
MagicHaskeller: System demonstration

Susumu Katayama

University of Miyazaki
1-1 W. Gakuenkibanadai, Miyazaki, Miyazaki 889-2192, Japan

skata@cs.miyazaki-u.ac.jp

Abstract. This short paper introduces the usage and behavior of Mag-
icHaskeller , which is one of the representative inductive functional
programming systems. AlthoughMagicHaskeller had been a generate-
and-test method based on systematic exhaustive search, an analytical
synthesis engine was added to its recent versions, which enables a new
method that generates many programs analytically from the given in-
sufficient set of input-output examples and tests those programs with a
separately given predicate. This paper mentions both engines.

1 Overview

MagicHaskeller [Katayama(2005b)] is an inductive functional programming
system based on systematic exhaustive search. Inductive functional programming
(IFP) is a form of programming automation, where recursive functional programs
are synthesized through generalization from the ambiguous specification usually
given as a set of input-output pairs. Currently, there are two approaches to
IFP: analytical approach that synthesize programs by looking into the input-
output pairs and conducting inductive inference, and generate-and-test approach
that generates many programs and picks up those that satisfy the specification.
MagicHaskellerhas been playing the representative role as the generate-and-
test method based on systematic exhaustive search since the first binary release
in 2005. Since its Version 0.8.6 release, analytical search algorithm has been
added, and a new approach that could be called analytically-generate-and-test
approach has been made possible, where the analytical synthesizer generates
many programs from the given insufficient set of input-output examples and picks
up those that satisfy the predicate separately given as a part of the specification.
In this short demonstration paper, we present how to use both synthesis engines
and the results from use of them.

2 Building and installation

MagicHaskellerhas been developed in Haskell and its recent versions are
released as a library. In order to build and install its copy, first you need to
install Version 6.10.* or 6.12.* of Glasgow Haskell Compiler (GHC). Although
Version 0.8.6.1 of MagicHaskeller can be build with Version 7 of GHC, its

analytically-generate-and-test functionality does not work with this version of
GHC.

Also, in order to ease the installation process you should have the Cabal
[Jones(2005)] package that is the standard framework for distributing Haskell
programs. In addition, if cabal-install package is installed, simply typing

cabal update

cabal install MagicHaskeller

builds and installs the MagicHaskeller system into the user’s home directory.
Implemented as a library, the typical usage of MagicHaskeller is to use it

within Glasgow Haskell Compiler interactive (GHCi), like QuickCheck
[Claessen and Hughes(2000)]. This is achieved by invoking GHCi with -package

MagicHaskeller option. The language extension with Template Haskell
[Sheard and Peyton Jones(2002)] is also necessary if you want to do various
things by using its oxford bracket syntax. Thus, MagicHaskeller is usually
invoked with

ghci -package MagicHaskeller -XTemplateHaskell

In this paper, when quoting use of the interactive system, we always supply the
-v0 option which means verbosity level 0, in order to avoid clutter.

3 The modules for exhaustive search

The systematic exhaustive search modules define functions that generate all the
programs (up to semantical equivalence) which can be constructed using the
given primitive set with function applications and lambda abstractions, as an
infinite stream[Katayama(2005a)]. They also define functions for testing the gen-
erated programs to leave only the programs that satisfy the given specification.
The algorithm used for generating the stream of programs effectively enumer-
ates all the proofs for the proposition corresponding to the given type under
Curry-Howard isomorphism, based on sequent calculus.[Katayama(2010)]

The greatest feature of these modules is that they can synthesize programs
by only selecting the primitive set and writing the specification in the form of
a predicate. The specification need not be a set of input-output pairs. The type
of the function has to be notified to the algorithm, but the user need not give it
explicitly. It can be inferred from the specification given as a predicate.

To the end of this section, we exemplify the usage of the systematic exhaus-
tive search engine. More examples can be found in [Katayama(2006)], though it
describes an older version of MagicHaskeller .

3.1 A simple example

This is an example of having MagicHaskeller synthesize functions that takes
"abc" and returns "aabbcc":

$ ghci -package MagicHaskeller -XTemplateHaskell -v0

Prelude> :m +MagicHaskeller.LibTH

Prelude MagicHaskeller.LibTH> init075

Prelude MagicHaskeller.LibTH> printAll $ \f -> f "abc" == "aabbcc"

\a -> list_para a [] (\b _ d -> b : (b : d))

\a -> list_para a (_ -> []) (\b _ d _ -> b : (b : d 0)) 0

\a -> list_para a (_ -> []) (\b _ d _ -> b : (b : d 0)) 0

\a -> list_para a (_ -> []) (\b _ d _ -> b : (b : d True)) True

\a -> list_para a (_ -> []) (\b _ d _ -> b : (b : d True)) False

\a -> list_para a (_ -> []) (\b _ d _ -> b : (b : d False)) True

\a -> list_para a (_ -> []) (\b _ d _ -> b : (b : d False)) False

\a -> list_para a (_ -> []) (\b _ d _ -> b : (b : d [])) []

\a -> list_para a (_ -> []) (\b _ d _ -> b : (b : d [])) a

\a -> list_para a (_ -> []) (\b c d _ -> b : (b : d c)) a

\a -> list_para a (_ -> []) (\b c d _ -> b : (b : d c)) []

\a -> list_para a (_ -> []) (\b _ d _ -> b : (b : d Nothing)) Nothing

\a -> list_para a (\b -> b) (\b _ d e -> b : (b : d e)) []

\a -> list_para a (\b -> b) (\b c d _ -> b : (b : d c)) a

\a -> list_para a (\b -> b) (\b c d _ -> b : (b : d c)) []

\a -> list_para a (\b -> b) (\b _ d _ -> b : (b : d [])) a

\a -> list_para a (\b -> b) (\b _ d _ -> b : (b : d [])) []

^CInterrupted.

Prelude MagicHaskeller.LibTH> printAllF $ \f -> f "abc" == "aabbcc"

\a -> list_para a [] (\b _ d -> b : (b : d))

^CInterrupted.

The text regions between Prelude and > are prompts of GHCi. The first
line after the GHCi invocation is for bringing module MagicHaskeller.LibTH

into scope. The second line initializes the environment and set the component
library, i.e. the set of combinators with which to construct programs, with a
recommended set of combinators. The third line requests to print all the expres-
sions which can be synthesized using the combinators in the component library
that satisfy the predicate \f -> f "abc" == "aabbcc".

Then, synthesized programs are printed line by line, from the smallest one
with the least number of function applications, increasing the program size pro-
gressively. The list_para function is (a function isomorphic to) the list paramor-
phism (e.g. [Augusteijn(1999)]) and defined in the module MagicHaskeller.LibTH.
Other notations are the same as Haskell ’s — \v -> e means λv.e, [] denotes
the empty list, and (:) is the binary constructor that adds one element to the
first position of a list. Because the algorithm generates an infinite stream of
programs, it has to be interrupted on the way.

The letter F in printAllF means filtering out expressions that are semanti-
cally equivalent to any of the already printed expressions by using a randomized
algorithm.[Katayama(2008)] This is useful, though it affects the efficiency. In the
above example, seemingly all the synthesized and printed programs are equiva-
lent to the firstly generated one. However, there is always the possibility where
some of them are proved to be different and printed later while using printAllF
if the computation is not interrupted.

3.2 An example of using a rich library

A variant of the filter for removing semantically equivalent expressions can be
applied during program generation rather than after program generation, in
order to reduce the number of programs and quicken the synthesis. Because the
filtration itself takes time, program generation with this technique is not always
quicker than that without it. However, it is known to be quicker when using
a rich set of combinators as the component library. In the Version 0.8.6.1 of
MagicHaskeller , it can be tried by using MagicHaskeller.LibTH.exploit.

Prelude MagicHaskeller.LibTH> exploit $ \f -> f "abc"=="abcba"

\a -> list_para (reverse a) a (_ c _ -> a ++ c)

^CInterrupted.

Although use of a rich library may be considered as cheating when benchmarking,
it can be more useful than using a poor library, making the results more readable.

4 The modules for analytical synthesis

Since Version 0.8.6, an analytical synthesis engine is added to MagicHas-
keller . It uses an algorithm that extends Igor II [Kitzelmann(2007)]
[Hofmann et al.(2010)Hofmann, Kitzelmann, and Schmid] to enable generation
of many programs as a stream of lists, where programs with few case splittings are
highly prioritized and appear early. This is made possible by not stopping search
when the best programs are found but continuing the search in the breadth-first
manner.

Igor II sometimes suffers from the trade-off between the correctness of the
generated programs and the computational complexity: (only) unwanted pro-
grams are generated unless there are enough number of examples to correctly
specify the desired function, and no programs are generated if the number of
examples is too large due to the time complexity for conducting unification.
This trade-off often forces trial-and-error to users in order to find the adequate
number of I/O example pairs, and sometimes causes search failure due to lack
in such a number. Those cases often happen especially when arguments increase
in different dimensions and there are some corner cases.

For example, Igor II cannot correctly synthesize the concat function in the
Standard Prelude of Haskell and the allodd function that takes a list of integers
and returns if all of its elements are odd. In both cases wrong functions are
generated when given several examples, and no functions are obtained, at least
within five minutes, when given more than ten examples.

Generating many programs analytically from insufficient input-output pairs
and then filtering them with a separately-supplied predicate is an answer to this
trade-off. In fact, those functions can be synthesized with our new analytical
synthesis modules without any trial-and-error on the users’ side. The trade-off is
resolved by dividing the set of input-output examples into those for guiding the
search and those for avoiding generation of unintended solutions. For the latter

purpose, the user usually need only one general (in that it is not at an edge or
corner case) example, and rarely need to enumerate many examples. In addition,
even if some examples are required here, that hardly influences the efficiency.
On the other hand, the set of input-output examples for guiding the search can
be minimized. Moreover, even if there are not enough number of examples for
this purpose, the solution can be found, though the search is less efficient than
when the optimal number of examples are given.

The advantage of analytical synthesis over systematic exhaustive search is
that there are functions which the exhaustive algorithm cannot synthesize within
a realistic time span but analytical algorithms can. On the other hand, some
other functions such as the Fibonacci function can be synthesized by exhaus-
tive search but cannot be synthesized by analytical algorithms (without using
a specialized addition function, which can be regarded as cheating). Currently
the analytical synthesis engine works separately from the systematic exhaus-
tive search engine, except that they share some common modules such as those
defining the language and those implementing combinatorial search. Their co-
operation to make a new synthesis engine will be tried in future. Also note that
a paramorphism introduction operator like in
[Hofmann and Kitzelmann(2010)] is not implemented yet.

4.1 A simple example

In the next example the length function is synthesized. The analytical synthesis
engine generates many programs that generalize {f [] = 0; f [a] = 1} with-
out using any background knowledge functions. Then, it compiles the generated
programs, and filter them with the predicate \f -> f "12345" == 5.

$ ghci -package MagicHaskeller -XTemplateHaskell -v0

Prelude> :m MagicHaskeller.RunAnalytical

Prelude MagicHaskeller.RunAnalytical> :set prompt >

> quickStart [d| f [] = 0; f [a] = 1 |] noBKQ (\f -> f "12345" == 5)

\a -> let fa (b@([])) = 0

fa (b@(c : d)) = succ (fa d)

in fa a :: forall t2 . [t2] -> Int

^CInterrupted.

The first two lines are not essential. The first line is for bringing module
MagicHaskeller.RunAnalytical into scope. The second line literally replaces
the command prompt with >>. The latter is not indispensable, but it is recom-
mended when using a narrow screen, because a lot of information has to be input
at each analytical synthesis.

The third line is important, though is not very difficult. The set of decla-
rations surrounded by the Oxford bracket [d| . |] is a declaration quote of
Template Haskell having type Q [Dec]. The quickStart function takes the set
of input-output pairs of the target function as the first argument, the sets of
input-output pairs of the background knowledge functions, and the predicate
with which to filter the generated programs. The careful reader may notice that

different syntaxes are used between the first argument and the third argument.
For example, a variable pattern is used in the first argument while concrete val-
ues are used in the third argument, and the implicit equality is used in the first
argument while the explicit one is used in the third argument. These are not the
results of the author’s fancy. Variable patterns can be used within the first ar-
gument because it has the form of a function definition. They are often required
by analytical synthesis in order to make recursive calls, because a recursive call
involves pattern matching. On the other hand, the third argument that is used
for filtering the generated programs has to use concrete values, because they will
not be abstractly interpreted but compiled and executed.

Although in the above example the type of the target function is not supplied,
it may be supplied as the type signature declaration in the first argument, like
[d| f :: [a]->Int; f [] = 0; f [a] = 1 |]. When the type signature is
omitted, the type is inferred from the types of constructors appearing in the
input-output pairs. Integral literals are assumed to have type Int. They are
treated specially and converted into combinations of 0, succ, and negate.

Patterns with @ are called as-patterns, and the argument is matched to both
patterns at the both sides of @. In the above case, because the two bs are unused,
use of as-patterns are actually unnecessary. Such redundant use of as-patterns
will be removed from the future releases.

4.2 An example with a background knowledge function

When background knowledge function(s) should be used, they are specified in
the second argument. In this case, the analytical synthesizer generates higher-
order functions that take background knowledge functions as arguments. This
should be noted when specifying the test function.

The next example shows synthesis of multiplication using addition as the
background knowledge function. Note that multiplication is one of the boring
functions that cannot be synthesized by Igor II . Since (+) :: Int -> Int ->
Int is used as the background knowledge function, the resulting programs require
(+) as the first argument.

> :{

| quickStartF

| [d| mult 0 x = 0; mult 1 0 = 0;

| mult 1 1 = 1; mult 1 2 = 2;

| mult 2 0 = 0; mult 2 1 = 2;

| mult 2 2 = 4 |]

| [d| add 0 x = x; add 1 0 = 1;

| add 1 1 = 2; add 1 2 = 3;

| add 2 0 = 2; add 2 1 = 3;

| add 2 2 = 4 |]

| (\f -> f (+) 5 6 == 30)

| :}

\fa a b -> let fb (c@0) d = 0

fb (c@succe) d | succe > 0 = fa d (fb e d)

where e = succe - 1

in fb a b :: (Int -> Int -> Int) -> Int -> Int -> Int

\fa a b -> let fb (c@0) d = 0

fb (c@succe) d | succe > 0 = fa (fb e d) d

where e = succe - 1

in fb a b :: (Int -> Int -> Int) -> Int -> Int -> Int

^CInterrupted.

:{ and :} are used in order to input a multi-line expression. This syntax of
GHCi is introduced to Version 7, and module MagicHaskeller.RunAnalytical
does not work with the version of GHCi, but the actual one-line input is hand-
edited into this syntax in order to fit the input line into the page width of this
paper. Also, the effect of the command for changing the prompts is actually
cancelled within the :{ . :} block, but we assume that it works there.

In this example, we used an action with letter F, namely quickStartF, in
order to avoid printing equivalent functions. Of course, we could use quickStart
here instead, though doing so in this case results in printing tons of expressions.
The two results printed are still equivalent if we limit the background knowledge
function to (+), but they are different if we use a non-commutative operator.
For this reason, these two functions are recognized as different.

4.3 Using types unknown to MagicHaskeller

The actions introduced so far only works for types known beforehand, whose
constructors appear in MagicHaskeller.CoreLang.defaultPrimitives. Types
that do not appear there can be dealt with in the following way:

> :{

| quickStartCF $(c [d| f [] = 0; f [a] = 1; f [a,b] = 2 |]) noBK

| (\f -> f "foobar" == 6)

| :}

\a -> let fa (b@([])) = 0

fa (b@(c : d)) = succ (fa d)

in fa a :: forall t6 . [t6] -> Int

^CInterrupted.

where the function c extracts the values of constructors appearing in the Oxford
bracket and hand them over to the quickStartCF action. The code block be-
tween $(and) describes what should be spliced, and there must not be spaces
between $ and (.

5 Conclusions

This paper exemplified the usage and behavior of the newest version of Magic-
Haskeller . In addition to the usage of its older systematic exhaustive search
engine, that of the newly added analytical synthesis engine was also explained.
The new analytical synthesis engine is based on Igor II , but can generate many
hypothesis programs. By generating many programs analytically and testing
them, we can have a new synthesis system that is more powerful than Igor II .

References

[Augusteijn(1999)] L. Augusteijn. Sorting morphisms. In Advanced Functional Pro-
gramming, LNCS 1608, pages 1–27. Springer Verlag, 1999.

[Claessen and Hughes(2000)] Koen Claessen and John Hughes. QuickCheck: a
lightweight tool for random testing of Haskell programs. In ICFP’00: Proceedings
of the 5th ACM SIGPLAN International Conference on Functional Programming,
pages 268–279. ACM, 2000.

[Hofmann and Kitzelmann(2010)] Martin Hofmann and Emanuel Kitzelmann. I/O
guided detection of list catamorphisms: towards problem specific use of program
templates in ip. In Proceedings of the 2010 ACM SIGPLAN workshop on Partial
evaluation and program manipulation, PEPM ’10, pages 93–100, 2010.

[Hofmann et al.(2010)Hofmann, Kitzelmann, and Schmid] Martin Hofmann, Emanuel
Kitzelmann, and Ute Schmid. Porting IgorII from maude to haskell. In Ute Schmid,
Emanuel Kitzelmann, and Rinus Plasmeijer, editors, Approaches and Applications
of Inductive Programming, Third International Workshop, AAIP 2009, volume
5812 of LNCS, pages 140–158, 2010.

[Jones(2005)] Isaac Jones. The haskell cabal: A common architecture for building ap-
plications and libraries. In Sixth Symposium on Trends in Functional Programming,
pages 340–354, 2005.

[Katayama(2005a)] Susumu Katayama. Systematic search for lambda expressions. In
Sixth Symposium on Trends in Functional Programming, pages 195–205, 2005a.

[Katayama(2005b)] Susumu Katayama. MagicHaskeller: A search-based in-
ductive functional programming system. http://nautilus.cs.miyazaki-
u.ac.jp/˜skata/MagicHaskeller.html, 2005b.

[Katayama(2006)] Susumu Katayama. Library for systematic search for expressions
and its efficiency evaluation. WSEAS Transactions on Computers, 12(5):3146–
3153, 2006.

[Katayama(2008)] Susumu Katayama. Efficient exhaustive generation of functional
programs using monte-carlo search with iterative deepening. In Tu Bao Ho and Zhi-
Hua Zhou, editors, PRICAI, volume 5351 of Lecture Notes in Computer Science,
pages 199–210. Springer, 2008. ISBN 978-3-540-89196-3.

[Katayama(2010)] Susumu Katayama. Recent improvements of MagicHaskeller. In Ute
Schmid, Emanuel Kitzelmann, and Rinus Plasmeijer, editors, Approaches and Ap-
plications of Inductive Programming, Third International Workshop, AAIP 2009,
volume 5812 of LNCS, pages 174–193, 2010.

[Kitzelmann(2007)] Emanuel Kitzelmann. Data-driven induction of recursive func-
tions from input/output-examples. In AAIP’07: Proceedings of the Workshop on
Approaches and Applications of Inductive Programming, pages 15–26, 2007.

[Sheard and Peyton Jones(2002)] Tim Sheard and Simon L. Peyton Jones. Tem-
plate metaprogramming for Haskell. In Haskell Workshop 2002, Octo-
ber 2002. URL http://research.microsoft.com/Users/simonpj/papers/meta-
haskell/meta-haskell.ps.

