
Verified Stack-Based Genetic Programming
via Dependent Types?

Larry Diehl

http://github.com/larrytheliquid/dtgp/tree/aaip11

Abstract. Genetic Programming (GP) can act as a powerful search
tool for many kinds of Inductive Programming problems. Much research
has been done exploring the effectiveness of various term representa-
tions, genetic operators, and techniques for intelligently navigating the
search space by taking type information into account. This paper ex-
plores the less familiar concept of formally capturing the invariants typ-
ically assumed by GP implementations. Dependently Typed Program-
ming (DTP) extends the type-level expressiveness normally available
in functional programming languages to arbitrary propositions in intu-
itionistic logic. We use DTP to express and enforce semantic invariants
relevant to GP at the level of types, with a special focus on type-safe
crossover for strongly typed stack-based GP. Given the complexity in-
volved in GP implementations and the potential for introducing logic
and runtime errors, we hope to help researchers avoid erroneously at-
tributing evolutionary explanations to GP run phenomena by using a
verified implementation.

1 Introduction

The goal of this work is not to come up with a novel GP algorithm with respect
to evolutionary performance, but rather give an example of a non-trivial but
verified and simple-to-understand GP implementation. As GP algorithms and
techniques increase in complexity and sophistication, it becomes more important
to verify that the parts and the whole of the algorithm are doing what is ex-
pected. Towards this end we present the groundwork of basic verified GP, with
special emphasis on correctness of the crossover operation.

While the earliest work in Genetic Programming used tree structures as
candidate solutions to a problem, many alternative representations have been
developed since (e.g., linear, graph, grammar-based). Flat linear structures are
conceptually simpler than nested trees and intimately familiar to functional pro-
grammers, yet still provide competitive evolutionary results compared to tree
representations [9]. As such, we will concentrate on developing a stack-based
genetic programming algorithm.

Researchers concerned with formal methods have produced many different
theorem provers that could be used to prove GP correctness properties. However,

? Accepted for presentation at the 4th International Workshop on Approaches and
Applications of Inductive Programming.

typical GP researchers are more familiar with programming languages than proof
assistants. Dependently typed languages such as Agda [6] are a nice fit because
they are expressive enough at the type level to enforce invariants present in GP,
while retaining the look and feel of a programming language rather than a proof
assistant.

After a general overview of stack languages and dependent types, the struc-
ture of the paper will follow a common classification scheme for GP:

– parameters: We will start with a non-dependently typed representation,
and investigate how to use standard affair dependent typing to ensure the
population size parameter is adhered to.

– representation: We will then modify our term representation to use pre-
cise dependent types, encoding arity information in the types of candidate
programs.

– evaluation function: We will then introduce an evaluation function for
evolved terms that is assured to terminate and not otherwise diverge, by
taking advantage of the host language’s totality requirement.

– genetic operators: We will then encode the property of transitivity into
the types of functions related to crossover, ensuring that ill-typed programs
never enter the population.

– initialization procedure: Finally, we will illustrate a basic procedure to
initialize our population, taking care to only randomly select programs that
match the type signature of the goal program.

1.1 Stack Languages

In stack-based languages such as Forth [3] there is no distinction made between
“constants” and “procedures”. Instead, each syntactic element is referred to as a
“word”. Every word can be modeled as a function which takes the previous stack
state as a value and returns the subsequent, possibly altered, state. For example,
consider a small language in the boolean domain, consisting of true, not, and
and. A word such as true (that would typically be considered a constant) has
no requirements on the input stack, and merely returns the input stack plus a
boolean value of “true” pushed on top. On the other hand, and requires the
input stack to have at least two elements, which it pops off and evaluates before
pushing their logical conjunction back onto the stack to replace them.

For monotypic languages like our example, simple typing rules emerge which
assign two natural numbers to each each word. The first represents the required
input stack length (the precondition), while the second represents the output
stack length (the postcondition). A sequence of such words forms a stack pro-
gram, for which an aggregate input/output pair exists.

During genetic operations such as crossover, stack programs must be manipu-
lated in some manner to produce offspring for the next generation. Tchnernev [8]
showed how to use arity information related to the consumed/produced stack
sizes to only perform crossover at points that will produce well-typed terms.
Tchnernev [9] has documented many different approaches to do this, but for
simplicity of presentation we will use 1-point crossover.

1.2 Dependent Types

Dependently typed languages allow arguments in type signatures to labeled (sim-
ilar to value-level variable bindings) and used elsewhere in type signature to de-
clare dependencies between types and values. This paper will use the dependently
typed language Agda [6] for all of its examples. 1 Agda is a purely functional
language like Haskell [2], but it is distinctively total (rather than partial) and
has a more expressive type system (allowing the type-checker to enforce more
properties).

At compile time, Agda programs must pass two checks to prove their total-
ity. Termination checking is accomplished by checking for structurally decreas-
ing recursive calls. Coverage checking is accomplished by requiring that every
type-correct value of a function’s arguments is accounted for in the function’s
definition. Consequently, Agda programs do not fail to terminate 2 or crash due
to unexpected input.

Thanks to totality of the language, any “value level” function can also be
used in type signatures to compute more precise typing requirements (without
running into undecidability of type-checking issues).

2 Parameters

For purposes of pedagogy, we will first consider how to represent a population
of terms/programs in a typical non-dependent functional programming style.
Thereafter, we will extend the example to use dependent types. 3

2.1 Population List

First, let’s create a new type representing the possible words to be used for some
evolutionary problem.

data Word : Set where

true not and : Word

This simple example language is intended to operate on the boolean domain
using well-known constants and functions. Of course, a stack program is not
merely a single word, but a sequence of them that we would like to execute in
order. The familiar cons-based list can serve as a container for several words, so
let us type it out.

1 It should be possible to translate examples to similar languages such as Epigram [4]
or Idris [1].

2 Agda programs can succeed to not terminate via coinductive definition and corecur-
sion, if controlled non-termination is what we want.

3 For a complete and proper tutorial on dependently typed programming in Agda, see
[6]

data List (A : Set) : Set where

[] : List A

:: : A → List A → List A

Term : Set

Term = List Word

Notice in particular the A : Set part of the list type. Set is the type of
types in Agda, and A is a label that acts like a variable, but at the level of type
signatures. In other words, we have created a polymorphic list type which is pa-
rameterized by the kind of data it can contain. Term is a specific instantiation of
lists that can hold the Words of our example language. Below are some examples
of programs we can now represent.

notNot : Term

notNot = not :: not :: []

anotherTrue : Term

anotherTrue = not :: not :: true :: []

nand : Term

nand = not :: and :: []

GP requires us to work on not one but a collection of several terms, referred
to as the population. Normally, this might be represented as a list of lists of
terms.

Population : Set

Population = List Term

While the type above is certainly functional, it leaves room for error. This
brings us to our first example of preserving some GP invariant with the help of
dependent types. Namely, the population that GP acts upon is expected to be
a certain size, and it should stay that size as GP progresses from one generation
to the next.

2.2 Population Vector

In the dependently typed world, an easy and effective way to ensure that some
invariant is held is to create a type that can only possibly construct values
that satisfy said invariant (“correctness-by-construction”). In our case, we would
like the population size parameter to be some natural number that we specify
when configuring the run. This brings us to one of the canonical examples of
a dependent type, the vector. We have already seen how the list type takes
a parameter to achieve polymorphism. Vectors take an additional parameter
representing their length.

data Vec (A : Set) : N → Set where

[] : Vec A zero

:: : {n : N} → A → Vec A n → Vec A (suc n)

Population : N → Set

Population n = Vec Term n

The empty vector has a constant length of zero. The length of a vector
produced by “cons” is the successor of whatever the length of the tail is. Given
such an inductive definition of a type, the natural number index of any given
vector can be nothing but its length. Just like our definition of Term, Population
is just a specific instantiation of a more general type (Vec).

As an example, here is a small population of the three terms presented earlier.

pop : Population 3

pop = notNot :: anotherTrue :: nand :: []

Once again, note that the type requires a population of exactly three terms.
If we were to supply any more or less, a type error would occur at compile
time. We have effectively moved checking of certain semantic properties of our
program to compile time, meaning much less can go wrong while the program
is running. 4

Now that we have seen how to construct a dependent type, let us see how
a function operating on Vec can make use of its properties. During selection,
GP will need to retrieve a candidate program from the population. An all-too-
common error (taught even in introductory level programming courses) is in-
dexing outside the bounds of a container structure. What means do we have to
prevent this from occurring? Ideally, the type of the parameter used to lookup a
member should have exactly as many values as the length of our vector. This way,
a bijection would exist between the lookup index type and the vector positions.

data Fin : N → Set where

zero : {n : N} → Fin (suc n)

suc : {n : N} → Fin n → Fin (suc n)

lookup : {A : Set} {n : N} → Fin n → Vec A n → A

lookup zero (x :: xs) = x

lookup (suc i) (x :: xs) = lookup i xs

The type of finite sets Fin has exactly n possible values for any Fin n. In the
lookup function the natural number index is shared between the finite set and
vector parameters. The effect of this sharing is that every finite set argument
has exactly as many possible constructions as the length of the vector argument,

4 In fact, the only other causes for concern are logic errors due to bad encodings by
the programmer. Typical runtime errors due to non-termination or lack of coverage
are disallowed by the compiler.

statically preventing any “index out of bounds” errors from occurring. Since our
Population is merely a specific kind of vector, we are able to use the safe lookup
when defining a function for the selection process.

3 Representation

In the previous section we represented the terms in our population as unadorned
lists of words. In order to perform type-safe crossover in a manner described by
[8], the type of our terms will need to be more telling.

3.1 Typing Derivation

It should come as no surprise that when we implement a type-safe version of
crossover, we will need to pay close attention to the types of the terms that
we are manipulating. Just as Vec had an extra natural number parameter for
its length, we desire a Term type with an extra parameter for the size of the
consumed/input stack, and another for the size of the produced/output stack.

Before showing a generalized list-like Term type for arbitrary languages, we
will take a look at a more traditional embedding of a typing relation into Agda.

data Term (inp : N) : N → Set where

[] : Term inp inp

true : {out : N} → Term inp out → Term m (1 + out)

not : {out : N} → Term inp (1 + out) → Term m (1 + out)

and : {out : N} → Term inp (2 + out) → Term m (1 + out)

Recall that the first parameter is the consumed stack size and the second
is the produced stack size. The empty term [] consumes some value inp and
produces a stack of the same size, acting as an identity program. Note also that
it has no premise, so it can be considered a type-theoretical axiom.

The other three constructors are parameterized by a previous Term value,
representing the premise of each typing rule. This Term representation should
be understood as follows: When considering Term 2 1 as a type alone, 2 and 3

represent the input and output stack sizes respectfully. Within the context of a
constructor with a Term premise, the “output” position of the premise represents
that word’s precondition while the “output” position of the conclusion represent’s
the word’s postcondition.

The true rule states that if we have some term which consumes some value
inp, and produces another arbitrary value out, then the conclusion allows us to
infer the existence of another term which has the same input and one additional
output. In other words, true has a precondition that will always hold and a
postcondition stating that the value in the precondition will be incremented by
one.

In the not rule, the premise’s precondition requires that the previous output
be more than just any arbitrary out. Instead, the previous output stack size

must be at least one, but can be greater. Because the out parameter was given
in braces, Agda treats this as an implicit argument that can be unified/inferred
according to other types in context. In this way, 1 + out can represent several
values such as 1 + 0 or 1 + 7. The conclusion of not allows us to infer the
existence of the another term of output stack size 1 + out. This fits with our
informal mental model of not requiring at least one argument to pop off the
stack, and pushing the logical negation back on.

Finally, and follows the same pattern, except it requires at least two values
and produces just one, leaving the output stack size exactly one less than what
it was previously.

As typing derivations, our previous list-based terms look like the following
(note that we have overloaded the constructors of the Word and Term types).

notNot : Term 1 1

notNot = not (not [])

anotherTrue : Term 0 1

anotherTrue = not (not (true []))

nand : Term 2 1

nand = not (and [])

andAnd : Term 3 1

andAnd = and (and [])

Our terms now have the extra consumption/production values in their type.
The andAnd term shows how the representation correctly composes the types of
several terms. The first and requires two values and produces one, which satisfies
one of the second and’s requirements, resulting in a final type of Term 3 1.

We can highlight that the input stack remains constant throughout subterms,
with an exploded view of each of the subterms in andAnd.

a : Term 3 3

a = []

b : Term 3 2

b = and a

c : Term 3 1

c = and b

3.2 Syntactic Non-Uniqueness

To avoid confusion, we will point out that in our representation, multiple syn-
tactically identical terms can have different types. Specifically, what can change
is the original number of arguments on the stack that the bottommost empty
constructor provides.

empty : Term 42 42

empty = []

nand’ : Term 6 5

nand’ = not (and [])

andAnd’ : Term 10 8

andAnd’ = and (and [])

Being able to represent multiple different types with a syntactically identical
subterm is a property that we will later exploit when defining functions to safely
split and recombine terms for crossover.

3.3 Derivation Abstraction

When writing functions over term types, it would be tedious to provide a case
for every word in the language. Correspondingly, we will extract the common
parts among the constructors of our language into a generic Term, which can be
thought of as abstracting out each of the typing rules presented above.

The trick is to use module parameters for the type of Words, as well as func-
tions for the premise/precondition and conclusion/postcondition of each rule.
The result is a generic list-like Term structure, and has the affect of making the
library not tied to any particular language to evolve.

module DTGP (Word : Set) (pre post : Word → N → N) where

data Term (inp : N) : N → Set where

[] : Term inp inp

:: : {n : N} (w : Word) → Term inp (pre w n) → Term inp (post w n)

pre : Word → N → N

pre true n = n

pre not n = 1 + n

pre and n = 2 + n

post : Word → N → N

post true n = 1 + n

post not n = 1 + n

post and n = 1 + n

open import DTGP Word pre post

Just like a List or a Vec, our new Term now only has an empty case and
a cons (::) case. Now we can rewrite our examples to look just like their
List counterparts, except with the extra useful consumption/production natural
numbers in their types.

notNot : Term 1 1

notNot = not :: not :: []

anotherTrue : Term 0 1

anotherTrue = not :: not :: true :: []

nand : Term 2 1

nand = not :: and :: []

andAnd : Term 3 1

andAnd = and :: and :: []

4 Evaluation Function

When comparing relative performance between evolved terms, one typically
needs to evaluate them to determine fitness . We will proceed to write an eval-
uation function for the example language we have used so far. Rest soundly
knowing that Agda will perform a termination and coverage check to prove the
totality of functions. Notice that the example below has a case for every possible
term and input vector, and uses the structurally smaller tail of the input term
in recursive calls.

eval : {inp out : N} → Term inp out → Vec Bool inp → Vec Bool out

eval [] is = is

eval (true :: xs) is = true :: eval xs is

eval (false :: xs) is = false :: eval xs is

eval (not :: xs) is with eval xs is

... | o :: os = ¬ o :: os

eval (and :: xs) is with eval xs is

... | o2 :: o1 :: os = (o1 ∧ o2) :: ns

eval (or :: xs) is with eval xs is

... | o2 :: o1 :: os = (o1 ∨ o2) :: os

In addition to the term to evaluate, eval takes a vector of booleans 5 whose
length inp is equal to the number of inputs the term expects. The return type
of the function is another vector of bools out, matching the evaluated term’s
output. Both of these properties are of course enforced statically, giving more
assurance that our algorithm is doing what we expect.

4.1 Fitness Function

Once again, we use a module to accept a general scoring/fitness function as a
parameter. Below is an example of a function that assigns a program (which

5 Do not be confused by the true/false constructors of the Bool type and Term types.
Agda can differentiate between overloaded constructor names, according to the type
they have in context.

accepts two inputs and produces one output) a score equal to the number of
provided examples for which it satisfies even parity.

module Evolution {inp out : N} (score : Term inp out → N) where

score : Term 2 1 → N

score xs = count (λ is → head (eval xs is) == evenParity is)

((true :: true :: []) :: (true :: false :: []) ::

(false :: true :: []) :: (false :: false :: []) :: [])

open Evolution score

5 Genetic Operators

When writing genetic operators, e.g. Tchnernev’s [8] 1-point crossover, we need
to take subsections of different terms and recombine them in a safe manner.
Tchernev points out that we need to split parent terms at a point of equal
output stacks to achieve safe recombination. This leads to a question: what is
the criterion for a safe append of two arbitrary terms after they have been split
in this manner?

5.1 Transitive Append

Terms may have different initial input stacks, and produce different outputs
according to their contained words. A safe append of two terms illustrates the
transitive property.

++ : {inp mid out : N} → Term mid out → Term inp mid → Term inp out

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

bc : Term 2 1

bc = and :: []

ab : Term 3 2

ab = and :: []

ac : Term 3 1

ac = bc ++ ab

If an attempt is made to append two terms whose input and output require-
ments do not satisfy one another, a compile error will occur. Using a function
with a such an informative type gives a high degree of confidence that we are
doing the right thing, when used inside another function such as a crossover. As
we shall soon see, the type of this function in fact gives us more than simple
confidence.

5.2 Transitive Split

Now that we have a function to safely recombine terms in a transitive way, we
need to come up with a compatible way to split a crossover parent. In DTP a
view [5] is a general technique for using a specialized type to reveal structural
information about another type. In our case, we want to view a term as an-
other type representing the two subsections it was split into. The following is a
derivative of the TakeView type in [7].

data Split {inp out : N} (mid : N) :

Term inp out → Set where

++’ : (xs : Term mid out) (ys : Term inp mid) → Split B (xs ++ ys)

The type above captures exactly how we would like split terms to be repre-
sented, such that they can be transitively recombined. The mid natural number
index reveals the satisfied pre/post condition point a term was split at, and the
term index is the value we are splitting. The constructor carries the two sub-
terms which share mid in a way that the resulting type can recombine the two
via xs ++ ys.

Given two parent terms split in such a way, crossover needs to produce two
offspring that swap the subterms at the splits. Functions for both of these swaps
can be straightforwardly defined.

swap1 : {inp mid out : N} {xs ys : Term inp out} →
Split mid xs → Split mid ys → Term inp out

swap1 (xs ++’ ys) (as ++’ bs) = xs ++ bs

swap2 : {inp mid out : N} {xs ys : Term inp out} →
Split mid xs → Split mid ys → Term inp out

swap2 (xs ++’ ys) (as ++’ bs) = as ++ ys

Dependent Pairs Given some term and a natural number, we would like to
split the term at an indexed position represented by the number. This function
will be the key to determining the split in the female parent of a crossover. Split
is specific enough to tell us the shared mid between the two subterms. However,
for the purposes of this function, we do not care what mid is (we would actually
like for the function to determine the split point for us).

data Σ (A : Set) (B : A → Set) : Set where

, : (x : A) → B x → Σ A B

A non-dependent pair, or tuple, carries 2 values of arbitrary types. In the
dependent version of pairs, the value in the first component is used to determine
the type in the second component. One common DTP technique is to use a
dependent pair to hide the index type of a return value when you don’t know or
care what it will be. For example, sometimes we would merely like to write down
a vector value and have the compiler determine the unique possible length.

specifiedLength : Σ N (λ n → Vec Bool n)

specifiedLength = 3 , true :: false :: true :: []

discoveredLength : Σ N (λ n → Vec Bool n)

discoveredLength = _ , true :: false :: true :: []

Note the use of an anonymous function in the type. Remember that in DTP
we can do anything at the type level that we can do at the value level, including
the use of the intimately-known λ. With this dependent pair trick up our sleeves,
we are prepared to define split.

split : {inp out : N} (n : N) (xs : Term inp out) →
Σ N (λ mid → Split mid xs)

split zero xs = _ , [] ++’ xs

split (suc n) [] = _ , [] ++’ []

split (suc n) (x :: xs) with split n xs

split (suc n) (x :: ._) | _ , xs ++’ ys =

_ , (x :: xs) ++’ ys

Because we are returning a Split value, the split will always hold two sub-
terms that can be transitively combined to produce the original. In this manner,
splitting andAnd results in two and :: [] values of type Term 2 1 and Term 3

2.

5.3 Type-Preserving Crossover

With the previous types and functions defined, defining a crossover function that
takes two parent terms of the same type and returns two child terms of the same
type is not far away.

Split Female For the first step in 1-point crossover we need to split the first
parent (referred to here as the “female”) at some random6 point. Thus, we need
to know the length of the female, then choose a random number, bounded by
that length.

length : {inp out : N} → Term inp out → N

length [] = 0

length (x :: xs) = suc (length xs)

splitFemale : {inp out : N} (xs : Term inp out) → N →
Σ N (λ mid → Split mid xs)

splitFemale xs rand with rand mod (suc (length xs))

... | i = split (toN i) xs

6 To keep the example as simple as possible, here we pass the random number as a
parameter to the function. The final implementation uses a standard State monad
containing a random number seed for increased modularity and to avoid mistakenly
reusing a random number.

Note that we use a mod function which returns a finite set representing the
modulus of its two arguments. The definition of this function can be found in
the supplementary source code, as it is not directly relevant to the explanation
at hand.

Based upon the mid index at which the female was split, the male split can
be determined by choosing a random member of all possible compatible splits.

splits : {inp out : N} (n mid : N) (xs : Term inp out) →
Σ N (λ n → Vec (Split mid xs) n)

splits zero mid xs with split zero xs

... | mid’ , ys with mid =? mid’

... | yes p rewrite p = _ , ys :: []

... | no _ = _ , []

splits (suc n) mid xs with split (suc n) xs

... | mid’ , ys with mid =? mid’ | splits n mid xs

... | yes p | _ , yss rewrite p = _ , ys :: yss

... | no _ | _ , yss = _ , yss

Propositional Equality In the definition of splits, we simultaneously split
at all possible positions within the male term, and filter out those possibilities
that will not allow for a successful transitive recombination.

It is intuitive that the algorithm must compare the target mid of the original
split to the mid’ in the current split. Normally, a comparison of two terms is
performed by passing them to a function that yields a boolean value, and han-
dling the true and false cases differently. However, we need a richer version of the
boolean type (the propositional equality type) whose values are associated with
extra type-level information that can be used to make a Split value typecheck.

Consider the yes p case (analogous to a typical true case) within the splits
zero case. We would like to return our freshly split ys value, but the type checker
will not allow it. Why is this? If we look at the type signature of splits, it
requires a Split mid xs, but ys is a Split mid’ xs. Luckily the =? comparison
function returned something more than just a boolean: it produced a constructive
proof that both compared values were in fact the same. We pass the proof p

(pattern matched as yes p) to Agda’s rewrite keyword to convince the type
checker that ys : Split mid’ xs is acceptable because mid ≡ mid’.

What can we take away from all this? The primary point of interest is that the
type checker requires formal constructive evidence in order to enforce invariants
prescribed by the programmer. In practice, this evidence is easy to work with, as
it is composed (as is everything else) of ordinary dependent types. The payoff is
confidence; the burden of verifying that a program behaves as expected is lifted
from the programmer’s shoulders and onto the type checker’s.

Split Male When we split the male parent, we choose a random member of
the type-correct splits. However, this function returns a value of type Maybe, so
that it may return nothing if there is no compatible split at all.

splitMale : {inp out : N} (xs : Term inp out) →
(mid rand : N) → Maybe (Split mid xs)

splitMale xs mid rand

with splits (length xs) mid xs

... | zero , [] = nothing

... | suc n , xss

= just (lookup (rand mod suc n) xss)

Note that the proof complexity in the implementation of splits is isolated.
Once we have a function definition that typechecks, we can freely use it without
having to repeat any work.

Finally, we can write crossover to combine the female and male splits, and
return both children using the swaps defined earlier.

crossover : {inp out : N}

(female male : Term inp out) (randF randM : N) →
Term inp out × Term inp out

crossover female male randF randM

with splitFemale female randF

... | mid , xs with splitMale male mid randM

... | nothing = female , male

... | just ys = swap1 xs ys , swap2 xs ys

In the case where no valid male swap exists, we return the original two
parents.

6 Initialization Procedure

At the onset of our GP run, we would like for our algorithm to operate on well-
typed candidate programs. As such, the initialization function must be sure to
only generate random type-correct programs with respect to our target program
to evolve. By now, it should come as no surprise that we can (and will) enforce
this requirement statically. A simple type-safe enumeration and filter strategy is
adopted below.

6.1 Type-Safe Enumeration & Filter

First, we want to enumerate all terms up to some max length that conform to a
given input stack size, enum-inp. Then, filter-out filters this result to include
only those terms that match the desired output stack size, as well. The final list
can be used as a pool to randomly select our population from.

enum-inp : (n inp : N) → List Word → List (Σ N λ out → Term inp out)

filter-out : {inp : N} (out : N) →
List (Σ N λ out → Term inp out) → List (Term inp out)

Dependent pairs are used once again, allowing us to return a list that is
homogenous for inp, but heterogeneous for out. In order to implement this, we
ask the user for a function that determines whether or not the precondition for a
word that we want to extend a term with can be satisfied by the current output
of said term.

module Initialization

(match : (w : Word) (out : N) → Dec (Σ N λ n → out ≡ pre w n))

where

Again, Initialization is another module, so the user is free to initialize
the population by another means.

Decidable Relations Dec is a polymorphic type constructor whose values
represent whether some proof of the type/proposition exists, or whether any such
proof would lead to bottom (“bottom”, or ⊥, is a type without constructors).

data Dec (P : Set) : Set where

yes : (p : P) → Dec P

no : (¬p : P → ⊥) → Dec P

match uses an existential proposition (dependent pair) inside Dec, and is total
like all Agda functions. It effectively requires either a witness that the word’s
precondition satisfies the term’s output, or a proof that no such satisfying value
exists. This means that the implementor need not worry about the search for a
suitable n ending too early, as can happen with Maybe (a type used commonly
in this kind of situation).

match not zero = no ¬p where

¬p : Σ N (λ n → 0 ≡ suc n) → ⊥
¬p (_ , ())

match not (suc n) = yes (n , refl)

The example above proves that when the output of a term is 0, the precondi-
tion for not is unsatisfiable7, and shows how to find a suitable n for any output
greater than zero.

The definition of enum-inp plainly extends type-safe terms from the recursive
call with the list of words argument (treating Dec similar to Maybe/partiality).
filter-out is implemented even more straightforwardly, once again using =? to
prove that the desired output is equal to what is returned.

7 A pair of empty parentheses is Agda syntax used to indicate to the type checker
that a value for this type is uninhabitable.

7 Conclusion

We have given an outline for a parameterized GP library whose operations are
verified using dependent types. The same library can be used to evolve languages
operating on domains besides booleans, such as the natural numbers, etc.

Dependent types can be used to enforce desired invariants by using informa-
tive data types and function type signatures. We have illustrated some basics
for creating a verified stack-based GP implementation using type-safe 1-point
crossover.

By building on a verified base, more complex GP algorithms can be created,
and evolutionary data can be analyzed with much greater confidence that errors
arising from implementation will not influence GP run behavior.

Hopefully, the examples presented herein can serve as a helpful template, to
assist authors in encoding invariants for their particular flavors of GP within the
context of dependently typed programming.

Finally, the techniques trivially extend to languages with multiple type stacks
by parameterizing the main module over the domain type (e.g. N × N), and
providing a decision procedure for said type. Taking this technique further to
evolve with arbitrary typing relations, rather than these Forth-like stacks, is
currently under investiation.

References

1. E. C. Brady. Idris —: systems programming meets full dependent types. In Pro-
ceedings of the 5th ACM workshop on Programming languages meets program veri-
fication, PLPV ’11, pages 43–54, New York, NY, USA, 2011. ACM.

2. S. P. Jones. Haskell 98 language and libraries: the revised report. Journal of
Functional Programming, 2003.

3. M. G. Kelly and N. Spies. FORTH: a text and reference. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1986.

4. C. Mcbride. Epigram: Practical Programming with Dependent Types. pages 130–
170. 2005.

5. C. Mcbride and J. Mckinna. The view from the left. J. Funct. Program., 14(1):69–
111, January 2004.

6. U. Norell. Dependently typed programming in agda. In In Lecture Notes from the
Summer School in Advanced Functional Programming, 2008.

7. N. Oury and W. Swierstra. The power of pi. In Proceeding of the 13th ACM
SIGPLAN international conference on Functional programming, ICFP ’08, pages
39–50, New York, NY, USA, 2008. ACM.

8. E. Tchernev. Forth crossover is not a macromutation? In J. R. Koza, W. Banzhaf,
K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg,
H. Iba, and R. Riolo, editors, Genetic Programming 1998: Proceedings of the Third
Annual Conference, pages 381–386, University of Wisconsin, Madison, Wisconsin,
USA, 22-25 July 1998. Morgan Kaufmann.

9. E. B. Tchernev. Stack-correct crossover methods in genetic programming. In
E. Cantú-Paz, editor, GECCO Late Breaking Papers, pages 443–449. AAAI, 2002.

