
An Analytical Inductive Functional Programming
System that Avoids Unintended Programs

Susumu Katayama

University of Miyazaki
1-1 W. Gakuenkibanadai, Miyazaki, Miyazaki 889-2192, Japan

skata@cs.miyazaki-u.ac.jp

Abstract. Inductive functional programming (IFP) is a research field ex-
tending from software science to artificial intelligence that deals with func-
tional program synthesis based on generalization from ambiguous specifi-
cations, usually given as input-output example pairs. Currently, the ap-
proaches to IFP can be categorized into two general groups: the analyti-
cal approach that is based on analysis of the input-output example pairs,
and the generate-and-test approach that is based on generation and testing
of many candidate programs. This paper proposes a new analytical induc-
tive functional programming system that generates, tests, and selects from
many program candidates. For generating many candidate programs, the
proposed system uses a new variant of Igor IIH , the exemplary analytical
inductive functional programming algorithm. This new system preserves the
efficiency features of analytical approaches, while being robust to changes
in the number of input-output examples while minimizing the possibility
of generating unintended programs. In addition, this research can be con-
sidered a milestone in the fusion of both approaches in that it provides an
analytical algorithm implemented in the same way as a generate-and-test
algorithm and reveals the strengths and weaknesses of both approaches.

1 Introduction

Inductive functional programming (IFP) algorithms automatically generate func-
tional programs from ambiguous specifications such as a set of input-output (I/O)
example pairs or a loose condition to be satisfied by inputs and outputs. The term
can include cases where no recursion is involved, as in genetic programming, but it
usually involves generation of recursive functional programs.

Currently, two approaches to IFP are under active development. One is the an-
alytical approach that performs pattern matching to the given I/O example pairs
(e.g., [1] which was used for implementing the Igor II system), and the other is the
generate-and-test approach that generates many programs and selects those that
satisfy the given condition (e.g., [2] which was used for implementing the Magic-
Haskeller system and [3] which was used for implementing the ADATE system).
Analytical methods are efficient in general, but they have limitations on how to
provide I/O relations as the specification, and, in general, the user has to provide
many I/O examples, beginning with the simplest one(s) and progressively increas-
ing their complexity. On the other hand, generate-and-test methods do not usually
have limitations on the specification to be given (except, of course, that it must be

written in a machine-executable form1), but tend to require more time compared
to analytical methods.

This paper considers the improvements that can be made to the algorithm be-
hind Igor II [1][4], which is the state-of-the-art analytical IFP system, to generate
many program candidates by rewriting it using Spivey’s monadic interface for com-
binatorial search [5]. The resulting algorithm has the following advantages:

– It can achieve the same properties as generate-and-test methods by generating
all possible programs by using the fixed set of operators

– It could be combined withMagicHaskeller , which also uses Spivey’s monadic
interface for implementation.

The first point will be amplified by considering the example of synthesizing the
reverse function, assuming it is not known how to implement it. Igor II requires
the trace (or the set of all I/O pairs that appear during computation) of the biggest
example as the set of examples, as in Table 1.2 In this case, the first four lines
are the computational traces of the last line and, hence, cannot be omitted. In
general, it is tedious to write down all the required elements in order to generate a
desired program, or a program with the intended behavior. Moreover, it is sometimes
necessary to consider which examples are necessary in order to reduce the number
for efficiency reasons. As a result, the user sometimes has to tune the set of examples
until a desired program is obtained within a realistic time span.

On the other hand, MagicHaskeller , which is a type of generate-and-test
system that uses systematic exhaustive search for generating programs, can generate
a desired program from only one example of reverse [1, 2, 3, 4, 5] ≡ [5, 4, 3, 2, 1].
Obviously, this example has enough information to specify the intended function
— the intention of the writer of this longer example is clear, while short examples
such as reverse [] = [] or reverse [a] = [a] can be interpreted in many different
ways.3 MagicHaskeller often succeeds in generalization from only one example
by the minimal program length criterion, or by selecting the shortest program that
satisfies the given specification. Likewise, it can be expected that the same effect
can apply even when using an analytical approach by analytically generating many
candidate programs based on the given few examples and selecting those that satisfy
one larger example, rather than generating a single candidate.

1 Some readers may think that termination within a realistic time span is another limi-
tation on the specification. Termination of the specification does not mean termination
of the test process within a realistic time span, because the latter involves execution of
machine-generated programs which may request arbitrary computation time. For this
reason, time-out is almost indispensable for systems like MagicHaskeller , and in this
case there is no such limitation on the specification.

2 Throughout this paper, Haskell ’s notation is used for expressions.
3 Of course, the well-known reverse function is not the only function that satisfies the
longer example. For example, there can be a case where we want to change the return
value only for []. This is not a problem, however, because no one would consider such
a function by only giving the example of reverse [1, 2, 3, 4, 5] ≡ [5, 4, 3, 2, 1], but most
people would add the example for [] in this case.

2 Preparation

This section introduces related IFP systems, Igor II and MagicHaskeller .

2.1 Igor II

The algorithm behind Igor II [1] synthesizes a recursive program that generalizes
the given set of I/O examples by regarding them as term-rewriting rules through
pattern matching. Early versions by Kitzelmann were written in Maude and in-
terpreted, but recent implementations are in Haskell , named Igor IIH [4], which
is a simple port, and Igor II+ [6], which is an extension with support of cata-
morphism/paramorphism introduction. Such support is known to result in efficient
algorithms, though this paper does not deal with those morphisms and, thus, is a
counterpart of Igor II and Igor IIH .

These algorithms run in the following way:

1. Obtain the least general generalization of the set of the I/O examples by antiuni-
fication. This step extracts the common constructors and allows the uncommon
terms to be represented as variables. Here, the same variable name is assigned to
terms with the same example set. Variables that do not appear in the argument
list represent unfinished terms.

2. Try the following operators4 in order to complete the unfinished terms. Then,
expressions with the least cost are kept, and others are abandoned. The cost
function will be explained later in this section.

Case partitioning operator introduces a case partitioning based on the con-
structor set of input examples, and tries this for each argument. Now, case
bodies can include new unfinished terms. Each case can be finished by ap-
plying this algorithm recursively, supplying each field of the constructor
application as additional inputs.

Constructor introduction 5 operator introduces a constructor, if all output
examples share the same one at the outermost position. Also introduce new
functions to all fields, and supply the same set of arguments for that of the
left hand side. Again, this part can be finished by applying this algorithm
recursively, because it is possible to infer the I/O relation of the new function
by reusing the same input example list and using each field of the constructor
applications as output examples.

Defined function call operator introduces either a function from the back-
ground knowledge (namely a predefined primitive function that works as a
heuristic) if available, or a function already defined somewhere (causing a

4 The term ‘operator’ is also used for ‘operator’ in ‘binary operator’. In order to avoid
confusion, in the latter case, either its arity or Haskell ’s operator name will always be
mentioned, for example, ‘(+) operator’.

5 This is usually called ‘introducing auxiliary functions’ (e.g., [6]), but in this paper it
is called ‘constructor introduction’, because 1) it is the common constructor that is
introduced specifically by this operator, 2) auxiliary functions are introduced even by
other operators, and 3) the term ‘auxiliary function’ can be confused with the third
operator.

Table 1. Example of synthesizing the reverse function using Igor IIH : the input source
text (taken from Version 0.7.1.3 of Igor IIH release) (left) and the resulting program
(right)

reverse [] = []
reverse [a] = [a]
reverse [a, b] = [b, a]
reverse [a, b, c] = [c, b, a]
reverse [a, b, c, d] = [d, c, b, a]

reverse [] = []
reverse (a0 : a1) = fun1 (a0 : a1) : fun2 (a0 : a1)
fun1 [a0] = a0
fun1 (: (a1 : a2)) = fun1 (a1 : a2)
fun11 (: (a1 : a2)) = a1 : a2
fun2 (a0 : a1) = reverse (fun5 (a0 : a1))
fun5 [] = []
fun5 (a0 : (a1 : a2)) = a0 : fun9 (a0 : (a1 : a2))
fun9 (a0 : (a1 : a2)) = fun5 (fun11 (a0 : (a1 : a2)))

recursive call). These functions are called defined functions in both cases,
and they are also represented as a set of I/O example pairs. Now, for each
defined function f , the Igor II algorithm tries to match the set of output ex-
amples that the unfinished term should return to that of f . Then, successful
f ’s are adopted here.
Each argument of f is unknown, and thus a new function is introduced here.
Again, it can finish this part by applying this algorithm recursively, because
the I/O relation of the new function can be inferred by reusing the same
input example list and using the input examples of the defined function as
output examples.

Catamorphism introduction (optionally with Igor II+) introduces cata-
morphism. This can make some synthesis tractable, while it can slow down
others. This operator is not yet included in the current implementation of
the proposed algorithm.

Table 1 shows an example of synthesizing the reverse function using Igor IIH .

Limitations of Igor II The Igor II algorithm has the following problems:

– Igor IIdoes not work correctly if we omit a line in the middle of the set of
I/O examples; taking an example of reverse, if we omit the fourth line stating
reverse [a, b, c] = [c, b, a] from Table 1, it fails to synthesize correctly.

– There are many possible combinations while matching the target function to a
defined function. Hence, an increase in the number of I/O examples easily slows
down the synthesis.

Those problems incur a trade-off between the efficiency and the accuracy: in
order to minimize the ambiguity a big example should be included in the example
set; however, this means that all the smaller examples also have to be included, and
as a result, the efficiency is sacrificed. This is problematic especially when examples
increase in different dimensions. In fact, some functions such as multiplication can-
not be synthesized by Igor IIH due to this trade-off. The proposed system solves
this trade-off.

Cost and preference bias When searching in a broad space, in which priority
order to try options is also an important factor in order to find answers in a realistic

Fig. 1. The structure of MagicHaskeller (left) and the proposed system (right).

time span. Igor IIdefines a cost function that returns a tuple of the number of case
distinctions, the number of open rules, etc., and the returned tuples are compared
in lexicographical order. The search is implemented statefully by keeping track of
the set of the best programs with the least cost.

Simply keeping track of the set of best programs is heap efficient, but that also
means that second-best programs measured by the given cost function are aban-
doned, thus making it difficult to salvage a right program when the best programs
are not actually those intended by the user.

2.2 MagicHaskeller

MagicHaskeller [7][8][9] is a generate-and-test method based on systematic search.
One of its design policies goes “Programming using an automatic programming sys-
tem must be easier than programming by one’s own brain”, and ease of use is its
remarkable feature compared with other methods. Unlike other methods requiring
users to write down many lines of programming task specification for each syn-
thesis, users of MagicHaskeller only need to write down the specification of
the desired function as a boolean function that takes the desired function as an
argument. For example, the reverse function can be synthesized by only writing
printOne $ λf → f "abcde" ≡ "edcba". This is achieved by not using heuristics
whose effectiveness is questionable and by enabling a general purpose primitive set
(called a component library) that can be shared between different syntheses. On
the other hand, because it searches exhaustively, its ability to synthesize big pro-
grams is hopeless. However, having heuristics and not doing an exhaustive search
does not always mean that an algorithm can synthesize big programs, unless it is
designed adequately and works well. According to benchmarks from the literature
[10] and inductive-programming.org6, at least it can be claimed that MagicHas-
kellerperforms well compared with other methods.

Figure 1(left)depicts the structure of MagicHaskeller . Its heart is the pro-
gram generator, which generates all the type-correct expressions that can be ex-
pressed by function application and λ abstraction using the functions in the given

6 http://www.inductive-programming.org/repository.html

component library as a stream from the smallest and increasing the size. The gen-
eration is exhaustive, except that MagicHaskeller tries not to generate syntacti-
cally different but semantically equivalent expressions. The generation of expressions
with the given type is equivalent to that of proofs for the given proposition under
Curry-Howard isomorphism, and the MagicHaskeller algorithm [2] is essentially
an extension of an automatic prover algorithm that can generate infinite number of
proofs exhaustively.[9] MagicHaskeller adopts the breadth-first search for gen-
erating infinite number of proofs, and this is achieved by using a variant of Spivey’s
monad for breadth-first search [11]. All the generated expressions are compiled and
tested by the given test function. By generating a stream of expressions progres-
sively from the smallest and testing them, the most adequate generalization of the
given specification that avoids overfitting comes first by the minimal program length
criterion.

The component library corresponds to the set of axioms in a proof system under
Curry-Howard isomorphism (e.g., [12]). It should consist of total functions includ-
ing constructors and paramorphisms / catamorphisms, because permitting partial
functions in the component library may make any type inhabited and causes search
space bloat. As a result,MagicHaskellerwith the default component library can-
not generate partial functions without an inhabited type, such as head :: [a] → a.

Early versions of MagicHaskeller try to detect and prune as many seman-
tically equivalent expressions as possible by applying known optimization rules.[2]
This involves guessing which in the component library are case functions, catamor-
phisms, or paramorphisms. Because such guessing does not work for user-defined
types, this optimization was once removed, but now it is available by an option or
by init075 action.

3 Proposed Algorithm

As mentioned in Section 1, the proposed algorithm is an Igor II -variant that gen-
erates many program candidates, which is implemented using Spivey’s monadic
framework for combinatorial search [11][5]. For this reason, Spivey’s framework is
first reviewed and then the actual implementation is described.

When describing the algorithm, first the design policy and then the (somewhat
simplified) algorithm are presented. The algorithm used for evaluation infers type
while generating programs in order to narrow the search space, though this part is
omitted in this paper.

3.1 Preparation: Monadic framework for combinatory search

Spivey [11][5] defined a very convenient interface to search strategies that simplifies
the task of writing combinatory search algorithms. It can be defined as an exten-
sion of Haskell ’s MonadPlus class (which means that the structure of the search
strategies is monadic and monoidal) with a new method wrap:

class MonadPlus m ⇒ Search m where
wrap ::m a → m a

MonadPlus class has two methods inherited from its parentMonad class, namely
return :: forall a. a → m a and (.) :: forall a b. m a → (a → m b) → m b, and

two monoidal methods, the unit mzero :: forall a. m a and the product mplus ::
forall a. m a → m a → m a. As usual, return is used to wrap a normal value
to make a search result, . to combine two successive search operations, mzero to
represent search failure, and mplus to try two alternatives (and msum to try a list
of alternatives). In addition, wrap is used for degrading the priority of the current
action.

Other monad-related functions from the standard library are also available. For
example, the following is a code that enumerates all integers that are results of
repeated addition, subtraction, and multiplication over 1, 2, and 3, ordered from
those with small number of operators progressively.

nums :: Search m ⇒ m Int
nums = fromList [1 . . 3] ‘mplus‘

wrap (liftM3 ($) (fromList [(+), (−), (∗)]) nums nums)
fromList = msum. map return

This way, Spivey’s monadic framework makes programming tasks of combinatorial
search quite simple. One can enumerate expressions by enumerating function heads,
enumerating their arguments by recursive calls, and applying them in the lifted way.
Additionally, you may have to filter out those functions and subexpressions that do
not satisfy the given constraints during enumeration.

In spite of the simplicity, this class covers useful search strategies like breadth-
first search, depth-first search, and depth-bound search with/without iterative deep-
ening. In addition, the design choice of using wrap method makes the algorithm
applicable to best-first search without the idea of the depth in a search tree as long
as the cost takes a natural number.

3.2 The design policy

The design policy is:

– First, candidates for the head (namely, the outermost function) explaining the
examples are searched for, and then the spine (namely, the set of arguments) is
formed for each of them by recursively synthesizing all the possible subexpres-
sions to which each of the head candidates can be applied. This is in the same
way as the nums example shown in Section 3.1. Also, MagicHaskeller is
implemented in the same way.

– Case partitioning can be introduced by regarding case functions as the head;
constructor introduction by regarding constructors as the head; and call for
defined functions by regarding the functions themselves as the head.

– Antiunification has two effects: detecting common constructors and detecting
subexpressions changing together; the former can be considered as a part of case
partitioning and constructor introduction, and the latter can be implemented as
a new operator projection function introduction which finalizes the synthe-
sis of the current subexpression by finding an argument whose examples unify
with the return value examples.

– Argument subexpressions are finished to form a spine by lazy recursive calls
at once rather than explicitly representing unfinished expressions for now and
then finishing them later by recursive calls as in Igor IIH . Since lazy evaluation

works, unbound variables can be identified with thunks, and it can be claimed
that Igor IIH explicitly implements the lazy evaluation part of the proposed
algorithm.

– All the search operators (except catamorphism introduction for now) are tried
sooner or later, and this is implemented by taking their msum.

– For now, only natural costs are used. Cost n can be introduced by applying
the wrap function (which is the function that lowers the priority by one depth
in the Spivey’s interface) n times. Case partitionings are assigned more cost
than other operators because they cost in Igor II . Constructor introduction
and projection function introduction are assigned the least cost, because they
correspond to antiunification, which supersedes other operators.

3.3 Outline of the algorithm

The simplified algorithm takes the tuple of the set of I/O pairs specifying the desired
function and the sets of I/O pairs specifying defined functions, and it returns the
prioritized set of generalized functions in the form of Spivey’s search monad. If we
call the function synthesize, it adds the current target I/O pairs to the set of defined
functions, tries the four operators (which can be achieved by just adding the four
computations with the mplus method), and calls the synthesize function recursively
in order to synthesize the arguments by solving the induction problems from the
I/O pairs that are presented by each of the operators.

3.4 Abstract definitions of the four operators

The proposed algorithm does not antiunify, and it has an additional operator, pro-
jection function introduction, instead. This section is devoted to providing with
abstract definitions of these operators.

Projection function introduction is the simplest operator. Under the condition of

∀j ∈ {1...m}. f xj1 ... xji ... xjn = xji

it induces
∀v1...vn. f v1 ... vi ... vn = vi

This operator is tried for each argument i ∈ {1...n}.

Constructor introduction extracts a common constructor among the output exam-
ples of the I/O pairs of the given target function f . Under the condition of

∀j ∈ {1...m}. f xj1 ... xjn = C yj1 ... yjq

it induces
∀v1...vn. f v1 ... vn = C (h1 v1 ... vn) ... (hq v1 ... vn)

where
∀i ∈ {1...q}.∀j ∈ {1...m}.hi xj1 ... xjn = yji

and q is the arity of C. Further induction of h1...hq from the newly introduced I/O
pairs is required unless C is nullary.

In practice, C need not be a constructor but can be a function from a library.
When this is permitted, synthesis from, e.g.,

sum [] = 0
sum [x] = x
sum [x , y] = x + y
sum [x , y , z] = x + (y + z)

is also possible.

Case partitioning focuses on an argument of the target function f , and puts together
I/O pairs with such actual arguments that share the same constructor. Under the
condition of

∀j ∈ {1...q}.∀k ∈ {1...pj}.
f xjk1 ... xjk(i−1) (Cj zk1 ... zkoj) xjk(i+1) ... xjkn = yjk

it induces

∀j ∈ {1...q}.∀v1...vn.∀u1...uoj .

f v1 ... vi−1 (Cj u1 ... uoj) vi+1 ... vn = hj v1 ... vi−1 vi+1 ... vn u1 ... uoj

where

∀j ∈ {1...q}.∀k ∈ {1...pj}.
hj xjk1 ... xjk(i−1) xjk(i+1) ... xjkn zk1 ... zkoj = yjk

Further inference of h1...hq from the newly introduced I/O pairs is required. This
operator is tried for each argument i ∈ {1..n}.

Note that this definition is slightly different from case partitioning of Igor II .
In the proposed algorithm, the number of cases is equivalent to that of construc-
tors that appear, while Igor II is more liberal about the number of cases and may
put together I/O pairs with different constructors. Also, case partitioning of the
proposed algorithm removes constructors, while that is done by antiunification of
Igor II .

Defined function introduction matches the output examples of the target function
f to those of a defined function g. Under the condition of

∀j ∈ {1...m}. f xj1 ... xjn = θj(wrj)

∀i ∈ {1...p}. g zi1 ... ziq = wi

for existing substitutions θ1...θm and r1...rm ∈ {1...p}, it induces

∀v1...vn. f v1 ... vn = g (h1 v1 ... vn) ... (hq v1 ... vn)

where
∀k ∈ {1...q}.∀j ∈ {1...m}. hk xj1 ... xjn = θj(zrjk)

Further inference of h1...hq from the newly introduced I/O pairs is required.
This operator is tried for each selection of defined function g and for each selection
of rj |j∈{1...m}. Then, the loop checker checks if g is called with a “smaller” argument
list in a well-formed sense than when g was first called.

3.5 Implementation of the four operators

The implementation of the four operators comes from interpretation of their abstract
definitions.

All the applicable operators are tried, and if there are multiple possibilities
within the operators, all of them are tried. This can be implemented by adding all
the possibilities with mplus.

The applicability of each operator is decided by pattern matching. When the
operators is defined in the format of “Under the condition of A it infers B (where
C)” in Section 3.4, the target I/O examples for f is matched to A, and all the
corresponding B’s represent the induced programs.

Operators other than projection function introduction have the “where C” part,
which defines the I/O examples for synthesizing the subexpressions recursively.

3.6 Efficient matching using a generalized trie

For each defined function and for each output example of the target function, the
defined function introduction operator collects all the output examples of the defined
function that the target output example matches to. The naive implementation of
this process executes matching mn times for each defined function, where m denotes
the number of I/O examples of the target function, and n denotes that of the defined
function, and thus forms a bottleneck here. Our idea is to use the generalized trie
[13] indexed by the output example expressions and to put all the I/O examples into
the trie. Then, the n examples can be processed at once while descending the trie,
by collecting values whose keys match the given expression. This is possible because
the indexing of such generalized tries reflects the data structure of the index type,
unlike hash tables.

Although it is difficult to be specific about the time complexity of the resulting
algorithm, the algorithm reduces the computation time a great deal, and matching
is not the bottleneck any longer.

4 Experimental Evaluation

This section presents the results of the evaluation of the proposed system empirically
on its time efficiency and robustness to changes in the set of I/O examples. Here
the term “the proposed system” means the system that executes the algorithm
introduced in Section 3 and filters the resulting stream of programs with the user-
supplied test function. (Figure 1(right)) The reader should note that users of the
proposed system have to write the test function, as well as the I/O example pairs,
while users of MagicHaskellerhave only to write the test function.

4.1 Experiment conditions

Compared systems The proposed system was compared with the nolog release
of Igor IIH Ver. 0.7.1.2, which is the latest nolog release (or release without log-
ging overhead) at the time of writing, and with MagicHaskellerVer. 0.8.5-1.
Comparisons with other conventional inductive programming systems are omitted

since comparisons between conventional systems including Igor IIH and Magic-
Haskeller on the same programming tasks are already in the literature ([10] and
inductive-programming.org6).

As for the search monad for the proposed system, based on preliminary exper-
iments, Spivey’s monad for breadth-first search [11] was selected over other alter-
natives that fit into Spivey [5]’s interface, such as depth-bound search and their
recomputing variants, such as the Recomp monad [2].

MagicHaskellerwas initialized with its init075 action, which means that ag-
gressive optimization without proof of exhaustiveness was enabled, like in its old
stand-alone versions. By default, MagicHaskellerdoes not look into the contents
of each component library function (or background knowledge function in the ter-
minology of analytical synthesis) but only looks at their types. With init075 action,
however, it prunes the redundant search by guessing which are consumer functions
such as case functions, catamorphisms, and paramorphisms, though some expres-
sions with user-defined types may become impossible to synthesize due to language
bias. This condition is fairer when compared with analytical approaches that know
what case functions do.

Set of programming tasks Table 2 shows the test functions of the target func-
tions used for filtering the generated programs. These test functions are higher-order
predicates that the target functions should satisfy, and they were supplied to Mag-
icHaskeller and the testing phase of the proposed system without modifications.

Their expected behaviors are not shown in this paper explicitly, mainly due to
the page limit. They are explained in the benchmark site6, though we believe that
their test functions explain what the target functions are supposed to do and that
usual human mind can generalize from the examples correctly with the hint of their
names.

The left column of Table 2 shows the set of function names that were to be
synthesized. They were selected by the following conditions:

– their I/O example pairs that are usable for synthesis are bundled in the Igor IIH
release, and

– they have already been compared with MagicHaskeller somewhere.

The second condition is about the adequacy of the task, and it was decided
not to exclude those whose evaluation is temporarily postponed at the benchmark
site6. Those programs that are too easy and require less than 0.5 second on all
the systems were also excluded from the table. All of the other functions that were
correctly answered by Igor IIH within five minutes are included, provided that they
satisfy the above conditions.

The first condition is included in order to fix the I/O example set by using
those bundled as is. In analytical synthesis, the efficiency largely depends on the
number of examples (except for the cases where the computation finishes instantly).
For example, the set of I/O example pairs bundled in Igor IIH for generating (≡)
compares two natural numbers between 0 and 2 in 9 ways — recursive programs
could not be obtained if there were only 4 examples, while the computation would
not be completed in a realistic time if there were 16 examples. Due to this problem,

Table 2. Test functions for target functions used to filter results from MagicHas-
keller and the proposed system.

name test function

addN addN 3 [5, 7, 2] ≡ [8, 10, 5]
allodd allodd [3, 3] ∧ ¬ (allodd [2, 3]) ∧ allodd [1, 3, 5] ∧ ¬ (allodd [3, 7, 5, 1, 2])

andL
¬ (andL [True,False]) ∧ andL [True,True]

∧ andL [True,True,True] ∧ ¬ (andL [False,True,True])
concat concat ["abc", "", "de", "fghi"] ≡ "abcdefghi"

drop drop 3 "abcde" ≡ "de"

(≡) 3 ≡ 3 ∧ ¬ (4 ≡ 6) ∧ 0 ≡ 0 ∧ ¬ (2 ≡ 0) ∧ ¬ (0 ≡ 2) ∧ ¬ (3 ≡ 5)
evenpos evenpos "abcdefg" ≡ "bdf"

evens evens [4, 6, 9, 2, 3, 8, 8] ≡ [4, 6, 2, 8, 8]
fib fib 0 ≡ 1 ∧ fib 1 ≡ 1 ∧ fib 3 ≡ 3 ∧ fib 5 ≡ 8 ∧ fib 7 ≡ 21
head head "abcde" ≡ ’a’

init init "foobar" ≡ "fooba"

(++) "foo"++ "bar" ≡ "foobar"

last last "abcde" ≡ ’e’

lasts lasts ["abcdef", "abc", "abcde"] ≡ "fce"

lengths lengths ["abcdef", "abc", "abcde"] ≡ [6, 3, 5]
multfst multfst "abcdef" ≡ "aaaaaa"

multlst multlst "abcdef" ≡ "ffffff"

negateAll
negateAll [True,False,False,True] ≡ [False,True,True,False]

∧ negateAll [False,True,False] ≡ [True,False,True]
oddpos oddpos "abcdef" ≡ "ace" ∧ oddpos "abc" ≡ "ac"

reverse reverse "abcde" ≡ "edcba"

shiftl shiftl "abcde" ≡ "bcdea"

shiftr shiftr "abcde" ≡ "eabcd"

sum sum [7, 3, 8, 5] ≡ 23
swap swap "abcde" ≡ "badce"

switch switch "abcde" ≡ "ebcda"

take take 3 "abcde" ≡ "abc"

weave weave "abc" "def" ≡ "adbecf"

pragmatically it makes little sense to insist that an algorithm is quicker by some
seconds if the example set is fine-tuned.

For this reason, the same set of I/O pairs as that included in Igor IIH -0.7.1.2
was used for analytical synthesis, namely, Igor IIH and the proposed system. That
said, some I/O example sets bundled in Igor IIH -0.7.1.2 are obviously inadequate
in that they seem not to supply enough computational traces. In Section 4.3, it will
be shown what number of examples is enough and not too big for the corrected sets
of examples.

No background knowledge functions were used by Igor IIH and the proposed
system except the use of addition for the fib task.

Environment The experiments were conducted on one CPU core of the Intel R©
Xeon R©CPU X3460 2.80 GHz. The source code was built with Glasgow Haskell
Compiler Ver. 6.12.1 under the single processor setting.

Table 3. Benchmark results (left) and results for different number of I/O examples (right).
“#exs.” means the number of examples. Each number (except those below “#exs.”)
shows the execution time in seconds, rounded to the nearest integer. This is the time
until the first program is obtained for MagicHaskeller and the proposed system. >300
represents that there was no answer in 5 minutes. Slashed-out numbers like �0 mean that
the result was wrong, that is, the behavior of the generated function to unspecified I/O
pairs did not reflect the user’s intension. ∞ means “impossible in theory” — this is only
used for MagicHaskeller , when the requested function is a partial function without
inhabited type and thus cannot be synthesized with the default primitive component set
of MagicHaskeller .

Igor IIH MagH proposed

addN 25 0 2
allodd >300 4 >300
andL 0 0 1
concat >300 3 >300
drop >300 0 0
(≡) 3 22 0
evenpos 0 8 0
evens �0 93 >300
fib >300 16 >300
head 0 ∞ 0
init 0 3 0
(++) 3 0 0
last 0 ∞ 0
lasts 0 35 0
lengths �1 1 0
multfst 0 4 0
multlst 0 1 0
oddpos 0 8 0
reverse 0 0 0
shiftl 0 4 0
shiftr 0 42 0
sum >300 0 >300
swap 0 >300 0
switch 0 >300 0
take 0 7 0
weave >300 142 0

name #exs. Igor IIH proposed

addN

3 �0 > 300
6 �0 7
9 �0 6

12 �0 2
15 �0 0
18 35 3
21 > 300 > 300

allodd

6 �0 > 300
10 �0 0
15 > 300 26
21 > 300 > 300

andL

1 �0 > 300
3 �0 0
7 0 0

15 0 1
31 > 300 > 300

concat

3 �0 0
6 �0 0
9 �0 0

13 > 300 > 300

drop

4 �0 0
6 �0 0
9 > 300 0

12 > 300 0

4.2 Efficiency evaluation

The first experiment compares the efficiency of the proposed system with that of
other systems using the same I/O examples as those bundled in the Igor IIH release
in order to make sure that the proposed system does not sacrifice the efficiency.

Table 3 (left)shows the benchmark results under the condition described in the
previous section.

Comparisons between analytical systems The proposed system successfully
avoids generating wrong functions by generating many programs and filtering them
with a test condition. For all the cases where Igor IIH generated the wrong result, it

either returned a correct result or did not terminate. Since yielding a wrong result
is just as misleading and no better than not yielding anything, at this point the
proposed system is at least as good as Igor IIH .

In addition, the proposed system is as fast as or faster than Igor IIH except
when synthesizing andL, if the time required for human users to enter the test
condition is ignored. The reason Igor IIH is quicker than the proposed system on
andL is because it specializes defined function introduction to direct calls, or calls
with target function arguments.

On the other hand, the main reason the proposed system was faster than Igor IIH is
because a novel efficient algorithm for trying to match many expressions at once,
which was presented in Section 3.6, was developed. This algorithm does not have a
direct connection with Spivey’s monad and could be applied to Igor IIH .

Comparison with MagicHaskeller When there are some case partitionings,
MagicHaskeller tends to require more computation than analytical systems,
which is why it cannot generate swap or switch in five minutes. Although both
analytical systems and MagicHaskellerprioritize the search based on some cost
functions, current versions of MagicHaskellerdefine the cost of a function as the
number of function and constructor applications in the curried form, and thus hav-
ing some functions with a bigger arity (like case functions) results in less priority.
The cost function of MagicHaskellermay have room for tuning.

Also, MagicHaskellerwith the default component library cannot generate
partial functions without inhabited types such as head :: forall a. [a] → a and
last :: forall a. [a] → a.

On the other hand, since analytical systems cannot generate tail-recursive func-
tions, they generate such functions in their linear recursive form. This sometimes
results in unnecessarily complicated function definitions.

These facts could be suggested from benchmark results on conventional systems.
However, by comparing Igor IIH and MagicHaskellerwith an analytical system
implemented in the same way as MagicHaskeller , it has become even clearer
whether each difference is due to that in the implementation or that in the paradigm.
Now that it has been shown that there is an obvious difference in the strengths and
weakness of both approaches, a fusion of both approaches will hopefully improve
the overall performance.

4.3 Robustness to changes in I/O examples

The main purpose for adding a generate-and-test aspect to the analytical IFP is to
obtain a system that works as expected for a variety of I/O example sets. In this
section, the robustness of the proposed system to variation in the number of I/O
example pairs is empirically evaluated in comparison with that of Igor IIH .

In this experiment, the raw sets of I/O examples from the Igor IIH release were
not used; rather, an edited version with enough computational traces was used,
since several sets are tested for each target function. When n I/O example pairs
are required, the first n examples of the longest set of I/O examples are used.
For example, Table 4 shows the set of I/O examples used for synthesis of addN ;

Table 4. Set of I/O examples of addN used for evaluating the robustness of the analytical
systems.

addN :: Int → [Int] → [Int]
addN 0 [] = []
addN 1 [] = []
addN 2 [] = [] -- 3 examples
addN 0 [0] = [0]
addN 0 [1] = [1]
addN 0 [2] = [2] -- 6 examples
addN 0 [0, 0] = [0, 0]
addN 0 [0, 1] = [0, 1]
addN 0 [1, 0] = [1, 0] -- 9 examples
addN 1 [0] = [1]

addN 1 [1] = [2]
addN 1 [2] = [3] -- 12 examples
addN 1 [0, 0] = [1, 1]
addN 1 [0, 1] = [1, 2]
addN 1 [1, 0] = [2, 1] -- 15 examples
addN 2 [0] = [2]
addN 2 [1] = [3]
addN 2 [2] = [4] -- 18 examples
addN 2 [0, 0] = [2, 2]
addN 2 [0, 1] = [2, 3]
addN 2 [1, 0] = [3, 2] -- 21 examples

when synthesizing from six I/O example pairs the lines from addN 0 [] = [] to
addN 0 [2] = [2] (and the line for the type signature) are used.

This experiment was only performed for the first five functions. Other conditions
are the same as those in the previous section.

Table 3 (right)shows the results of the experiments. The results clearly show the
merit of the proposed system, where, especially for addN , andL, concat , and drop the
proposed system correctly generated a desired program from 3 or 6 examples and the
test function, while Igor IIH is satisfied with the most simple program explaining
the analyzed I/O example pairs and does not synthesize expected functions from a
small set of examples. As can be seen from Table 4, the first 6 examples of addN
simply return the second argument, and therefore Igor II cannot do that even if a
test process is added. On the other hand, the proposed system, residing between
Igor IIH and MagicHaskeller , generates a desired program even in such a hard
situation.

5 Conclusions and Future Work

An analytical IFP algorithm that can generate a stream of programs that gener-
alize the given specification from the simplest to the least simple, instead of just
generating the simplest program(s), was created.

By adding the generate-and-test feature to analytical synthesis, this algorithm
solved the trade-off between the efficiency and the accuracy Igor IIhad been suf-
fering from. As a result, a desired program can be obtained without giving many
I/O example pairs, and some functions that could not be synthesized analytically
have become able to be synthesized.

In addition, by making the implementation of the new analytical IFP algorithm
closer to that of MagicHaskeller , it has now become clear that both analyt-
ical and generate-and-test approaches have different strong points. This suggests
that a complementary fusion of both approaches should be promising. As well, the
threshold to fusing both approaches has been lowered. One option for fusing the
software could be by adding a new operator that generates subexpressions by using
MagicHaskeller and filters them by their I/O examples.

As for the efficiency, the new implementation is quicker than Igor IIH in most
cases. However, as mentioned in Section 2.1, it should be noted that this result
is not compared with the newest Igor II+ . Further efficiency improvements using
catamorphism or paramorphism introduction remain for future work.

Acknowledgements

Dr. Martin Hofmann kindly introduced the author to the implementation details of
Igor IIH and answered the author’s many questions. This work was supported by
JSPS KAKENHI 21650032.

References

1. Kitzelmann, E.: Data-driven induction of recursive functions from input/output-
examples. In: AAIP’07: Proceedings of the Workshop on Approaches and Applications
of Inductive Programming. (2007) 15–26

2. Katayama, S.: Systematic search for lambda expressions. In: Sixth Symposium on
Trends in Functional Programming. (2005) 195–205

3. Olsson, R.: Inductive functional programming using incremental program transforma-
tion. Artificial Intelligence 74(1) (1995) 55–81

4. Hofmann, M., Kitzelmann, E., Schmid, U.: Porting IgorII from maude to haskell.
In Schmid, U., Kitzelmann, E., Plasmeijer, R., eds.: Approaches and Applications of
Inductive Programming, Third International Workshop, AAIP 2009. Volume 5812 of
LNCS. (2010) 140–158

5. Spivey, J.M.: Algebras for combinatorial search. Journal of Functional Programming
19 (July 2009) 469–487

6. Hofmann, M., Kitzelmann, E.: I/O guided detection of list catamorphisms: towards
problem specific use of program templates in ip. In: Proceedings of the 2010 ACM SIG-
PLAN workshop on Partial evaluation and program manipulation. PEPM ’10 (2010)
93–100

7. Katayama, S.: Power of brute-force search in strongly-typed inductive functional
programming automation. In: PRICAI 2004: Trends in Artificial Intelligence. Volume
3157 of LNAI., Springer-Verlag (August 2004) 75–84

8. Katayama, S.: Systematic search for lambda expressions. In: Trends in Functional
Programming. Volume 6., Intellect (2007) 111–126

9. Katayama, S.: Recent improvements of MagicHaskeller. In Schmid, U., Kitzelmann, E.,
Plasmeijer, R., eds.: Approaches and Applications of Inductive Programming, Third
International Workshop, AAIP 2009. Volume 5812 of LNCS. (2010) 174–193

10. Hofmann, M., Kitzelmann, E., Schmid, U.: A unifying framework for analysis and eval-
uation of inductive programming systems. In: Proceedings of the Second Conference
on Artificial General Intelligence. (2009)

11. Spivey, J.M.: Combinators for breadth-first search. Journal of Functional Program-
ming 10(4) (2000) 397–408

12. Barendregt, H.: Lambda calculi with types. In Abramsky, S., Gabbay, D.M., Maibaum,
T.S.E., eds.: Handbook of Logic in Computer Science. Volume 2., Oxford University
Press (1992) 117–309

13. Hinze, R.: Generalizing generalized tries. Journal of Functional Programming 10(4)
(2000) 327–351

