially for addN , andL, concat , and drop the
proposed system correctly generated a desired program from 3 or 6 examples and the
test function, while Igor IIH is satisfied with the most simple program explaining
the analyzed I/O example pairs and does not synthesize expected functions from a
small set of examples. As can be seen from Table 4, the first 6 examples of addN
simply return the second argument, and therefore Igor II cannot do that even if a
test process is added. On the other hand, the proposed system, residing between
Igor IIH and MagicHaskeller , generates a desired program even in such a hard
situation.

5 Conclusions and Future Work

An analytical IFP algorithm that can generate a stream of programs that gener-
alize the given specification from the simplest to the least simple, instead of just
generating the simplest program(s), was created.

By adding the generate-and-test feature to analytical synthesis, this algorithm
solved the trade-off between the efficiency and the accuracy Igor IIhad been suf-
fering from. As a result, a desired program can be obtained without giving many
I/O example pairs, and some functions that could not be synthesized analytically
have become able to be synthesized.

In addition, by making the implementation of the new analytical IFP algorithm
closer to that of MagicHaskeller , it has now become clear that both analyt-
ical and generate-and-test approaches have different strong points. This suggests
that a complementary fusion of both approaches should be promising. As well, the
threshold to fusing both approaches has been lowered. One option for fusing the
software could be by adding a new operator that generates subexpressions by using
MagicHaskeller and filters them by their I/O examples.

Avoiding Unintended Programs in Inductive Functional Programming 47



As for the efficiency, the new implementation is quicker than Igor IIH in most
cases. However, as mentioned in Section 2.1, it should be noted that this result
is not compared with the newest Igor II+ . Further efficiency improvements using
catamorphism or paramorphism introduction remain for future work.
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Abstract. Inductive program synthesis addresses the problem of auto-
matically generating computer programs from incomplete specifications
such as input/output examples. Potential applications range from au-
tomated software development to end-user programming to autonomous
intelligent agents that learn from experience or observation. We present a
recent version of the domain-independent algorithm Igor2 for the induc-
tive synthesis of recursive functional programs, represented as rewriting
rules. Igor2 combines classical analytical methods, that detect recur-
sion by matching I/O examples, with search in program spaces as ap-
plied by recent generate-and-test methods; thereby widening the class
of programs that are synthesizable in reasonable time. In particular, we
present two recent improvements over an earlier Igor2 version which
significantly increase the efficiency of the synthesis. Functions that were
not inducible in several minutes are now induced in several seconds. It
has already been shown that an earlier version of Igor2 outperforms
other recent systems on several problems. In the empirical evaluation
here, we show the significance of the improved synthesis operators by
means of more complex problems, most of which were not tractable for
Igor2 until now.

1 Introduction

Inductive program synthesis or inductive programming (IP) means the auto-
mated synthesis of programs where the problem specification, typically some
examples of input/output behavior, is incomplete. IP has important applica-
tion fields. For a recent example in end-user programming, see [4]. In [15] it is
shown how IP can be used to model the cognitive capability of learning produc-
tive problem-solving knowledge in recursive domains. E.g., the general recursive
strategy to solve Towers of Hanoi for arbitrary numbers of discs could be learned
from solution traces for 1–3 discs.

IP and supervised machine learning have in common that a general concept
or model is learned from I/O examples. However, unlike standard supervised
learning [5], where a learned model maps objects to qualitative or quantitative
values (classification and regression, resp.) and the models are non-recursive,
in the case of IP, induced programs are typically recursive and not only is the
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(input) data structured (lists, trees etc.) but in general also the output. Further,
we assume that examples are noise-free and require hypotheses to be consistent.
Since recursion is a strong pattern, few data often suffices to learn the correct
recursive function.

In this paper we are especially concerned with the synthesis of recursive,
functional programs, represented as a special kind of term rewriting systems
over first-order algebraic signatures. We describe a recent version of the Igor2
algorithm that leverages complementary strengths of two approaches to IP: An-
alytical methods detect recurrent patterns in I/O examples and generalize them
to recursive functions [16, 9]. This is efficient but suffers from strong restrictions
regarding the form of inducible programs and requires I/O examples that are
complete up to some complexity (e.g., an input-list for each number of elements
up to some maximum must be specified). Generate-and-test based systems [12,
7] generate lots of candidate programs and test them against given examples
or evaluation functions. They overcome the strong restrictions of the analytical
approach but suffer from unconstrained search in vast program spaces. Igor2
combines search in fairly unrestricted program spaces with analytical techniques
to generate candidates and thereby widens the class of programs that are synthe-
sizable in reasonable time. Igor2 is able to use background knowledge (BK) and
automatically invents recursive subfunctions. It finds complex recursion schemes
like that of Ackermann or the mutual-recursive definition of odd/even and is
applicable in different domains.

In [8], a preliminary Igor2 version is described. We here review the general
algorithm and then focus on the synthesis operators. In particular, we discuss
some shortcomings and present extended versions that lead to a much more
efficient synthesis and a wider class of tractable problems. The remainder of
the paper is organized as follows: Section 2 introduces the Igor2 algorithm
including its original synthesis operators. In Section 3 we discuss two synthesis
operators more detailed and describe improved versions of them. In Section 4
we empirically evaluate the proposed new operators. Section 5 discusses some
related work and in Section 6 we conclude.

2 The Igor2 Algorithm

We call functions that are to be synthesized target functions. Functions that
are assumed to be implemented already and can be used are called background
functions.

2.1 Representation Language

We briefly review basic term rewriting concepts as described, e.g., in [1].
Igor2 specifications of target and background functions as well as induced

definitions of target functions are represented as orthogonal (see below) con-
structor (term rewriting) systems (CSs). A CS is a set of (term rewrite) rules
over a first-order algebraic signature (function symbols) and a set of variables,
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where the signature is partitioned into defined functions and constructors and
where each rule has the form

f(p1, . . . , pn)→ t .

The symbol f is a defined function, the pi are built from constructors and vari-
ables, and all variables in the right-hand side (RHS) t must also occur in the
left-hand side (LHS) f(p1, . . . , pn) (Var(t) ⊆ Var(f(p1, . . . , pn))). The argu-
ment constructor terms pi are called pattern. We denote sequences of terms like
p1, . . . , pn by p.

A CS is called orthogonal if its LHSs are linear, i.e., each variable occurs
at most once in one and the same LHS, and pairwise non-unifying. Two terms
are non-unifying if there is no substitution σ of variables by terms such that
the terms become equal if σ is applied to both of them. Orthogonal CSs are a
basic form of functional programs, excluding higher-order functions. Evaluation
of an (input) term s is done by repeatedly matching subterms of it with LHSs of
the CS—leading to substitutions σ of the pattern variables—and replacing the
subterms by the respective RHSs with variables substituted according to σ. Or-
thogonality assures that if an evaluation terminates, i.e., reaches a normal form,
then this normal form is unique. Hence orthogonal CSs denote (deterministic)
functions. The (non-unifying) patterns of different LHSs for the same defined
function act (i) as conditions to evaluate inputs of particular different forms
differently and (ii) decompose a matching term into subterms. This concept is
called pattern matching in declarative programming.

2.2 The Inductive Synthesis Problem

Specifications of target and background functions are orthogonal CSs with the
restriction that the RHSs are built from constructors (and variables) only and
hence are in normal form. Ground (no variables) specification rules denote
I/O examples whereas specification rules containing variables represent sets of
I/O examples given by all their ground instances. The inductive synthesis prob-
lem is defined as follows:

Definition 1 (Induction problem). Let Φ and B be two specifications with
disjoint sets of defined functions, DΦ ∩ DB = ∅, called target functions and
background functions, respectively. Find a CS P with defined functions DP ,
such that

1. P is orthogonal,
2. P does not (re)define background functions,
3. for each f(i)→ o ∈ Φ, P ∪B evaluates f(i) to o.

We use the Rocket problem [17], a simple benchmark problem in automated
planning, as a running example. The problem is to transport a number of objects
from earth to moon where the rocket can only move in one direction. The solution
is to load all objects, fly to the moon and unload the objects. The assumption
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Listing 1.1. Examples for the Rocket problem

1 rocket( nil , s) → move(s)
2 rocket((o1 : nil ) , s) → unload(o1, move(load(o1, s)))
3 rocket((o1 : o2 : nil ) , s) → unload(o1, unload(o2, move(load(o2, load(o1, s)))))

Listing 1.2. Strategy for rocket induced by Igor2

rocket( nil , s) → move(s)
rocket((o : os) , s) → unload(o, rocket(os, load(o, s)))

now is that a planner (or an expert) already solved the problem for zero to
two objects.1 The problem instances and plans are then translated to example
inputs and outputs for Igor2 (Listing 1.1). The objects are provided as a list
(constructors nil , empty list, and an infix constructor : to “cons” an object,
1st argument, to a list, 2nd argument). The variable s denotes a state, similar
to situation calculus [10]. From the three examples, Igor2 induces the recursive
strategy as shown in Listing 1.2.

2.3 General Search Strategy and Preference Bias

The induction of a solution CS is organized as a uniform cost search in spaces of
orthogonal CSs, where the definition of CSs is relaxed in that Var(r) ⊆ Var(l)
need not be satisfied for all rules l → r. We refer to CSs not satisfying this
property, the respective rules, and their RHSs as unfinished and to CSs, rules,
RHSs that satisfy it as finished. Either case might be meant in the following if we
just say CS, rule etc. Unfinished CSs lead to non-unique normal forms and hence
do not encode (deterministic) functions. Purpose of the synthesis operators is to
transform an unfinished CS into a finished one. Igor2’s refinement operators,
described in the next section, assure that all constructed candidate CSs P satisfy
Def. 1. Hence each finished CS is a solution.

The cost of a candidate CS is defined as the number of disjoint patterns in it,
hence CSs that correctly compute the examples based on fewer case distinctions
have lower cost and are preferred. The initial candidate CS consists of one single
initial rule (see below) for each target function.

2.4 Initial Candidate Rules and CSs

As initial hypothesis for a set of specification rules, Igor2 takes their least
general generalization (LGG) [13]. That basically means that if all rules have
the same symbol at a particular position, it is kept for that position in the LGG,

1 The instance for zero objects is a bit artificial. We chose it to keep the example as
simple as possible, but it may be skipped and replaced by the three objects instance.
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and if the symbols differ, a variable is introduced, where it is assured that the
same variable is introduced at different positions, if the corresponding subterms
in the example rules are the same at both positions. The LGG for the rocket

examples (Listing 1.1) is

rocket(os, s) → s ’ .

The variable os results from the different constructors nil and : at the same
position in the example rules. The variable s ’ results from the different symbols
move and unload. This initial rule is unfinished due to the variable s ’, which does
not occur in the LHS. Hence it will be refined.

2.5 Synthesis Operators

In general, if a candidate CS P is chosen during the search, one of its unfinished
rules r is selected to be refined. One refinement consists of a set s of successor
rules. Igor2 applies three operators independently to an unfinished rule r to
compute refinements: (i) It splits r into sets of at least two new initial rules with
disjoint patterns that are more specific than the pattern of r; (ii) it considers
unfinished subterms of the RHS of r as new subproblems; (iii) it replaces the
RHS of r by (recursive) function calls. Assume a CS P is chosen and let r ∈ P
be the selected unfinished rule. Applying the refinement operators results in a
finite (possibly empty) set {s1, . . . , sn} of successor-rule sets si. For each si a
successor candidate CS Pi is generated by Pi = (P \ {r}) ∪ si.

Rule Splitting. Consider the example rules in Listing 1.1 and the correspond-
ing initial rule, rocket(os, s) → s ’. The pattern variable os results from the
different constructors nil (1st example) and : (2nd, 3rd example). We call a
position that denotes a variable in the LHS of an initial rule and constructors in
the LHSs of the corresponding example rules a pivot position. Now the splitting
operator χsplit partitions the examples according to the different constructors
at the pivot position. In our example, the first example rule goes into one sub-
set and the remaining two into a second one. The refinement of the unfinished
initial rule then consists of a set of new initial rules, one for each subset of the
generated partition. In our example:

rocket( nil , s) → move(s)
rocket((o : os) , s) → unload(o, s ’ )

Since the new initial rules always contain the different constructors at the pivot
position in their LHSs, they are non-unifying. Since χsplit increases the number
of disjoint patterns in a CS, it increases the cost of a candidate.

If more than one pivot position exists, this probably leads to different parti-
tions and different refinements, all of which are returned by χsplit. In Section 3.1
we discuss this operator more detailed and propose a variant that (i) makes
larger refinement steps and (ii) is deterministic. This leads to a more efficient
synthesis process as empirically shown in Section 4.
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Dealing with Unfinished Subterms Separately. Consider the initial rule
rocket((o:os) , s) → unload(o, s ’ ) for example rules 2, 3 that resulted from split-
ting the original initial rule and which is unfinished due to variable s ’. Since
s ’ occurs as a proper subterm in the RHS, it can be dealt with as a subprob-
lem. Therefore, the subproblem operator χsub replaces s ’ by a call to a new
subfunction sub,

rocket((o : os) , s) → unload(o, sub((o : os) , s)) ,

and takes as examples for it the appropriate subterms of the RHSs of the corre-
sponding rocket examples:

sub((o1 : nil ) , s) → move(load(o1, s))
sub((o1 : o2 : nil ) , s) → unload(o2, move(load(o2, load(o1, s))))

The refinement step is finished by computing an initial rule for sub and adding
it to the rocket hypothesis:

rocket( nil , s) → move(s)
rocket((o : os) , s) → unload(o, sub((o : os) , s))
sub((o : os) , s) → s ’

The operator χsub is deterministic and only defined if the RHS of the selected
rule is rooted by a constructor. Even though χsub adds new rules to a candidate,
it does not increase its cost because the added rules always only contain patterns
already present in the candidate CS.

Introducing (Recursive) Function Calls. Introducing (recursive) function
calls with appropriate arguments is the most complex operation. For an unfin-
ished rule f(p)→ t, the function call operator χcall produces refinements of the
form f(p) → f ′(g1(p), . . . , gn(p)), where f ′ is some already defined function (a
target-, background- or previously introduced subfunction; probably f = f ′) and
the gi are new defined functions to be induced subsequently. The idea behind
the gi as arguments (instead of just constructor terms over pattern variables) is
that the arguments in the call of f ′ possibly need to be computed by another,
possibly new and/or recursive, subfunction. As an example consider the Quick-
sort algorithm where the arguments of the two recursive calls are sublists of
smaller and greater elements w.r.t. a pivot element. These sublists themselves
are computed by recursive partitioning functions.

The operator χcall is based on matching the example outputs of the current
unfinished rule for f with outputs belonging to (other) target or background
functions f ′ and then computing arguments that appropriately map the inputs
covered by the current rule for f to the corresponding inputs of f ′.

Consider the unfinished initial rule for sub as introduced in the previous step:
sub((o : os) , s) → s ’. The RHSs of both example rules of sub are subsumed by
RHSs of the rocket examples. Particularly, move(s) (the RHS of the 1st rocket

example) subsumes move(load(o1, s)) (the RHS of the 1st sub example) by sub-
stitution σ1 = {s 7→ load(o1, s)}; and unload(o1, move(load(o1, s))) (2nd rocket

example) subsumes unload(o2, move(load(o2, load(o1, s)))) (2nd sub example) by
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substitution σ2 = {o1 7→ o2, s 7→ load(o1, s)}. This indicates that the sub exam-
ples can be computed by calling rocket and the unfinished sub rule is refined
to

sub((o : os) , s) → rocket(g1((o : os) , s) , g2((o : os) , s)) .

It remains to derive example rules for the new subfunctions g1 and g2 and com-
puting initial rules for them. The example inputs are the same as for sub because
g1 and g2 are called with the same inputs as sub, due to the same arguments
o : os, s. The functions g1, g2 need to map these inputs to the correct inputs of
rocket. Therefore, χcall applies the substitutions σ1, σ2 to the LHSs of the rocket

example rules and takes the appropriate subterms as outputs for g1, g2:

g1((o1 : nil ) , s) → nil g2((o1 : nil ) , s) → load(o1, s)
g1((o1 : o2 : nil ) , s) → o2 : nil g2((o1 : o2 : nil ) , s) → load(o1, s)

The initial rules (LGGs) for g1 and g2 obtained from their example rules are
finished so that the following finished CS has been achieved as solution:

rocket( nil , s) → move(s)
rocket((o : os) , s) → unload(o, sub((o : os) , s))
sub((o : os) , s) → rocket(g1((o : os) , s) , g2((o : os) , s))
g1((o : os) , s) → os
g2((o : os) , s) → load(o, s)

Neither sub nor g1, g2 are recursive. Hence they can be eliminated by unfolding,
leading to the solution in Listing 1.2.

Like χsub, also χcall does not increase the cost of the candidate because
the added rules do not introduce additional patterns. To assure termination of
Igor2, the maximal depth of nested function calls, i.e., the maximal number of
χcall applications, is bounded by the user.

3 Discussion and Improvements

In this section we identify certain shortcomings of the splitting and the function
call operators χsplit and χcall and propose variants that circumvent the problems.

3.1 Rapid Rule-Splitting

Consider the Ackermann function, defined as a CS with constructors 0 (zero),
S (successor) and variables m, n:

Ack (0, n) → S n
Ack (S m, 0) → Ack (m, S 0)
Ack (S m, S n) → Ack (m, A (S m, n))

Given some I/O examples where all the four cases of zero and non-zero inputs for
both arguments are covered, the initial unfinished rule would be Ack(m,n)→ (S x),
featuring two pivot positions that correspond to the variables m, n in the LHS.
χsplit would thus introduce two successor candidates, each specializing one of
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the two pattern variables to the two cases zero and non-zero. W.l.o.g., let P de-
note one of them. P is unfinished again and does not contain the pattern of the
third rule of the Ackermann CS because in that rule, both pattern components
are non-variables. Thus, a further application of χsplit to P , leading, say, to P ′,
where the cost of P ′ is increased compared to P , would be necessary. However,
the subprogram and the function call operators would also be applicable to P
without increasing its cost. Hence, before P ′ is considered again, all possible
sequences of χsub and χcall applications to P would be tried.

The idea of an improved version of χsplit is to combine all possible splitting
refinements—if more than one pivot position and hence more than one splitting
exists—into one single splitting. Instead of computing a separate partition for
each pivot position, we compute only one partition based on all combinations of
different constructors at all pivot positions. In the case of the Ackermann func-
tion, instead of two refinements with two successor rules each, we then get one
refinement with four successor rules, covering all the four combinations for zero
and non-zero inputs for the two arguments: Ack(0, 0), Ack(0, S n), Ack(S m, 0),
Ack(S m, S n). These patterns cover all patterns of the actual definition of the
Ackermann function such that subsequent applications of χsub and χcall take
place in a search subspace which contains the solution. Since this rule splitting
variant achieves the result of several applications of χsplit in one step, we call
it rapid rule-splitting and denote it by χrsplit. The solution for the Ackermann
function that is induced with rapid rule-splitting enabled, is:

Ack (0, 0) → S 0
Ack (0, S n) → S S n
Ack (S m, 0) → Ack (m, S 0)
Ack (S m, S n) → Ack (m, Ack (S m, n))

A minor drawback of rapid rule-splitting is its potential “over-specialization”
as in the case of the Ackermann function (four induced rules instead of the
sufficient three rules). This is not a problem as long as enough examples are
provided. If, however, only few I/O examples are provided, then rapid rule-
splitting might prevent a correct generalization since too few I/O examples might
remain for each rule.

3.2 Simple Function Calls

Consider the following example rules, specifying the last function that returns
the last element of a list (x,y,z denote variables):

1 last (x : nil ) → x
2 last (x : y : nil ) → y
3 last (x : y : z : nil ) → z
4 last (x : y : z : v : nil ) → v

Further assume rule-splitting had already taken place so that the intermediate,
unfinished, candidate CS is:

last (x : nil ) → x
last (x : y : xs) → q
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The second unfinished rule covers example rules 2, 3, 4. Now assume we apply
χcall to introduce a recursive call of the form last (x : xs) → last (g(x : xs)).
This is possible since each RHS of rules 2, 3, 4 matches with another RHS. Ac-
tually, since all RHSs are variables, each RHS matches each other. Not all of
these matchings are considered because, to assure termination of the induced
program, the argument of the call must be decreased. Hence for each example i
only matchings to examples j < i are considered. One single refinement accord-
ing to χcall is then determined by one particular mapping of each RHS of rules
2, 3, 4 to another one, satisfying the ordering constraint. In our case these are
1 × 2 × 3 = 6 possibilities, hence χcall would result in 6 successor candidates.
In general, the more example rules are given, the more different matchings are
possible and the more successor candidates are introduced by χcall.

However, in the case of last , the argument of the recursive call need not be
computed by an own function but is a constructor term, namely the tail of the
input list: last (x : y : xs) → last (y : xs). If only candidates with a constructor
term as argument are considered, the correct solution is the only possible one.

Therefore, we developed an additional operator, χscall, called simple-call op-
erator, that finds refinements of the form f(p)→ f ′(p′), where p′ is a constructor
term over variables from p. Instead of matching specified outputs, χscall basically
works by enumerating constructor terms as arguments up to a certain size and
testing each one against the examples.

We did not completely replace χcall by χscall but we always first apply χscall

and only if it returns an empty refinement set—indicating, that a constructor
argument is not sufficient to find a consistent function call—the original call
operator χcall is applied. The general idea is thus to first check for the few
potential simple solutions and only if none exists, search for more complicated
solutions.

4 Experiments

We implemented the extended synthesis operators on top of a preliminary Igor2
version [8] that is implemented in the interpreted, rewriting based language
Maude [2]. We use the symbol Igor2pre to exclusively denote this version.
To empirically evaluate the extensions, we applied Igor2 to several non-trivial
recursive problems. Each problem was tested with three Igor2 configurations:
(i) with Igor2pre, (ii) with the simple-call operator χscall added as described
in Sec. 3.2, and (iii) with χscall added and additionally with χsplit replaced by
χrsplit (rapid rule-splitting), described in Sec. 3.1. The experiments were run on
an Intel Core i5 2.53 GHz, 64Bit Linux machine. We gave each tested Igor2
configuration 2 minutes synthesis time maximum per problem. Tab. 1 shows the
results.

The Blocksworld problem tower is taken from [15] where Igor2pre had been
applied in the domain of cognitive modeling. tower denotes the recursive problem
of building a tower of any number of blocks from initial configurations in the
Blocksworld. The concept CB of how to clear a block (i.e., putting all blocks above
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Table 1. Results

Igor2 versions; times in sec.

Problems pre +χscall +χscall + χrsplit

tower w/ CB, isTower 0.90 0.94 0.89

lasts 38.37 0.43 0.54⊥

lasts w/ last � 0.23 0.23
drop � 9.87 0.05
swap � � 1.15
ack � � 2.22
weave � � 30.01
oddslist � � �
�: Timeout after 2 minutes; ⊥: one case overly special

pre: Igor2pre; +χscall: χcall only applied if χscall fails
+χscall + χrsplit: like +χscall and χsplit replaced by χrsplit

it to the table) was given as background knowledge as well as a predicate isTower

to test if a certain tower is already present. We used the original examples. Since
this problem is highly structured and the examples were well-chosen, Igor2pre
could tackle it well and the extensions have no impact.

The problems lasts and oddslist are taken from [6] where Igor2pre has been
compared with other recent IP systems on some list-processing problems. It was
shown that Igor2, pursuing a combined analytic and search-based approach, (i)
could correctly induce more problems than the recent analytic system Igor1 [9]
and inductive logic programming systems like Foil [14] and (ii) outperformed
recent generate-and-test based functional IP systems [12, 7] on several tested
problems. lasts takes a list of lists and returns a flat list of their last elements.
The predicate oddslist takes a list of natural numbers, encoded as Peano numbers
by 0 and succ, and returns true or false depending on whether all elements
are odd. No background knowledge was provided, so the IP systems had to
invent subfunctions last and odd or equivalent ways to compute the inherent
subproblems.

It is well-known in AI that background knowledge generally can help to find
solutions for complex problems, but also that irrelevant information can hamper
finding a solution. An odd thing with Igor2pre is that even relevant background
knowledge may lead to increased synthesis time. This can be observed in the
case of lasts which we tested (i) w/o background knowledge and (ii) with last as
background knowledge. Igor2pre could not find a solution in 2 minutes if last

was provided. In contrast, Igor2 with the additional χscall operator could, as one
should expect, profit from the relevant background knowledge. The additional
use of rapid rule-splitting had no further impact. We further observe that rapid
rule-splitting did not completely generalize to the intended function in case of
lasts w/o background knowledge. This is an example for that rapid rule-splitting
might need additional examples to generalize well (cp. Sec. 3.1). The predicate
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Listing 1.3. swap, induced from 6 examples

swap(x0 : x1 : xs , 0, 1) → x1 : x0 : xs
swap(x0 : x1 : x2 : xs , 0, n+2) → swap(x1 : swap(x0 : x2 : xs , 0, n+1), 0, 1)
swap(x0 : x1 : x2 : xs , n+1, m+2) → x0 : swap(x1 : x2 : xs , n, m+1)

Listing 1.4. weave, induced from 11 expls; note the automatically invented recursive
subfunction sub36 that drops the first element of the first list and rotates the lists

weave(nil ) → [ ]
weave((x:xs) : : xss) → x : weave(sub36((x:xs) : : xss))
sub36((x: [ ] ) : : nil ) → nil
sub36((x: [ ] ) : : (y:ys) : : xss) → (y:ys) : : xss
sub36((x:y:xs) : : nil ) → (y:xs) : : nil
sub36((x:y:xs) : : (y:ys) : : xss) → (y:ys) : : sub36((x:y:xs) : : xss)

oddslist could not be synthesized by any version within the allowed 2 minutes.
Boolean-valued functions are generally hard for Igor2 because of the missing
structure in the outputs (which are just true or false in this case).

The function drop drops the first n elements from a list. We made this problem
challenging for Igor2pre by including the case where n is greater than the
number of elements in the list in which case the empty list shall be returned.
This leads to several I/O examples where the output is just the empty list,
posing a problem for Igor2pre because this causes many possible matchings of
outputs. Since the solution does not contain nested functions calls, χscall quickly
found a solution.

Finally, the Ackermann function ack and the functions weave and swap all are
more complex than the former functions in terms of syntactical size, recursion
structure, and/or number of parameters that are substituted in the recursive
calls. They were neither solvable by Igor2pre nor by just adding χscall. Yet
with rapid rule-splitting enabled, many small candidates, mostly non-solutions,
are pruned so that all three functions could be induced. swap swaps two elements
in a list, indicated by their indices, e.g., swap([a,b,c,d] , 2, 4) → [a,d,c,b]. It was
restricted to cases where the given indices occurred in the list, were different,
and the first index was the smaller one. Listing 1.3 shows the induced solution.
weave takes a list of lists and produces a (flat) list by taking, in rotation over the
inner lists, one element after the other from the inner lists.2 Listing 1.4 shows
the induced solution.

5 Related Research

Two recent functional IP systems are ADATE [12] and MagicHaskeller [7].
Both pursue a generate-and-test approach, i.e., use examples as test-cases, in-

2 This is a generalized version of the weave function as tested in [6].
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stead of directly deriving candidates from them as Igor2 does. One advantage of
this approach is that it is more robust w.r.t. the selection of and noise in problem
specifications. However, they often need much more time to synthesize a solu-
tion [6]. In logic programming, the IP system Dialogs [3] is closest to Igor2.
It is interactive and uses algorithm schemas like divide-and-conquer. Recently,
domain-specific IP methods are again studied; e.g., [4] describes an algorithm
to interactively synthesize string-processing programs in spreadsheets, and [11]
describes a system to learn recursive hierarchical task networks in automated
planning.

6 Conclusions and Future Work

IP is a challenging field with various important applications and much room
for further improvement. We presented Igor2, a competitive IP system that
draws from different existing approaches to approach the practical tractability
of relevant problems. We described improvements of two synthesis operators
and empirically showed their significance w.r.t. efficient synthesis of non-trivial
programs. It is worth noting that the efficiency-gain is not based on making the
search less complete. The only drawback is that more examples might be needed
in case of rapid rule-splitting. Despite the remarkable results, there is still much
room for improvement. The current synthesis operators rule out certain program
forms and if the examples do not contain sufficient structure, the BF search
becomes intractable.

One serious disadvantage of analytical techniques including Igor2 is the re-
quirement for sets of I/O examples that are complete up to some complexity. This
often compels the programmer/specifier to think about missing I/O pairs even
if a meaningful I/O pair, that would suffice for a generate-and-test method, is
already provided. On the logical side, this problem could be tackled by introduc-
ing and reasoning with ∃-quantified variables in example outputs. To generally
become more robust w.r.t. missing or erroneous information, as generally present
in the real-world, probabilistic reasoning must be integrated into analytic IP.

Currently, we work on applying Igor2 to learning hierarchical task networks
in automated planning.
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Abstract. This short paper introduces the usage and behavior of Mag-
icHaskeller , which is one of the representative inductive functional
programming systems. Although MagicHaskeller had been a generate-
and-test method based on systematic exhaustive search, an analytical
synthesis engine was added to its recent versions, which enables a new
method that generates many programs analytically from the given in-
sufficient set of input-output examples and tests those programs with a
separately given predicate. This paper mentions both engines.

1 Overview

MagicHaskeller [Katayama(2005b)] is an inductive functional programming
system based on systematic exhaustive search. Inductive functional programming
(IFP) is a form of programming automation, where recursive functional programs
are synthesized through generalization from the ambiguous specification usually
given as a set of input-output pairs. Currently, there are two approaches to
IFP: analytical approach that synthesize programs by looking into the input-
output pairs and conducting inductive inference, and generate-and-test approach
that generates many programs and picks up those that satisfy the specification.
MagicHaskellerhas been playing the representative role as the generate-and-
test method based on systematic exhaustive search since the first binary release
in 2005. Since its Version 0.8.6 release, analytical search algorithm has been
added, and a new approach that could be called analytically-generate-and-test
approach has been made possible, where the analytical synthesizer generates
many programs from the given insufficient set of input-output examples and picks
up those that satisfy the predicate separately given as a part of the specification.
In this short demonstration paper, we present how to use both synthesis engines
and the results from use of them.

2 Building and installation

MagicHaskellerhas been developed in Haskell and its recent versions are
released as a library. In order to build and install its copy, first you need to
install Version 6.10.* or 6.12.* of Glasgow Haskell Compiler (GHC). Although
Version 0.8.6.1 of MagicHaskeller can be build with Version 7 of GHC, its
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analytically-generate-and-test functionality does not work with this version of
GHC.

Also, in order to ease the installation process you should have the Cabal
[Jones(2005)] package that is the standard framework for distributing Haskell
programs. In addition, if cabal-install package is installed, simply typing

cabal update

cabal install MagicHaskeller

builds and installs the MagicHaskeller system into the user’s home directory.
Implemented as a library, the typical usage of MagicHaskeller is to use it

within Glasgow Haskell Compiler interactive (GHCi), like QuickCheck
[Claessen and Hughes(2000)]. This is achieved by invoking GHCi with -package

MagicHaskeller option. The language extension with Template Haskell
[Sheard and Peyton Jones(2002)] is also necessary if you want to do various
things by using its oxford bracket syntax. Thus, MagicHaskeller is usually
invoked with

ghci -package MagicHaskeller -XTemplateHaskell

In this paper, when quoting use of the interactive system, we always supply the
-v0 option which means verbosity level 0, in order to avoid clutter.

3 The modules for exhaustive search

The systematic exhaustive search modules define functions that generate all the
programs (up to semantical equivalence) which can be constructed using the
given primitive set with function applications and lambda abstractions, as an
infinite stream[Katayama(2005a)]. They also define functions for testing the gen-
erated programs to leave only the programs that satisfy the given specification.
The algorithm used for generating the stream of programs effectively enumer-
ates all the proofs for the proposition corresponding to the given type under
Curry-Howard isomorphism, based on sequent calculus.[Katayama(2010)]

The greatest feature of these modules is that they can synthesize programs
by only selecting the primitive set and writing the specification in the form of
a predicate. The specification need not be a set of input-output pairs. The type
of the function has to be notified to the algorithm, but the user need not give it
explicitly. It can be inferred from the specification given as a predicate.

To the end of this section, we exemplify the usage of the systematic exhaus-
tive search engine. More examples can be found in [Katayama(2006)], though it
describes an older version of MagicHaskeller .

3.1 A simple example

This is an example of having MagicHaskeller synthesize functions that takes
"abc" and returns "aabbcc":
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$ ghci -package MagicHaskeller -XTemplateHaskell -v0

Prelude> :m +MagicHaskeller.LibTH

Prelude MagicHaskeller.LibTH> init075

Prelude MagicHaskeller.LibTH> printAll $ \f -> f "abc" == "aabbcc"

\a -> list_para a [] (\b _ d -> b : (b : d))

\a -> list_para a (\_ -> []) (\b _ d _ -> b : (b : d 0)) 0

\a -> list_para a (\_ -> []) (\b _ d _ -> b : (b : d 0)) 0

\a -> list_para a (\_ -> []) (\b _ d _ -> b : (b : d True)) True

\a -> list_para a (\_ -> []) (\b _ d _ -> b : (b : d True)) False

\a -> list_para a (\_ -> []) (\b _ d _ -> b : (b : d False)) True

\a -> list_para a (\_ -> []) (\b _ d _ -> b : (b : d False)) False

\a -> list_para a (\_ -> []) (\b _ d _ -> b : (b : d [])) []

\a -> list_para a (\_ -> []) (\b _ d _ -> b : (b : d [])) a

\a -> list_para a (\_ -> []) (\b c d _ -> b : (b : d c)) a

\a -> list_para a (\_ -> []) (\b c d _ -> b : (b : d c)) []

\a -> list_para a (\_ -> []) (\b _ d _ -> b : (b : d Nothing)) Nothing

\a -> list_para a (\b -> b) (\b _ d e -> b : (b : d e)) []

\a -> list_para a (\b -> b) (\b c d _ -> b : (b : d c)) a

\a -> list_para a (\b -> b) (\b c d _ -> b : (b : d c)) []

\a -> list_para a (\b -> b) (\b _ d _ -> b : (b : d [])) a

\a -> list_para a (\b -> b) (\b _ d _ -> b : (b : d [])) []

^CInterrupted.

Prelude MagicHaskeller.LibTH> printAllF $ \f -> f "abc" == "aabbcc"

\a -> list_para a [] (\b _ d -> b : (b : d))

^CInterrupted.

The text regions between Prelude and > are prompts of GHCi. The first
line after the GHCi invocation is for bringing module MagicHaskeller.LibTH

into scope. The second line initializes the environment and set the component
library, i.e. the set of combinators with which to construct programs, with a
recommended set of combinators. The third line requests to print all the expres-
sions which can be synthesized using the combinators in the component library
that satisfy the predicate \f -> f "abc" == "aabbcc".

Then, synthesized programs are printed line by line, from the smallest one
with the least number of function applications, increasing the program size pro-
gressively. The list_para function is (a function isomorphic to) the list paramor-
phism (e.g. [Augusteijn(1999)]) and defined in the module MagicHaskeller.LibTH.
Other notations are the same as Haskell ’s — \v -> e means λv.e, [] denotes
the empty list, and (:) is the binary constructor that adds one element to the
first position of a list. Because the algorithm generates an infinite stream of
programs, it has to be interrupted on the way.

The letter F in printAllF means filtering out expressions that are semanti-
cally equivalent to any of the already printed expressions by using a randomized
algorithm.[Katayama(2008)] This is useful, though it affects the efficiency. In the
above example, seemingly all the synthesized and printed programs are equiva-
lent to the firstly generated one. However, there is always the possibility where
some of them are proved to be different and printed later while using printAllF

if the computation is not interrupted.
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3.2 An example of using a rich library

A variant of the filter for removing semantically equivalent expressions can be
applied during program generation rather than after program generation, in
order to reduce the number of programs and quicken the synthesis. Because the
filtration itself takes time, program generation with this technique is not always
quicker than that without it. However, it is known to be quicker when using
a rich set of combinators as the component library. In the Version 0.8.6.1 of
MagicHaskeller , it can be tried by using MagicHaskeller.LibTH.exploit.

Prelude MagicHaskeller.LibTH> exploit $ \f -> f "abc"=="abcba"

\a -> list_para (reverse a) a (\_ c _ -> a ++ c)

^CInterrupted.

Although use of a rich library may be considered as cheating when benchmarking,
it can be more useful than using a poor library, making the results more readable.

4 The modules for analytical synthesis

Since Version 0.8.6, an analytical synthesis engine is added to MagicHas-
keller . It uses an algorithm that extends Igor II [Kitzelmann(2007)]
[Hofmann et al.(2010)Hofmann, Kitzelmann, and Schmid] to enable generation
of many programs as a stream of lists, where programs with few case splittings are
highly prioritized and appear early. This is made possible by not stopping search
when the best programs are found but continuing the search in the breadth-first
manner.

Igor II sometimes suffers from the trade-off between the correctness of the
generated programs and the computational complexity: (only) unwanted pro-
grams are generated unless there are enough number of examples to correctly
specify the desired function, and no programs are generated if the number of
examples is too large due to the time complexity for conducting unification.
This trade-off often forces trial-and-error to users in order to find the adequate
number of I/O example pairs, and sometimes causes search failure due to lack
in such a number. Those cases often happen especially when arguments increase
in different dimensions and there are some corner cases.

For example, Igor II cannot correctly synthesize the concat function in the
Standard Prelude of Haskell and the allodd function that takes a list of integers
and returns if all of its elements are odd. In both cases wrong functions are
generated when given several examples, and no functions are obtained, at least
within five minutes, when given more than ten examples.

Generating many programs analytically from insufficient input-output pairs
and then filtering them with a separately-supplied predicate is an answer to this
trade-off. In fact, those functions can be synthesized with our new analytical
synthesis modules without any trial-and-error on the users’ side. The trade-off is
resolved by dividing the set of input-output examples into those for guiding the
search and those for avoiding generation of unintended solutions. For the latter
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purpose, the user usually need only one general (in that it is not at an edge or
corner case) example, and rarely need to enumerate many examples. In addition,
even if some examples are required here, that hardly influences the efficiency.
On the other hand, the set of input-output examples for guiding the search can
be minimized. Moreover, even if there are not enough number of examples for
this purpose, the solution can be found, though the search is less efficient than
when the optimal number of examples are given.

The advantage of analytical synthesis over systematic exhaustive search is
that there are functions which the exhaustive algorithm cannot synthesize within
a realistic time span but analytical algorithms can. On the other hand, some
other functions such as the Fibonacci function can be synthesized by exhaus-
tive search but cannot be synthesized by analytical algorithms (without using
a specialized addition function, which can be regarded as cheating). Currently
the analytical synthesis engine works separately from the systematic exhaus-
tive search engine, except that they share some common modules such as those
defining the language and those implementing combinatorial search. Their co-
operation to make a new synthesis engine will be tried in future. Also note that
a paramorphism introduction operator like in
[Hofmann and Kitzelmann(2010)] is not implemented yet.

4.1 A simple example

In the next example the length function is synthesized. The analytical synthesis
engine generates many programs that generalize {f [] = 0; f [a] = 1} with-
out using any background knowledge functions. Then, it compiles the generated
programs, and filter them with the predicate \f -> f "12345" == 5.

$ ghci -package MagicHaskeller -XTemplateHaskell -v0

Prelude> :m MagicHaskeller.RunAnalytical

Prelude MagicHaskeller.RunAnalytical> :set prompt >

> quickStart [d| f [] = 0; f [a] = 1 |] noBKQ (\f -> f "12345" == 5)

\a -> let fa (b@([])) = 0

fa (b@(c : d)) = succ (fa d)

in fa a :: forall t2 . [t2] -> Int

^CInterrupted.

The first two lines are not essential. The first line is for bringing module
MagicHaskeller.RunAnalytical into scope. The second line literally replaces
the command prompt with >>. The latter is not indispensable, but it is recom-
mended when using a narrow screen, because a lot of information has to be input
at each analytical synthesis.

The third line is important, though is not very difficult. The set of decla-
rations surrounded by the Oxford bracket [d| . |] is a declaration quote of
Template Haskell having type Q [Dec]. The quickStart function takes the set
of input-output pairs of the target function as the first argument, the sets of
input-output pairs of the background knowledge functions, and the predicate
with which to filter the generated programs. The careful reader may notice that
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different syntaxes are used between the first argument and the third argument.
For example, a variable pattern is used in the first argument while concrete val-
ues are used in the third argument, and the implicit equality is used in the first
argument while the explicit one is used in the third argument. These are not the
results of the author’s fancy. Variable patterns can be used within the first ar-
gument because it has the form of a function definition. They are often required
by analytical synthesis in order to make recursive calls, because a recursive call
involves pattern matching. On the other hand, the third argument that is used
for filtering the generated programs has to use concrete values, because they will
not be abstractly interpreted but compiled and executed.

Although in the above example the type of the target function is not supplied,
it may be supplied as the type signature declaration in the first argument, like
[d| f :: [a]->Int; f [] = 0; f [a] = 1 |]. When the type signature is
omitted, the type is inferred from the types of constructors appearing in the
input-output pairs. Integral literals are assumed to have type Int. They are
treated specially and converted into combinations of 0, succ, and negate.

Patterns with @ are called as-patterns, and the argument is matched to both
patterns at the both sides of @. In the above case, because the two bs are unused,
use of as-patterns are actually unnecessary. Such redundant use of as-patterns
will be removed from the future releases.

4.2 An example with a background knowledge function

When background knowledge function(s) should be used, they are specified in
the second argument. In this case, the analytical synthesizer generates higher-
order functions that take background knowledge functions as arguments. This
should be noted when specifying the test function.

The next example shows synthesis of multiplication using addition as the
background knowledge function. Note that multiplication is one of the boring
functions that cannot be synthesized by Igor II . Since (+) :: Int -> Int ->
Int is used as the background knowledge function, the resulting programs require
(+) as the first argument.

> :{

| quickStartF

| [d| mult 0 x = 0; mult 1 0 = 0;

| mult 1 1 = 1; mult 1 2 = 2;

| mult 2 0 = 0; mult 2 1 = 2;

| mult 2 2 = 4 |]

| [d| add 0 x = x; add 1 0 = 1;

| add 1 1 = 2; add 1 2 = 3;

| add 2 0 = 2; add 2 1 = 3;

| add 2 2 = 4 |]

| (\f -> f (+) 5 6 == 30)

| :}

\fa a b -> let fb (c@0) d = 0

fb (c@succe) d | succe > 0 = fa d (fb e d)

where e = succe - 1
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in fb a b :: (Int -> Int -> Int) -> Int -> Int -> Int

\fa a b -> let fb (c@0) d = 0

fb (c@succe) d | succe > 0 = fa (fb e d) d

where e = succe - 1

in fb a b :: (Int -> Int -> Int) -> Int -> Int -> Int

^CInterrupted.

:{ and :} are used in order to input a multi-line expression. This syntax of
GHCi is introduced to Version 7, and module MagicHaskeller.RunAnalytical

does not work with the version of GHCi, but the actual one-line input is hand-
edited into this syntax in order to fit the input line into the page width of this
paper. Also, the effect of the command for changing the prompts is actually
cancelled within the :{ . :} block, but we assume that it works there.

In this example, we used an action with letter F, namely quickStartF, in
order to avoid printing equivalent functions. Of course, we could use quickStart
here instead, though doing so in this case results in printing tons of expressions.
The two results printed are still equivalent if we limit the background knowledge
function to (+), but they are different if we use a non-commutative operator.
For this reason, these two functions are recognized as different.

4.3 Using types unknown to MagicHaskeller

The actions introduced so far only works for types known beforehand, whose
constructors appear in MagicHaskeller.CoreLang.defaultPrimitives. Types
that do not appear there can be dealt with in the following way:

> :{

| quickStartCF $(c [d| f [] = 0; f [a] = 1; f [a,b] = 2 |]) noBK

| (\f -> f "foobar" == 6)

| :}

\a -> let fa (b@([])) = 0

fa (b@(c : d)) = succ (fa d)

in fa a :: forall t6 . [t6] -> Int

^CInterrupted.

where the function c extracts the values of constructors appearing in the Oxford
bracket and hand them over to the quickStartCF action. The code block be-
tween $( and ) describes what should be spliced, and there must not be spaces
between $ and (.

5 Conclusions

This paper exemplified the usage and behavior of the newest version of Magic-
Haskeller . In addition to the usage of its older systematic exhaustive search
engine, that of the newly added analytical synthesis engine was also explained.
The new analytical synthesis engine is based on Igor II , but can generate many
hypothesis programs. By generating many programs analytically and testing
them, we can have a new synthesis system that is more powerful than Igor II .
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